JPS5847567A - Electric power source for welding - Google Patents

Electric power source for welding

Info

Publication number
JPS5847567A
JPS5847567A JP14679881A JP14679881A JPS5847567A JP S5847567 A JPS5847567 A JP S5847567A JP 14679881 A JP14679881 A JP 14679881A JP 14679881 A JP14679881 A JP 14679881A JP S5847567 A JPS5847567 A JP S5847567A
Authority
JP
Japan
Prior art keywords
welding
voltage
current
output
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14679881A
Other languages
Japanese (ja)
Other versions
JPH0156869B2 (en
Inventor
Naoki Kawai
直樹 河合
Yoriaki Nishida
西田 順紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14679881A priority Critical patent/JPS5847567A/en
Publication of JPS5847567A publication Critical patent/JPS5847567A/en
Publication of JPH0156869B2 publication Critical patent/JPH0156869B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To perform welding work stably by providing a setter for regulation of welding outputs, a detector for actual welding voltage and current, and an operating device for comparison thereof to an electric power supply device for welding devices, and controlling control elements for output voltage and a motor for feeding a welding wire in accordance with the compared values thereof. CONSTITUTION:In an output terminal 14 from a smoothing circuit 13 for DC secondary current in an electric power supply section of a welding device, the welding voltage and current under welding work are drawn out and detected with a shunt 19 for detection and the values thereof are inputted via an input circuit part 21 to a logical arithmetic circuit 22 of a microcomputer. At the same time, the set values of voltage and current are inputted from a setter 20 for regulation of welding outputs to the circuit 22. Both input values are compared and subjected to feedback operation. The voltage of the welding output and the driving of a motor 18 for feeding a welding wire are controlled by control circuits 23, 24 in such a way that the welding output is brought close to the set value infinitely, whereby the welding work is performed stably.

Description

【発明の詳細な説明】 本発明は溶接作業者が設定する溶接電圧または溶接電流
の設定値i号・(以下、設定値という)と溶接出力の電
圧値または電流値の検出信号(以下、検出値という)と
によって、溶接出力を決定する演算回路を備えた溶接用
電源装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a set value i of welding voltage or welding current set by a welding operator (hereinafter referred to as set value) and a detection signal of the voltage value or current value of welding output (hereinafter referred to as detected value). The present invention relates to a welding power supply device equipped with an arithmetic circuit that determines a welding output based on a value (referred to as a value).

従来、この種の出力フィードバック制御方式の溶接用電
源装置は、第1図に示すように演算増幅器1′を用いて
設定値2と検出値3とを比較増幅し、この結果の出力を
溶接出力制御素子の命令信号4としていた。なお、6.
6は応答時定数および応答利、得調整−用の抵抗とコン
デジサである。この第1図に示す演算増幅器による方式
では、容易に出カフィードバック制御を中断してオープ
ンループ制御に切換えるのが困難であった。すなわち5
、溶接用電源装置の出力特性と溶接アークの特性とに鑑
み、精度良い溶接出力を期さない場合や、入力電源電圧
の変動がほとんど゛無い場合は出力フィードバック制御
を行わない方が円滑な溶接アークが得られたり、溶接ア
ークの状態によりフィードバック制御の有無を適時切換
えた方が安定表溶接ア\−りを維持できる場合がある。
Conventionally, this type of output feedback control type welding power supply device uses an operational amplifier 1' to compare and amplify a set value 2 and a detected value 3, as shown in Fig. 1, and the resulting output is used as the welding output. The control element command signal 4 was used. In addition, 6.
6 is a resistor and a capacitor for response time constant, response gain, and gain adjustment. In the method using the operational amplifier shown in FIG. 1, it is difficult to easily interrupt output feedback control and switch to open loop control. i.e. 5
Considering the output characteristics of the welding power supply device and the characteristics of the welding arc, if accurate welding output is not expected or if there is almost no fluctuation in the input power supply voltage, it is better not to perform output feedback control for smoother welding. In some cases, stable surface welding can be maintained by appropriately switching the presence or absence of feedback control depending on whether an arc is obtained or the state of the welding arc.

従って、溶接出力を直接フィードバック制、御するのを
避けて他の方。
Therefore, direct feedback control of the welding output can be avoided by others.

