JPS6130065A - Semiconductor memory cell - Google Patents

Semiconductor memory cell

Info

Publication number
JPS6130065A
JPS6130065A JP15227084A JP15227084A JPS6130065A JP S6130065 A JPS6130065 A JP S6130065A JP 15227084 A JP15227084 A JP 15227084A JP 15227084 A JP15227084 A JP 15227084A JP S6130065 A JPS6130065 A JP S6130065A
Authority
JP
Japan
Prior art keywords
region
type
type region
concentration
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15227084A
Other languages
Japanese (ja)
Inventor
Kazuo Terada
寺田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15227084A priority Critical patent/JPS6130065A/en
Publication of JPS6130065A publication Critical patent/JPS6130065A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a cell which does not result in soft errors, by providing with a P type region having a higher concentration and a P type region having an end extruded and having a lower concentration than a comparatively low impurity concentration of an N type region, which are contacted each other and cause the N type region to be underlaid, on a P type Si substrate, and by connecting a word wire to the lower concentration P type region and a bit wire to the higher concentration P type region. CONSTITUTION:A P type region 102 having an impurity concentration of about 2X10<17>/cm<3> and having an end extruded and a P type region 104 having a concentration above 10<18>/cm<3>, contacting with each other, are formed with an N type region 103 with a concentration of about 2X10<17>/cm<3> underlain on a P type Si substrate 101 with a concentration of about 2X10<15>/cm<3>. Next, at the end of the regions 103, 104, an N type region 107 with a concentration above 10<18>/cm<3> for supplying a reference voltage is formed, and on the region 102 a conductive film 105 serving as both of a gate electrode and a word wire is formed with a gate insulating film 106 interposed. Moreover, on the region 104, a bit wire 110 is coated with a conductive film 108 and an insulating film 109 for forming a capacitance interposed. Thus invasion of radioactive particles can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は小型化してもアルファ粒子などの放射性粒子に
よって引き起されるソフトエラーの発生が少ない半導体
メモリセルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor memory cell that is less susceptible to soft errors caused by radioactive particles such as alpha particles even when downsized.

(従来技術とその問題点) アルファ粒子などの放射性粒子が半導体内に入射すると
、半導体内部には多量の電荷が生成される。これらの電
荷が半導体メモリセル内部の電極に流入すると、その電
極の電位を変化させ、その結果ソフトエラーを起す。半
導体メモリセル内の電極が取シ扱う電荷量が大きい時は
、このような内部生成電荷の流入の影響は小さく、この
メモリセルがソフトエラーを起すことは少ない。しかし
、半導体メモリセルが小屋化されると、メモリセル内電
極の取シ扱う電荷量が減少するため、ソフトエラーの問
題が重大となる。
(Prior art and its problems) When radioactive particles such as alpha particles enter a semiconductor, a large amount of electric charge is generated inside the semiconductor. When these charges flow into the electrodes inside the semiconductor memory cell, they change the potential of the electrodes, resulting in soft errors. When the amount of charge handled by the electrodes in a semiconductor memory cell is large, the influence of such an inflow of internally generated charges is small, and this memory cell rarely causes soft errors. However, when semiconductor memory cells are reduced in size, the amount of charge handled by the electrodes in the memory cells decreases, so the problem of soft errors becomes serious.

従来の半導体メモリセルでは、メモリセル内電極の構造
を改良し、放射性粒子によって生成される電荷のこの電
極への流入を少なくすること、この電極の取シ扱う電荷
量を流入電荷量以上に保つことによってソフトエラーを
防いでいた。
In conventional semiconductor memory cells, the structure of the electrode in the memory cell is improved to reduce the flow of charge generated by radioactive particles into this electrode, and to keep the amount of charge handled by this electrode greater than the amount of charge flowing in. This prevented soft errors.

