JPS61296019A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPS61296019A
JPS61296019A JP13734085A JP13734085A JPS61296019A JP S61296019 A JPS61296019 A JP S61296019A JP 13734085 A JP13734085 A JP 13734085A JP 13734085 A JP13734085 A JP 13734085A JP S61296019 A JPS61296019 A JP S61296019A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
curing
curing accelerator
mercaptosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13734085A
Other languages
Japanese (ja)
Other versions
JPH043404B2 (en
Inventor
Takashi Urano
浦野 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP13734085A priority Critical patent/JPS61296019A/en
Publication of JPS61296019A publication Critical patent/JPS61296019A/en
Publication of JPH043404B2 publication Critical patent/JPH043404B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To titled composition, obtained by using tetraphenylphosphonium tetraphenylborate and triphenylphosphine as a curing accelerator and epoxysilane and mercaptosilane as a surface treating agent together and having improved moisture resistance, electrical characteristics and thermal stability, etc. CONSTITUTION:An epoxy resin composition obtained by incorporating tetraphenylphosphonium tetraphenylborate and triphenylphosphine preferably at 1:0.3-4.5 weight ratio as a curing accelerator and an epoxysilane and mercaptosilane preferably at 1:0.01-1.0 weight ratio in an epoxy resin composition containing an epoxy resin, curing agent, e.g. acid anhydride based curing agent, curing accelerator and surface treating agent. The amount of the curing accelerator to be used is preferably 0.1-0.5pts.wt. based on 100pts.wt. epoxy resin composition and the amount of the surface treating agent to be used is preferably 0.02-1pts.wt. based on 100pts.wt. epoxy resin composition respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気部品、電子部品または半導体装置のプラス
チック封止に用いられるエポキシ樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composition used for plastic encapsulation of electrical parts, electronic parts, or semiconductor devices.

〔従来の技術〕[Conventional technology]

エポキシ樹脂組成物は、その電気特性、接着性、耐湿性
が良好なことから電気部品、電子部品あるいは半導体装
置の絶縁封止材料として広く用いられている。これまで
エポキシ樹脂を硬化させる方法として、硬化剤に酸無水
物、フェノール系化合物またはアミンを使用し、これに
硬化を促進するため硬化促進剤として脂肪族3級アミン
、芳香族アミン、イミダゾール類、4級アンモニウム塩
または有機金属塩などを用いる手法が広く知られている
。前述した硬化促進剤は添加量を増すにつれその硬化性
を向上させることができるが、それとともに耐湿性、電
気特性、熱安定性の低下をともなってしまう。
Epoxy resin compositions are widely used as insulating sealing materials for electrical parts, electronic parts, or semiconductor devices because of their good electrical properties, adhesive properties, and moisture resistance. Conventional methods for curing epoxy resins include using acid anhydrides, phenolic compounds, or amines as curing agents, and adding aliphatic tertiary amines, aromatic amines, imidazoles, Techniques using quaternary ammonium salts or organic metal salts are widely known. As the amount of the curing accelerator added increases, the curing properties can be improved, but this is accompanied by a decrease in moisture resistance, electrical properties, and thermal stability.

従って、出来うる限り硬化促進剤の添加量を減らし、し
かも硬化性の遅くならない領域を求めるのが通常の手法
であった。しかしながら、これら要求特性を両立させる
のはかなり困難な問題であった。
Therefore, the usual method has been to reduce the amount of curing accelerator added as much as possible and to find a range in which the curing properties do not slow down. However, it has been quite difficult to achieve both of these required characteristics.

また、半導体装置そのものが素子と外部との電気的コン
タクトをリードピンに依存している形式であるため、材
料とリードビンおよび素子との界面の接着性も硬化促進
剤と同様、信頼性に対し、て大きな影響力を持っている
In addition, since the semiconductor device itself relies on lead pins for electrical contact between the element and the outside, the adhesiveness of the interface between the material, the lead bin, and the element is as important to reliability as the curing accelerator. It has great influence.