法で溶接出力の補正をしたり、はなはだしい場合は溶接
出力の補正を行わない完全なオープンループ制−として
いた= また、演算増幅器等による出力フィードバック制御回路
を具備した溶接用電源装置では、フィードバックの応答
時定数を大きくして対処したり、溶接アークの状態によ
り溶接作業者の設定する設定値とは別に他の模擬的な設
定値を準備しておき、適時設定値を切換えて対処してき
た。すなわち、第2図の溶接用電源装置の出力特性So
、 81.82とりの時ijV+に相当する設定値を演
算増幅器の片側の入力に印加しておけば、入力電源電圧
の変動等゛の外乱に対してもム1なる動作点を維持する
べく制御される。しかし、溶接開始時の溶接アークが発
生するまで℃時間、同じvlに相当する設定値を入力し
ていたのでは、フィードバック制御の働きに溶接アーク
の発生が得られな!。また、ム1なる点で溶接アークの
発生時に何らかの原因でアーク切、れしてム0の点に移
行した時、フィードバック制御によりム3の点に移シ、
この結果法のアーク発生時にはム2なる点となシ、安定
な範囲を逸脱してしまう。
The welding power supply system was completely open-loop, in which the welding output was corrected in accordance with the method, and in extreme cases, the welding output was not corrected. This has been dealt with by increasing the response time constant, or by preparing other simulated settings in addition to the settings set by the welding operator depending on the state of the welding arc, and switching the settings at appropriate times. That is, the output characteristic So of the welding power supply device shown in FIG.
, 81.82, if a set value corresponding to ijV+ is applied to one input of the operational amplifier, control can be performed to maintain a constant operating point even in the face of disturbances such as fluctuations in the input power supply voltage. be done. However, if the setting value corresponding to the same vl is inputted for the °C time until the welding arc is generated at the start of welding, the welding arc cannot be generated due to the feedback control function! . In addition, when a welding arc is generated at point M1 and the arc is cut off for some reason and moves to point M0, it is moved to point M3 by feedback control.
As a result, when an arc occurs in this method, a point is reached and the stable range is deviated from.

このため、第3図に示すように溶接電流を検出していな
い時は切−素子7により設定値2,2′を切換えてvO
に相当する設定値2′を入力したり、定常溶接時よりも
高い出力電圧でアークを発生させる、いわゆる高電圧ス
タート時にはVaに相当する設定値2′を入力して対処
していた。
Therefore, as shown in Fig. 3, when the welding current is not detected, the set values 2 and 2' are switched by the cutoff element 7, and the vO
This was handled by inputting a set value 2' corresponding to Va, or inputting a set value 2' corresponding to Va at the time of so-called high voltage start, which generates an arc at a higher output voltage than during steady welding.

しかし、このように溶接アークの状態毎に設定値を切換
えていたのでは、その切換回路が繁雑となり、かつ高価
なものとなってしまう。
However, if the set value is changed for each state of the welding arc in this way, the switching circuit becomes complicated and expensive.

また、このように溶接電流の検出の有無によって設定値
を切換えても、溶接開始時の溶接電流波形は第4図aに
示すように不規則であるのが一般である。従って、この
間の溶接出力を検出してフィードバック制御していたの
では、かえって溶接出力を乱す恐れがある。     
      □このため、従来の制御回路ではフィード
バック制御の応答時定数を、例えば第4図のts9る値
よりも大に設定しており、この結果安牽した溶接アーク
発生時にも同じ時定数となり、小刻みなフィードバック
制御が□できず、入力電源電圧の急変等、   の外乱
に対し十分対処できていなかった。
Further, even if the set value is changed depending on whether or not the welding current is detected, the welding current waveform at the start of welding is generally irregular as shown in FIG. 4a. Therefore, if the welding output during this period is detected and feedback controlled, there is a risk that the welding output will be disturbed.
□For this reason, in conventional control circuits, the response time constant of feedback control is set larger than, for example, the value ts9 in Fig. 4, and as a result, even when a welding arc is generated, the same time constant remains, and the response time constant is set in small steps. It was not possible to perform proper feedback control, and it was not possible to adequately deal with disturbances such as sudden changes in input power supply voltage.

本発明は若干の垂下度を有する溶接用電源装置の出力特
性と溶接アークの特性とに鑑み、設定値と検出値とを比
較演算して溶接出力を限りなく設定値に近付けるよう命
令信号を出力する出力フィードバック制御と、設定値を
検出値に僕係なくそ御とを切換素子により切換えること
により選択可能とし、精度および応答性の良いフィード
バック制御と安定性の良い溶接アークとを同時に実現し
たものである。以下、本発明の一実施例を示す第6図〜
第7図?図面を用′いて説明する。
In consideration of the output characteristics of a welding power supply device and the characteristics of a welding arc, which have a slight degree of droop, the present invention compares and calculates a set value and a detected value and outputs a command signal to bring the welding output as close to the set value as possible. It is possible to select between output feedback control to control the set value and control to change the set value to the detected value by switching with a switching element, and simultaneously achieves feedback control with good accuracy and responsiveness and a stable welding arc. be. Below, FIGS. 6 to 6 show an embodiment of the present invention.
Figure 7? This will be explained using drawings.