例えば1981年の国際電子デバイス会議(IBDM′
81)の予稿集40〜43ページの論文−ABu−ri
ed  N−Grid  for  Protecti
on Agalnst  Ra−dlatlon  I
nduced  Charge  Co11ectio
n  InElectronic C1rcuits 
”、においてエム・アール・ワルデマン(M−R−Wo
rdeman )’らによって提案された方法では、P
型基板内部に埋め込んだN型格子状領域によって、放射
性粒子によって生成されたキャリヤを集め、メモリセル
内電極に流入する電荷量を減らそうとしている。一方、
IEgB  Journal  of  8o11d−
8tate  C4rcuitsの5C−18巻、第5
号457〜463ページに掲載されている論文” A 
70 ns High DensitV64K 0MO
8Dynamic RAM″、においてアール・ジェイ
会シー・チャン(R,J 、C、Chwang)らによ
って報告されたメモリセルでは、メモリセル内部電極を
Nウェル内に形成することによって、放射性粒子によっ
て生成されたキャリアのうちメモリセル内部電極に流入
する分を減らそうとしている。
For example, the 1981 International Conference on Electronic Devices (IBDM')
81) Proceedings pages 40-43 - ABu-ri
ed N-Grid for Protecti
on Agalnst Ra-dlatlon I
duced Charge Co11ectio
n InElectronic C1rcuits
”, by M.R. Waldemann (M-R-Wo
In the method proposed by P
The N-type lattice-like region embedded inside the mold substrate collects carriers generated by radioactive particles and attempts to reduce the amount of charge flowing into the electrodes in the memory cell. on the other hand,
IEgB Journal of 8o11d-
5C-18 of 8tate C4rcuits, Volume 5
Papers published on pages 457-463 of issue ”A
70ns High DensitV64K 0MO
In the memory cell reported by R. J. C. Chwang et al. in ``8Dynamic RAM'', the internal electrodes of the memory cell are formed in the N-well to reduce the amount of energy generated by radioactive particles. An attempt is made to reduce the amount of carriers that flow into the internal electrodes of memory cells.

しかし、前記埋込格子状領域は表面から2,2μmの深
さに形成されておシ、前記Nウェルの深さは4.5μm
であった。そのため、これらの埋め込み層やウェルによ
って除ける放射性粒子生成電荷はそれぞれ基板表面から
約1μmあるいは約2μmよシも深い部分で生成された
ものに限られ、これよシも浅い部分で生成された電荷を
取シ除くことはできなかった。表面の1〜2μmの部分
で生成される電荷量は、α粒子の場合、lXl0”クロ
ーン程度である。この値はサブミクロン寸法をもつVL
8Iメモリセルにとっては決して小さい値ではなく、重
大な影響を及ぼし得る。
However, the buried lattice region is formed at a depth of 2.2 μm from the surface, and the depth of the N well is 4.5 μm.
Met. Therefore, the charges generated by radioactive particles that can be removed by these buried layers and wells are limited to those generated at a depth of about 1 μm or 2 μm from the substrate surface, respectively, and charges generated at shallower depths are removed. It was not possible to remove it. The amount of charge generated in the 1-2 μm region of the surface is on the order of 1×10” clones for α particles.
This is not a small value for an 8I memory cell and can have a significant impact.

埋め込み層やウェルをもっと浅く形成できれば、これら
によって取シ除ける放射性粒子生成電荷を増やすことが
できる。しかし、従来の構造では、基板表面に形成され
るMOSFETの特性に埋め込み層やウェルの影響が及
ぶため、これらを浅く形成することができなかった。
If the buried layer or well can be made shallower, the amount of radioactive particle generated charge that can be removed by these can be increased. However, in the conventional structure, the characteristics of the MOSFET formed on the surface of the substrate are affected by the buried layer and the well, so that it is not possible to form them shallowly.