硬化促進剤として、テトラフェニルボスホニウムテトラ
フェニルボレートを用いることは既に特公昭56−45
491号公報で、l・リフェニルホスフィンを用いるこ
とは特公昭47−14148号公報で公知であり、表面
処理剤としてエポキシシランとメルカプ)・シランを併
用することは特公昭5!143062号公報で公知であ
る。しかし、ここに記載されているエポキシ樹脂組成物
では前記要求特性を満足させることばできない。
The use of tetraphenylbosphonium tetraphenylborate as a curing accelerator was already reported in Japanese Patent Publication No. 56-45.
The use of l-riphenylphosphine is known in Japanese Patent Publication No. 47-14148, and the combined use of epoxysilane and mercapsilane as a surface treatment agent is known in Japanese Patent Publication No. 5!143062. It is publicly known. However, the epoxy resin composition described herein cannot satisfy the above-mentioned required properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は以」二のような事情に対処すべく、エポキシ樹
脂組成物の硬化促進剤と表面処理剤の組み合わせについ
て鋭意横側した結果なされたものであり、従来の技術で
はなし得なかった耐湿性、電気特性、接着性、硬化性を
満足させようとするものである。
The present invention was made as a result of careful consideration of the combination of a curing accelerator and a surface treatment agent for epoxy resin compositions in order to address the following two circumstances, and it has achieved moisture resistance that could not be achieved with conventional technology. The aim is to satisfy properties such as physical properties, electrical properties, adhesion properties, and curing properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記問題点を解決ずろため、エポキシ樹脂
の硬化促進剤として極めて熱的安定性が高く潜在硬化性
(一定の温度以十にならないと硬化促進作用をもたない
)を有するテトラフェニルホスホニウムテトラフエニル
ボl/−)と百1ン鼎1牛、電気特性の優れたトリフェ
ニルボスフィンを併用し、さらに、接着性を向上させる
ため、表面処理剤としてエポキシシランとメルカプ1−
シランを併用し、これらを組み合ね・Uて用いることに
より、目的を達成した。テトラフェニルホスボニウムテ
I・ラフェニルボレ−1・もしくはトリフェニルボスフ
ィンを各々独立に増量した場合、前者はその潜在硬化性
が強すぎる故に多量に用いるため電気特性の低下をおこ
すし、後者の場合、潜在硬化性がないため成形時の製品
歩留り低下、製造時の安定生産化がなく、実用に適しな
い。
In order to solve the above-mentioned problems, the inventors of the present invention discovered that tetrafluoride, which has extremely high thermal stability and latent curability (does not have a curing accelerating effect unless the temperature exceeds a certain temperature), is used as a curing accelerator for epoxy resins. Phenylphosphonium (tetraphenylbo l/-) and hyaku1n ding 1gyu were used in combination with triphenylbosphine, which has excellent electrical properties.Furthermore, to improve adhesion, epoxysilane and mercap 1- were used as surface treatment agents.
The purpose was achieved by using silane in combination and using these in combination. If the amount of tetraphenylphosbonium te-I, raphenylbore-1, or triphenylbosphine is increased independently, the former has too strong latent curing properties and is used in large amounts, resulting in a decrease in electrical properties, while the latter causes a decrease in electrical properties. Since it has no latent hardening property, it reduces product yield during molding and does not provide stable production during manufacturing, making it unsuitable for practical use.

本発明ではこのテトラフェニルボスホニウムテトラフェ
ニルボレーI・とl・リフェニルポスフィンの長所をそ
れぞれ取り入れるとともに、さらに接着性を向上させて
より一層の信頼性向−Lを図るため、表面処理剤として
エポキシシランとメルカプトシランを併用し、それぞれ
単独ではなし得なかった特長を新たに見出したものであ
る。
In the present invention, in addition to incorporating the advantages of tetraphenylbosphonium tetraphenylbore I. By using epoxysilane and mercaptosilane together, new features were discovered that could not be achieved using either alone.

用いる硬化促進剤の比率(重量比)は望ましくはテトラ
フェニルホスホニウムテトラフェニルボレート 1.0
に対し、トリフェニルホスフィン0.3〜4.5である
。トリフェニルポスフィンが0゜3未満では成形ザイク
ルの短縮に効果がなく、4゜5を越えた場合、成形時、
製造時の作業安定性がなくなってしまうからである。
The ratio (weight ratio) of the curing accelerator used is preferably tetraphenylphosphonium tetraphenylborate 1.0
For triphenylphosphine, it is 0.3 to 4.5. If the amount of triphenylphosphine is less than 0°3, it will not be effective in shortening the mold cycle, and if it exceeds 4°5,
This is because work stability during manufacturing will be lost.