第6図に本発明め一実施例による溶接用電源装置のブロ
ック回路を示しており、第6図において1oは溶接用電
源装置の入力端子、11は溶接用事ぞ圧器、12は整流
機能を備え入出力電圧制御素子、13は溶接特性調整用
リアクトル部、14は溶接電流波形の出力端子、16は
被溶接物、16は通電用チップ、17は溶接用ワイヤ、
18はワイヤ送給用モータ、19は溶接電流値検出用分
流器、20は溶接出力調整用設定器、21は溶接電流、
溶接電圧の検出値の入力回路部、22はマイクロコンピ
ュータ等による論理演算回路部、23は出力電圧制御素
子12の制御回路部、24はワイヤ送給用モータ18の
モータ制御回路部、26はフィードバック制御の、有無
を選択する切換素子である。
FIG. 6 shows a block circuit of a welding power supply device according to a first embodiment of the present invention. In FIG. Input/output voltage control element, 13 is a reactor section for adjusting welding characteristics, 14 is an output terminal for welding current waveform, 16 is a workpiece to be welded, 16 is a current supply tip, 17 is a welding wire,
18 is a wire feeding motor, 19 is a shunt for detecting welding current value, 20 is a setting device for adjusting welding output, 21 is welding current,
22 is a logic operation circuit section using a microcomputer or the like; 23 is a control circuit section for the output voltage control element 12; 24 is a motor control circuit section for the wire feeding motor 18; 26 is a feedback circuit section. This is a switching element that selects whether or not to control.

この第6図に示すブロック回路において、溶接用電源装
置の出力電圧は溶接電流値を検出する分流器19による
溶接電流値とともに入力回路部21に取り入れられる。
In the block circuit shown in FIG. 6, the output voltage of the welding power supply device is input to the input circuit section 21 together with the welding current value by the shunt 19 that detects the welding current value.

これらの検出値は入力回路部21からマイクロコンピュ
ータ等で構成される論理演算回路部22に入力される。
These detected values are input from the input circuit section 21 to a logic operation circuit section 22 composed of a microcomputer or the like.

一方、溶接作業者が設定する溶接電圧または溶接電流の
設定値は設定器20により論理演算回路部22に入力さ
れる。この論理演算回路部221iマイクロコンピユー
タ等の採用によVあらかじめ決められた手順に論理演算
を実行する。すなわち、−フィードバック制御の有無を
選択する切換素子26が無側となっていれば、入力回路
部21からの検出値にかかわらず、設定器22か゛らの
設定値を命令信号として出力電圧制御素子12の制御回
路部23またはモータ制御回路部24に送る。また、切
換素子26がフィードバック制御右側となっている時は
、設定器2oからの設定値と入力回路部21からの検出
値とを比較してフィードバック演算を行い、溶接出力が
限りなく設定値に近付くように補正して命令信号を制御
回路部23およびモータ制御回路部24に転送する。
On the other hand, the set value of the welding voltage or welding current set by the welding operator is inputted to the logic operation circuit section 22 by the setting device 20. By employing this logic operation circuit section 221i, such as a microcomputer, logic operations are executed in a predetermined procedure. In other words, if the switching element 26 that selects the presence or absence of -feedback control is in the null state, the output voltage control element 12 uses the set value from the setter 22 as a command signal, regardless of the detected value from the input circuit section 21. control circuit section 23 or motor control circuit section 24. Also, when the switching element 26 is on the right side of feedback control, the set value from the setting device 2o and the detected value from the input circuit section 21 are compared and feedback calculation is performed, so that the welding output reaches the set value without limit. The command signal is corrected so as to approach the command signal and transferred to the control circuit section 23 and the motor control circuit section 24.

以上の仕事順を決めるプログラムフローチャー 。A program flowchart that determines the order of the above tasks.

ト例の切換素子26を溶接電流検出用切換素子として使
用した場合を第6図に示す。すなわち、溶接電流を検出
していない時はフィードバック制御を行わず、溶接電流
を検出している時はフィードバック制御を゛行うため、
応答性良く精度の良い溶接制御を行うことができる。
FIG. 6 shows a case where the switching element 26 of the above example is used as a switching element for detecting welding current. In other words, feedback control is not performed when the welding current is not detected, and feedback control is performed when the welding current is detected.
It is possible to perform highly responsive and accurate welding control.