(発明の目的) 本発明の目的は、アルファ粒子々どの放射性粒子によっ
て生成される電荷のうちメモリセル内部電極に流入する
分を十分減らすことができる、ソフトエラーの発生しに
くい半導体メモリセルを提供することである。
(Objective of the Invention) An object of the present invention is to provide a semiconductor memory cell that is less susceptible to soft errors and can sufficiently reduce the amount of charge generated by radioactive particles such as alpha particles that flows into the internal electrode of the memory cell. It is to be.

(発明の構成) 本発明による半導体メモリセルは、第1導電型半導体基
板の主表面に形成された第2導電型第1領域と、該第1
領域に接し且つ第1領域よりもキャリヤ濃度の高い第2
導電型第2領域と、前記第1領域および第2領域に接し
且つ前記第1導電型基板領域から隔離された第1導電型
第3領斌と、少なくとも前記第1領域をまたぎ前記第1
導電型基板領域から前記第3領域に及ぶ領域表面に絶縁
体膜を介して形成された電極を有することを特徴とする
(Structure of the Invention) A semiconductor memory cell according to the present invention includes a first region of a second conductivity type formed on the main surface of a semiconductor substrate of a first conductivity type;
A second region that is in contact with the region and has a higher carrier concentration than the first region.
a second region of conductivity type; a third region of first conductivity type that is in contact with the first region and the second region and is isolated from the first conductivity type substrate region; and a third region of the first conductivity type that straddles at least the first region.
It is characterized by having an electrode formed on the surface of the region extending from the conductive type substrate region to the third region via an insulating film.

(実施例:構成) 次に本発明の実施例を用いて、本発明の半導体メモリセ
ルの構造および効果を説明する。
(Example: Configuration) Next, the structure and effects of the semiconductor memory cell of the present invention will be explained using an example of the present invention.

第1図は本発明の半導体メモリセルの一実施例の構造を
示したものであシ、本図(、)は平面図、(b)は(、
)の114jl14’で切シ開いた場合の断面図を示す
。第1図101はP型シリコン結晶基板、102はN型
第1領域、103は該N型第1領域よシもキャリヤ濃度
の高いN型第2領域、104はP型基板から隔離された
P型第3領域、105はMOSFETのゲート電極とワ
ード線を兼ねる導電体膜、106はMOSFETのゲー
ト絶縁体膜、107は基準電位の供給されたN型第4領
域、108はP型第3領域104と接続された導電体膜
、109は導電体108,110間に容量を形成する絶
縁体膜、110はビット線となる導電体膜、111は絶
縁体、112は素子分離領域、113はP型第3領域1
04と導電体膜108を接続するためのコンタクト孔、
をそれぞれ示す。ここでは例えばP型基板101の不純
物濃度を約2 X I Q”cm−”、N型第1領域1
02の不純物濃度的2□X I Q”am”、N型第2
領域103の不純物濃度を約2X I Q”tx−”、
P型第3領域104とN型第4領域107の不純物濃度
を101 以上とする。
FIG. 1 shows the structure of an embodiment of a semiconductor memory cell according to the present invention.
) is cut open at 114jl14'. 101 is a P-type silicon crystal substrate, 102 is an N-type first region, 103 is an N-type second region having a higher carrier concentration than the N-type first region, and 104 is a P-type silicon crystal substrate isolated from the P-type substrate. 105 is a conductive film that serves as the gate electrode and word line of the MOSFET, 106 is a gate insulator film of the MOSFET, 107 is an N-type fourth region supplied with a reference potential, and 108 is a P-type third region. 109 is an insulating film that forms a capacitance between the conductors 108 and 110, 110 is a conductive film that becomes a bit line, 111 is an insulator, 112 is an element isolation region, and 113 is a P Mold third area 1
04 and a contact hole for connecting the conductor film 108,
are shown respectively. Here, for example, the impurity concentration of the P-type substrate 101 is approximately 2×IQ"cm-", and the N-type first region 1
02 impurity concentration 2□X I Q"am", N type 2nd
The impurity concentration of the region 103 is set to approximately 2X IQ"tx-",
The impurity concentration of the P-type third region 104 and the N-type fourth region 107 is set to 101 or more.