また本発明の硬化促進剤は、エポキシ樹脂、硬化剤、硬
化促進剤および表面処理剤を含有するエポキシ樹脂組成
物100重量部あたり、望ましくは0.1〜0.5重量
部用いられる。
Further, the curing accelerator of the present invention is preferably used in an amount of 0.1 to 0.5 parts by weight per 100 parts by weight of the epoxy resin composition containing the epoxy resin, curing agent, curing accelerator, and surface treatment agent.

またエポキシシランとメルカプトシランの比率(重量比
)は望ましくはエポキシシラン 1に対しメルカプトシ
ラン 0.01〜1.0である。メルカプトシランが0
.01未満では接着性の向上効果はなく、1.0を越え
て添加しても接着性は改良されない。
The ratio (weight ratio) of epoxysilane to mercaptosilane is preferably 1 to 1 of epoxysilane to 0.01 to 1.0 of mercaptosilane. Mercaptosilane is 0
.. If it is less than 0.01, there is no effect of improving adhesion, and if it is added in excess of 1.0, the adhesion will not be improved.

表面処理剤の総量はエポキシ樹脂組成物 100重量部
あたり望ましくは0.02〜1重量部用いられる。
The total amount of the surface treatment agent used is preferably 0.02 to 1 part by weight per 100 parts by weight of the epoxy resin composition.

本発明に適用できるエポキシ樹脂としては、ビスフェノ
ールA1ビスフェノールFルゾルシノール、フェノール
ノボラック、クレゾールノボラックなどのフェノール類
のグリシジルエーテル、ブタンジオール、ポリエチレン
グリコールなどのアルコール類のグリシジルエーテル、
フタル酸、イソフタル酸、テトラヒドロフタル酸などの
カルボン酸類のグリシジルエステル、アニリン、イソシ
アヌール酸などの窒素原子に結合した活性水素をグリシ
ジル基で置換したものなどのグリシジル型エポキシ樹脂
、脂環型エポキシ樹脂などが用いられる。
Epoxy resins that can be applied to the present invention include glycidyl ethers of phenols such as bisphenol A1 bisphenol F lusorcinol, phenol novolak, and cresol novolak; glycidyl ethers of alcohols such as butanediol and polyethylene glycol;
Glycidyl-type epoxy resins such as glycidyl esters of carboxylic acids such as phthalic acid, isophthalic acid, and tetrahydrophthalic acid; glycidyl-type epoxy resins such as those in which the active hydrogen bonded to the nitrogen atom of aniline and isocyanuric acid is replaced with a glycidyl group; and alicyclic-type epoxy resins. etc. are used.

また、硬化剤としては、公知の酸無水物系硬化剤、アミ
ン系硬化剤またはノボラック型フェノール系もしくはク
レゾール系樹脂硬化剤が用いられる。
Further, as the curing agent, a known acid anhydride curing agent, amine curing agent, or novolak type phenol type or cresol type resin curing agent is used.

なお、本発明でいうエポキシ樹脂組成物は、前述したエ
ポキシ樹脂、硬化剤、硬化促進剤および表面処理剤を組
み合わせたもののみならず、炭酸カルシうム、シリカ、
タルク、石英ガラスなどの充填剤、離型剤、難燃剤、着
色剤あるいは各種改質剤を含有させたものも含む。
The epoxy resin composition referred to in the present invention is not only a combination of the above-mentioned epoxy resin, curing agent, curing accelerator, and surface treatment agent, but also contains calcium carbonate, silica,
It also includes those containing fillers such as talc and quartz glass, mold release agents, flame retardants, colorants, and various modifiers.

本発明のエポキシ樹脂組成物は、以上の配合材料をミキ
シングロールで加熱しながら混練する方法で製造するこ
とができる。
The epoxy resin composition of the present invention can be produced by kneading the above-mentioned ingredients while heating them with a mixing roll.

〔実施例〕〔Example〕

以下実施例および従来例を示して本発明を更に具体的に
説明する。尚、各例中に部とあるのは重量部を意味する
The present invention will be explained in more detail below by showing examples and conventional examples. In addition, parts in each example mean parts by weight.