なお、第7図に切換素子26として溶接電流積出世素子
を用い、論理演算回路部22内にカウンタバッフ1を設
け、溶接電流を検出してから一定時間経過後からフィー
ドバック制御を桔うためのプログラムフローチャートを
示している。
In addition, in FIG. 7, a welding current multiplying element is used as the switching element 26, a counter buffer 1 is provided in the logic operation circuit section 22, and feedback control is performed after a certain period of time has passed after detecting the welding current. 5 shows a program flowchart.

以上のように本発明の溶接用電源装置によれば、フィー
ドバック制御とオープンループ制御とを切換える切換素
子を設けたものであるため、溶接電流を検出しない時は
フィードバック制御を行わずオープンループ制御番行い
、溶接電流を検出してまた溶接電流を検出しない時およ
び溶接電流を検出してから一定時間内はオープンループ
制御を行い、溶接電流を検出してから一定時間後、すな
わち溶接アークが安定した時を推測してそれ以後はフィ
ードバック制御を行うことができる。これにより定常溶
接アーク時以外に対し、代替の設定値を用意して切換え
る必要はなくなり、回路の繁雑さから解放され、また溶
接開始特等?溶接アークが安定しない間はオープンルー
プ制御とし、十分溶接アークが安定した後フィードバッ
ク制御とす゛     導 御。応答特朶数を小さくアき、、)f、精度良く、しか
も応答性良く溶接アークのフィードバック制御を行うこ
とができる。しかも、このようなオープンループ制御、
フィードバック制御の自動切換えも容易に行うことがで
きるのである。
As described above, the welding power supply device of the present invention is provided with a switching element that switches between feedback control and open-loop control, so when no welding current is detected, feedback control is not performed and the open-loop control number is switched on. open-loop control is performed when the welding current is detected and no welding current is detected, and within a certain period of time after the welding current is detected, and after a certain period of time after the welding current is detected, that is, when the welding arc is It is possible to estimate the time and perform feedback control thereafter. This eliminates the need to prepare and switch alternative setting values for times other than steady welding arc, frees the circuit from complexity, and provides special features for starting welding. Open loop control is used while the welding arc is not stable, and feedback control is applied after the welding arc is sufficiently stabilized. By reducing the response frequency, it is possible to perform feedback control of the welding arc with high accuracy and responsiveness. Moreover, such open loop control,
Automatic switching of feedback control can also be easily performed.

【図面の簡単な説明】[Brief explanation of drawings]

溶接用電源装置の要部の回路図、第2図は同溶接1゜ 用電源装置の出力特性と溶接アーク特性との関係を示す
図、第3図は他の従来の溶接用電源装置の要部の回路図
、第4図a、bは溶接アークスタート時の溶接電流と溶
接電圧の波形例を示す信号波形図、第6図は本発明の一
実施例による溶接用電源装置のブロック回路図、第6図
はそのブロックの例を示すフローチャートである。 19・・・・・・分流器、2o・・・・・・設定器、2
1・・・・・・入力回路部、22・・・・・・論理演算
回路部、23・・・・・・制御回路部、24・・・・・
・モータ制御回路部、26・・・・・・切換素子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 一一一一一−−時間− む 第6図 WIk7図
A circuit diagram of the main parts of the welding power supply device, Fig. 2 is a diagram showing the relationship between the output characteristics and welding arc characteristics of the same welding power supply device for 1°, and Fig. 3 is a diagram showing the main parts of another conventional welding power supply device. 4a and 4b are signal waveform diagrams showing waveform examples of welding current and welding voltage at the time of welding arc start, and FIG. 6 is a block circuit diagram of a welding power supply device according to an embodiment of the present invention. , FIG. 6 is a flowchart showing an example of the block. 19...Shunt device, 2o...Setting device, 2
1... Input circuit section, 22... Logical operation circuit section, 23... Control circuit section, 24...
- Motor control circuit section, 26... switching element. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 1111--Time- Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 (1)溶接作業者が設定する溶接電圧または溶接室′流
の設定値信号と溶接出力の電圧値または電流値の検出値
信号とが入力されかつ溶接出力を決定する溶接電圧およ
び溶接電流の一命令信号を出力する演算回路を備え、前
記設定値信号と検出値信号とを比較演算して溶接出力を
設定値信号に限りなく近付くように命令信号を出力する
フィードバック制御と前記検出値信号に閏年なく設定値
信号を命令信号として出力するオープンループ制御とを
切換える切換素子を設けた溶接用電源装置。     
         ′(2)切換素子の切換えを溶接電
流の検出により行い、かつ溶接電流を検出していない時
はオープンループ制御を行うとと−に、溶接電流を検出
した時はフィードバック制御を行う特許請求の範囲第1
項に記載の溶接用電源装置。 (3)′切換素子の切換えを溶接電流の検出により行い
、゛かつ溶等電流を検出していない時と溶接電流を検出
してから一定時間はオープンループ制御を行うとともに
1.溶接電流を検出してから一定時間後にフィードバッ
ク制−を行う特許請求の範囲第1項に記載の溶接用電源
装置。
[Scope of Claims] (1) Welding in which a welding voltage set by a welding operator or a welding chamber flow set value signal and a detected value signal of a welding output voltage value or current value are input and the welding output is determined. Feedback control includes an arithmetic circuit that outputs one command signal for voltage and welding current, compares and calculates the set value signal and the detected value signal, and outputs a command signal so that the welding output approaches the set value signal as much as possible. A welding power supply device comprising a switching element for switching between open loop control that outputs a set value signal as a command signal without a leap year in the detected value signal.
'(2) The switching element is switched by detecting welding current, and when no welding current is detected, open loop control is performed, and when welding current is detected, feedback control is performed. Range 1
Welding power supply device as described in section. (3) The switching element is switched by detecting the welding current, and open-loop control is performed when no welding current is detected and for a certain period of time after the welding current is detected. The welding power supply device according to claim 1, which performs feedback control after a certain period of time after detecting the welding current.
JP14679881A 1981-09-16 1981-09-16 Electric power source for welding Granted JPS5847567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14679881A JPS5847567A (en) 1981-09-16 1981-09-16 Electric power source for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14679881A JPS5847567A (en) 1981-09-16 1981-09-16 Electric power source for welding