第1図の構造は第2図でその等価回路が表わされるメモ
リセルを構成する。第2図の各部を示す数字の112桁
目は第1図のそれと対応する。第2図の201,207
は基準電位の供給された端子、204は情報貯蔵時に電
気的に浮いた状態となるメモリセル内部電極、205は
ワード線、209はセル容量そして210はビット線を
それ°ぞれ示す。215は第1図の105をゲート電極
、101と104を導通電極、102と103を基板領
域とするP型チャネルMO8FETを示す。
The structure of FIG. 1 constitutes a memory cell whose equivalent circuit is shown in FIG. The 112th digit of the numbers indicating each part in FIG. 2 corresponds to that in FIG. 201, 207 in Figure 2
204 is a memory cell internal electrode which becomes electrically floating during information storage, 205 is a word line, 209 is a cell capacitor, and 210 is a bit line. Reference numeral 215 indicates a P-type channel MO8FET in which 105 in FIG. 1 is a gate electrode, 101 and 104 are conduction electrodes, and 102 and 103 are substrate regions.

第2図の等何回路は例えば特公昭58−10864号で
述べられているメモリセルの回路構成と同じである。2
進情報はセル容量209に貯蔵される電荷量によって貯
蔵される。書き込み読み出し時にはMO8F’ET 2
15をオンし、ビット線210からセル容量209への
電荷の設定と、セル容量209からビット線210への
電荷の放出を行なう。情報貯蔵時にはMOSFET 2
15をオフし、セル容量209に貯蔵されている電荷を
保存する。
The circuit shown in FIG. 2 is the same as the circuit configuration of the memory cell described in, for example, Japanese Patent Publication No. 10864/1983. 2
The forward information is stored by the amount of charge stored in the cell capacitor 209. MO8F'ET 2 when writing and reading
15 is turned on, charge is set from the bit line 210 to the cell capacitor 209, and charge is discharged from the cell capacitor 209 to the bit line 210. MOSFET 2 when storing information
15 is turned off, and the charge stored in the cell capacitor 209 is conserved.

(実施例:原理と効果) 第1図のメモリセルでは、メモリセル内部電極となるP
型彫3領域104に流入する放射性粒子生成ホールの量
がソフトエラーと関係する。N型領域102 jlo 
3 p 1.07で生成されたホールはP型基板101
とP型彫3領域104に流入す ゛ることから、各N型
領域の表面から該領域の深さの半分ぐらいまでの間で生
成されたホールがP型彫3領域104に流入すると考え
られる。このことから、P型彫3領域104を囲むN型
領域102#103.107は薄ければ薄い程、放射性
粒子によるソフトニジ−が起シにくいことになる。
(Example: Principle and Effect) In the memory cell shown in FIG.
The amount of radioactive particle generation holes flowing into the die-sinking 3 region 104 is related to the soft error. N-type region 102 jlo
3 The holes generated at p 1.07 are in the P-type substrate 101.
Therefore, it is considered that the holes generated from the surface of each N-type region to about half the depth of the region flow into the P-type engraving 3 region 104. . From this, it follows that the thinner the N-type region 102 #103, 107 surrounding the P-type engraving 3 region 104 is, the less likely it is that soft rainbows will occur due to radioactive particles.

一方、第1図のメモリセルが正常に動作するためには、
P型彫3領域104がP型基板101から電気的に絶縁
できなければならない。例えばP型彫3領域104とP
型基板101間にかかる電圧が5vぐらいの場合を考え
てみる。
On the other hand, in order for the memory cell shown in Figure 1 to operate normally,
The P-type engraving region 104 must be electrically insulated from the P-type substrate 101. For example, P die engraving 3 area 104 and P
Let us consider a case where the voltage applied between the mold substrates 101 is about 5V.