実施例1 (A)タレゾールノボラック型エポキシ樹脂100部 (日本化薬製 商品名 EOCN−102)(B)フェ
ノール・ホルムアルデヒドノボラック樹脂      
       50部(日立化成製 商品名 14P−
607N)(C)シリカ粉          410
部CD)カルナバワックス        2部(E)
カーボンブランク         1部(F)エポキ
シシラン         3部(信越シリコーン製 
商品名KBM−403)(G)メルカプトシラン   
     0.2部(信越シリコーン製 商品名KBM
−803)(I+)  )リフェニルボスフィン   
  1部(1)テトラフェニルホスホニウムテトラフェ
ニルボレート             1部上記組成
を予め75〜85℃に加熱しであるミキシングロールで
約8分間加熱混練し、均一な組成物を作り、その後室温
まで冷却して粉砕し、目的の樹脂組成物を得た。得られ
たエポキシ樹脂組成物の硬化物特性を表1に示す。
Example 1 (A) 100 parts of Talesol novolac type epoxy resin (Nippon Kayaku Co., Ltd., trade name EOCN-102) (B) Phenol formaldehyde novolac resin
50 parts (manufactured by Hitachi Chemical, product name 14P-
607N) (C) Silica powder 410
Part CD) Carnauba wax Part 2 (E)
Carbon blank 1 part (F) Epoxy silane 3 parts (manufactured by Shin-Etsu Silicone)
Product name KBM-403) (G) Mercaptosilane
0.2 parts (manufactured by Shin-Etsu Silicone, product name: KBM)
-803) (I+) ) Riphenylbosphine
1 part (1) Tetraphenylphosphonium tetraphenylborate 1 part The above composition was preheated to 75 to 85°C and kneaded with heating for about 8 minutes using a mixing roll to make a homogeneous composition, then cooled to room temperature and pulverized. The desired resin composition was obtained. Table 1 shows the properties of the cured product of the obtained epoxy resin composition.

(比較例1.2.3.4) 実施例1において、(A)〜(G)の各組成を同一にし
、(■)のトリフェニルホスフィンを2部添加して実施
例1と同様に混練して得られた組成物を比較例1とし、
(A)〜(G)を同一とし、(11)を除いて(I)の
テトラフェニルホスホニウムテトラフェニルボレートを
2部添加し実施例1と同様にして得られた組成物を比較
例2とした。
(Comparative Example 1.2.3.4) In Example 1, each composition of (A) to (G) was made the same, 2 parts of triphenylphosphine (■) was added, and kneaded in the same manner as in Example 1. The composition obtained was designated as Comparative Example 1,
Comparative Example 2 was a composition obtained in the same manner as in Example 1 except that (A) to (G) were the same, except for (11), and 2 parts of (I) tetraphenylphosphonium tetraphenylborate was added. .

また実施例1において、(八)〜(F) (I+) (
1)を同一とし、(G)を除いて実施例1と同様に混練
して得られた組成物を比較例3、(八)〜(E) (+
1) (■)を同一とし、(F)を除いて(G)のメル
カプトシランを3部添加し実施例1と同様にして得られ
た組成物を比較例4とした。
Further, in Example 1, (8) to (F) (I+) (
Comparative Example 3, (8) to (E) (+
1) A composition obtained in the same manner as in Example 1 except that (■) was the same, except for (F) and 3 parts of mercaptosilane (G) was added was used as Comparative Example 4.

各組成物の硬化特性を表1に併記する。表1中のズバイ
ラルフローはEMMI−1−66、ゲルタイムはJIS
、に、5906に準拠し、熱時硬度はショア硬度計タイ
プDを用い、成形後10秒以内に測定した。溶融粘度は
高化式フローテスタ(島津社製)、二次転移点はTMA
 (理学電機社製)、体積抵抗率はJIS、に、691
1、吸水率はJIS、に、6911に準拠して試験を行
った。
The curing properties of each composition are also listed in Table 1. In Table 1, the viral flow is EMMI-1-66, and the gel time is JIS.
5906, the hot hardness was measured using a Shore hardness tester type D within 10 seconds after molding. Melt viscosity was measured using Koka type flow tester (manufactured by Shimadzu Corporation), and secondary transition point was measured using TMA.
(manufactured by Rigaku Denki Co., Ltd.), volume resistivity is JIS, 691
1. Water absorption was tested in accordance with JIS 6911.