Publications (2)

Publication Number Publication Date
JPS5847567A true JPS5847567A (en) 1983-03-19
JPH0156869B2 JPH0156869B2 (en) 1989-12-01

Family

ID=15415765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14679881A Granted JPS5847567A (en) 1981-09-16 1981-09-16 Electric power source for welding

Country Status (1)

Country Link
JP (1) JPS5847567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064766A (en) * 1983-09-16 1985-04-13 Daihen Corp Control device for arc welding
JPS60127078A (en) * 1983-12-12 1985-07-06 Daihen Corp Control device for welding machine
JPH02144143U (en) * 1989-04-28 1990-12-06
EP0451279A1 (en) * 1989-08-29 1991-10-16 Fanuc Ltd. Arc welding current/voltage control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064766A (en) * 1983-09-16 1985-04-13 Daihen Corp Control device for arc welding
JPH0378182B2 (en) * 1983-09-16 1991-12-12 Daihen Corp
JPS60127078A (en) * 1983-12-12 1985-07-06 Daihen Corp Control device for welding machine
JPH0369622B2 (en) * 1983-12-12 1991-11-01 Daihen Corp
JPH02144143U (en) * 1989-04-28 1990-12-06
EP0451279A1 (en) * 1989-08-29 1991-10-16 Fanuc Ltd. Arc welding current/voltage control method

Also Published As

Publication number Publication date
JPH0156869B2 (en) 1989-12-01

Similar Documents

Publication Publication Date Title
JPH08195225A (en) Battery charger
US3896287A (en) Direct current arc power supply
US3708754A (en) Process controller with gain-changing circuitry
JPS5847567A (en) Electric power source for welding
US2954530A (en) Direct current transistor amplifier
JP3311403B2 (en) Automatic arc welding control method and apparatus
JPH07222437A (en) Switching power-supply apparatus
JPS6313525Y2 (en)
JP2609218B2 (en) Digital excitation controller for generator
JPH0445440Y2 (en)
JP2665868B2 (en) Power supply for electric furnace
JPS645999Y2 (en)
JPH09121599A (en) Automatic voltage regulator
JPS6330198Y2 (en)
JPH03183357A (en) Chopper controller
JPH0145272Y2 (en)
JPH01150468A (en) Dc arc welding machine
US3321667A (en) Control systems for electric welders
JPS5825442Y2 (en) batch process control equipment
JPH01304512A (en) Controller for air conditioner
JPH0312716A (en) Voltage detecting circuit
JP2995919B2 (en) Motor speed control device
JPH02298433A (en) Wire cut electric discharge machine
JPS6118399A (en) Automatic voltage regulator
JPS59127598A (en) Automatic power factor regulator for generator