第1図のメモリセルではN型第2領域103とN型第4
領域107の不純物濃度が十分高いため、それらの厚さ
を0.2〜0.3μmと薄くしても、これらの領域にお
けるP型彫3領域104とP型基板101間の絶縁は十
分である。一方、N型第1領域102におけるpm第3
領域104とP型基板101間の絶縁は、N型第1領域
102の不純物濃度が低いものの、この部分におけるボ
テンンヤルをゲート電極105の電位によって制御でき
るため、ゲート電極105の電位によって制御できる。
In the memory cell shown in FIG. 1, the N-type second region 103 and the N-type fourth region
Since the impurity concentration in the regions 107 is sufficiently high, even if their thickness is reduced to 0.2 to 0.3 μm, the insulation between the P-type engraving 3 region 104 and the P-type substrate 101 in these regions is sufficient. . On the other hand, the pm third region in the N-type first region 102
Although the impurity concentration in the N-type first region 102 is low, the insulation between the region 104 and the P-type substrate 101 can be controlled by the potential of the gate electrode 105 because the voltage in this portion can be controlled by the potential of the gate electrode 105.

たとえN型第1領域102の厚さが0.2〜0.3μm
と薄くても、この部分のMOSFETがオフとなる電圧
をゲート電極105に供給すれば、この部分におけるP
型彫3領域104とP型基板101間の絶縁を十分なも
のKできる。
Even if the thickness of the N-type first region 102 is 0.2 to 0.3 μm
Even if the MOSFET in this part is thin, if a voltage that turns off the MOSFET in this part is supplied to the gate electrode 105, the P in this part can be reduced.
Sufficient insulation can be achieved between the die engraving region 104 and the P-type substrate 101.

第1図のメモリセルに書き込み読み出し動作ができるた
めには、MOSFETのしきい値電圧が適当な値、例え
ば−1vぐらい、でなければならない。
In order to perform a write/read operation on the memory cell shown in FIG. 1, the threshold voltage of the MOSFET must be an appropriate value, for example, about -1V.

ところが第1図のメモリセルでは、N型第1領域102
の不純物濃度を該領域の厚さとは独立に低くすることが
できるため、容易にMO8FFITのしきい値電圧を適
当な値に設定できる。従来技術の例として述べたNウェ
ルを用いる場合、Nウェルの不純物濃度はMOSFET
のしきい値電圧を適当な値にできるXうに決められ且つ
その深さはメモリセル内部電極を基板から絶縁できるよ
う決められた。
However, in the memory cell shown in FIG.
Since the impurity concentration of the MO8FFIT can be lowered independently of the thickness of the region, the threshold voltage of the MO8FFIT can be easily set to an appropriate value. When using the N-well described as an example of the prior art, the impurity concentration of the N-well is equal to that of the MOSFET.
The depth was determined so that the threshold voltage of the memory cell could be set to an appropriate value, and the depth was determined so that the internal electrode of the memory cell could be insulated from the substrate.

そのためその不純物濃度を低く、その深さを4.5μm
と深くしなければならなかった。ところが本発明のメモ
リセルでは、MOSFETのゲート下のみ不純物濃度を
低くでき、セル内部電極となるP型彫3領域104を囲
むその他のN型領域の不純物濃度を高く、その厚さを0
.2〜0.3μmと薄くできる。その結果、メモリセル
内部電極に流入する放射性粒子生成電荷量を従来の1/
10以下とほとんど影響のない量に減らすことができる
Therefore, the impurity concentration is low and the depth is 4.5 μm.
I had to go deeper. However, in the memory cell of the present invention, the impurity concentration can be lowered only under the gate of the MOSFET, and the impurity concentration in the other N-type regions surrounding the P-type carved region 104, which becomes the cell internal electrode, can be increased, and the thickness can be reduced to 0.
.. It can be made as thin as 2 to 0.3 μm. As a result, the amount of charge generated by radioactive particles flowing into the internal electrodes of the memory cell is reduced to 1/2 compared to the conventional one.
It can be reduced to 10 or less, which has almost no effect.

(実施例:製造方法) 第1図のメモリセルの構造は例えば第3図に示すような
方法で形成することができる。第3図(、)は不純物濃
度約2 X 10” C11−”のP型シリコン結晶基
板301表面に、例えばイオン注入法などを用いて、不
純物濃度約2 X i O” (!ml’″3のN型領
域302を形成したところを示す。
(Example: Manufacturing method) The structure of the memory cell shown in FIG. 1 can be formed by a method as shown in FIG. 3, for example. FIG. 3 (,) shows that the surface of a P-type silicon crystal substrate 301 with an impurity concentration of approximately 2 X 10" This shows the formation of an N-type region 302.

第3図(b)は、高エネルギのイオン注入法を用いて、
基板内部に不純物濃度約2 X 101?ex−”のN
型領域303を形成したところを示す。
Figure 3(b) shows that using high-energy ion implantation,
The impurity concentration inside the substrate is about 2 x 101? ex-”N
A mold region 303 is shown formed.

第3図(c)は、イオン注入法などを用いて、不純物濃
度1 ×l Q” ex−”以上のP型領域304、N
型領域307をそれぞれ形成したところを示す。
FIG. 3(c) shows a P-type region 304, N
The respective formed mold regions 307 are shown.

このあと、ゲート絶縁体膜、ゲート電極、配線などを形
成することによって第1図に示されるよう”な構造が得
られる。
Thereafter, by forming a gate insulator film, gate electrode, wiring, etc., a structure as shown in FIG. 1 is obtained.

本発明の半導体メモリセルでは各領域の不純物濃度が重
要な意味をもつ。本発明でいう不純物濃度とは、半導体
として意味のある不純物濃度のことであシ、N型或いは
P型キャリア濃度と密接な関連のある活性不純物濃度の
ことを意味することをここにことわっておく。
In the semiconductor memory cell of the present invention, the impurity concentration in each region has an important meaning. It should be noted that the impurity concentration in the present invention refers to an impurity concentration that is meaningful as a semiconductor, and also refers to an active impurity concentration that is closely related to the N-type or P-type carrier concentration. .

(発明の効果) 以上説明したように本発明によれば小型でかつソフトエ
ラーの発生が少ない半導体メモリセルが得られる。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain a semiconductor memory cell that is small in size and has fewer soft errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体メモリセルの構造の一例を示す
図で、(a)は平置図、(b)は(、)の114*11
4’で切シ開いた断面図である。第2図は第1図の実施
例の等価回路図である。第3図(、)〜(c)は第1図
の実施例の構造を作る場合の製造プロセスの一例を示す
断面図。 101・・・P型シリコン結晶基板 102・・−N型第1領域 103・・・N型第2領域
104・・・P型第3領域 105・・・導電体膜10
6・・・ゲート絶縁体膜 107・・・基準電位の供給されたN型第4領域108
・・・導電体膜   109・・・絶縁体膜110・・
・導電体膜   111−・・絶縁体第1図 胎2図
FIG. 1 is a diagram showing an example of the structure of a semiconductor memory cell according to the present invention, in which (a) is a horizontal view, and (b) is a 114*11
FIG. 4 is a cross-sectional view cut open at 4'. FIG. 2 is an equivalent circuit diagram of the embodiment shown in FIG. 3(a) to 3(c) are cross-sectional views showing an example of a manufacturing process for producing the structure of the embodiment shown in FIG. 1. 101... P-type silicon crystal substrate 102...-N-type first region 103... N-type second region 104... P-type third region 105... Conductor film 10
6... Gate insulator film 107... N-type fourth region 108 supplied with reference potential
...Conductor film 109...Insulator film 110...
・Conductor film 111-...Insulator Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  第1導電型半導体基板の主表面に形成された第2導電
型第1領域と、該第1領域に接し且つ第1領域よりもキ
ャリヤ濃度の高い第2導電型第2領域と、前記第1領域
および第2領域に接し且つ前記第1導電型基板領域から
隔離された第1導電型第3領域と、少なくとも前記第1
領域をまたぎ前記第1導電型基板領域から前記第3領域
に及ぶ領域表面に絶縁体膜を介して形成された電極を有
することを特徴とする半導体メモリセル。
a first region of a second conductivity type formed on the main surface of a semiconductor substrate of a first conductivity type; a second region of a second conductivity type that is in contact with the first region and has a higher carrier concentration than the first region; a third region of the first conductivity type that is in contact with the first conductivity type substrate region and the second region and is isolated from the first conductivity type substrate region;
A semiconductor memory cell comprising an electrode formed on a surface of a region extending from the first conductivity type substrate region to the third region via an insulating film.
JP15227084A 1984-07-23 1984-07-23 Semiconductor memory cell Pending JPS6130065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15227084A JPS6130065A (en) 1984-07-23 1984-07-23 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15227084A JPS6130065A (en) 1984-07-23 1984-07-23 Semiconductor memory cell

Publications (1)

Publication Number Publication Date
JPS6130065A true JPS6130065A (en) 1986-02-12

Family

ID=15536822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15227084A Pending JPS6130065A (en) 1984-07-23 1984-07-23 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPS6130065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104765A (en) * 1988-10-11 1990-04-17 Toray Ind Inc Production of electret nonwoven fabric
JPH06232370A (en) * 1992-12-30 1994-08-19 Hyundai Electron Ind Co Ltd Dynamic ram cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638860A (en) * 1979-09-07 1981-04-14 Semiconductor Res Found Semiconductor memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638860A (en) * 1979-09-07 1981-04-14 Semiconductor Res Found Semiconductor memory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104765A (en) * 1988-10-11 1990-04-17 Toray Ind Inc Production of electret nonwoven fabric
JPH0633571B2 (en) * 1988-10-11 1994-05-02 東レ株式会社 Method for manufacturing electret nonwoven fabric
JPH06232370A (en) * 1992-12-30 1994-08-19 Hyundai Electron Ind Co Ltd Dynamic ram cell

Similar Documents

Publication Publication Date Title
KR900000170B1 (en) Dynamic memory cell and method of producing it
US4794563A (en) Semiconductor memory device having a high capacitance storage capacitor
US7102192B2 (en) Semiconductor nonvolatile memory cell array
JPS6321351B2 (en)
US4574465A (en) Differing field oxide thicknesses in dynamic memory device
JP6867223B2 (en) Semiconductor devices and their manufacturing methods
US4735915A (en) Method of manufacturing a semiconductor random access memory element
KR20190008065A (en) The vertical-type gateless and capacitorless dram cell based on germanium and the method for manufacturing thereof
KR910007111B1 (en) Semiconductor memory device and its method for manufacturing
US5010379A (en) Semiconductor memory device with two storage nodes
US4388121A (en) Reduced field implant for dynamic memory cell array
US4883543A (en) Shielding for implant in manufacture of dynamic memory
JPS6130065A (en) Semiconductor memory cell
JPH02246264A (en) Semiconductor device and manufacture thereof
US5329148A (en) Semiconductor device and preparing method therefor
JPS6130066A (en) Semiconductor memory cell
JPS5838939B2 (en) integrated circuit
JPS63136559A (en) Semiconductor memory and manufacture thereof
JPS60161659A (en) Semiconductor integrated circuit device
EP3428972B1 (en) Vertical asymmetric germanium-based two-terminal biristor for vertical-type gateless and capacitorless dram cell and method for manufacturing thereof
JPS62213273A (en) Dynamic random access memory
JPS58140151A (en) Semiconductor integrated circuit device
JPS60236260A (en) Semiconductor memory device
CN117915659A (en) Semiconductor structure and memory array structure
JPS63166A (en) Nonvolatile semiconductor memory