実施例1と比較例1〜2においてその作業安定性をみる
ために、加熱温度と混練時間および流動性(スパイラル
フロー)との関係を第1図、第2図に示す。第1図、第
2図より、本発明の実施例1は製造時の安定性が比較例
2とほぼ同等で、混練時間、混練温度による影響を受け
にくいことがわかる。通常ならば比較例1と2の併用系
である実施例1は比較例1と2の中間レベルのはずであ
るが、結果はむしろ熱安定性のある比較例2のほうに近
く、これは何らかの相互作用により熱安定性が向上した
ものと考えられる。
In order to examine the working stability of Example 1 and Comparative Examples 1 and 2, the relationships among heating temperature, kneading time, and fluidity (spiral flow) are shown in FIGS. 1 and 2. From FIG. 1 and FIG. 2, it can be seen that the stability during production of Example 1 of the present invention is almost the same as that of Comparative Example 2, and is not easily affected by kneading time and kneading temperature. Normally, Example 1, which is a combination system of Comparative Examples 1 and 2, should be at an intermediate level between Comparative Examples 1 and 2, but the result is actually closer to that of Comparative Example 2, which has thermal stability. It is thought that the thermal stability was improved due to the interaction.

次に表1中の物性データを比較してみると、電気特性の
目安である体積抵抗値は、本発明の実施例1の場合、比
較例1と2の中間レベルに位置していることがわかる。
Next, when comparing the physical property data in Table 1, it is found that the volume resistivity value, which is a guideline for electrical properties, is located at an intermediate level between Comparative Examples 1 and 2 in the case of Example 1 of the present invention. Recognize.

実装金型を用いてこれら各組成物の硬化性を検討した結
果を表1に併記する。用いた金型はIC16ビンDTP
 (デュアルインライン)型84ケ取りと40ピンのD
IP80ケ取りであり、硬化性の目安としてショア硬度
が80以上に達する時間で示した。またその時発生する
不良数も併せて検耐した。本発明の実施例1は、不良数
が少なく、成形歩留りが良好なことがわかる。
Table 1 also shows the results of examining the curability of each of these compositions using a mounting mold. The mold used was IC16 Bin DTP.
(Dual in-line) type 84 holes and 40 pin D
It has an IP rating of 80, and the hardenability is expressed by the time it takes to reach Shore hardness of 80 or higher. The number of defects occurring at that time was also tested. It can be seen that Example 1 of the present invention had a small number of defects and a good molding yield.

テス1へ素子を組み立てて前述したDTP16ビン金型
を用い、プレソシャークソカテス1−におりる耐湿性の
評価ザンブルを各組成物を用いて作成した。用いたテス
ト素子サイズが(i X 4. mm、アルミニウム配
線1]10μm、無機保護膜なしの素子であり、その配
線パターンを第3図に示す。これらの結果を表1に併記
する。本発明の実施例1ばプレソシャークソカテスト3
000hでもアルミニウム断線による不良発生ばみられ
ず、良好な結果を示すことがわかる。比較例1〜4で不
良が発生している現象を解析してみると、すべてアルミ
ニウム配線の腐食による断線である。
After assembling the device into Test 1 and using the DTP16 bottle mold described above, samples for evaluation of moisture resistance in Presso Shark Socates 1-1 were prepared using each composition. The test device size used was (i x 4. mm, aluminum wiring 1) 10 μm, and the device did not have an inorganic protective film, and its wiring pattern is shown in FIG. 3. These results are also listed in Table 1. The present invention Example 1: Preso Shark Soca Test 3
It can be seen that even at 000h, no defects were observed due to aluminum disconnection, showing good results. An analysis of the phenomenon in which defects occurred in Comparative Examples 1 to 4 revealed that all of them were disconnections due to corrosion of the aluminum wiring.

比較例1と2は硬化促進剤そのものによる差であり、前
者は素子のコーナ一部に、後者は素子全般に腐蝕を起こ
していることが確認できた。この理由は比較例1の場合
、熱安定性がないためことから急激な硬化による歪みが
素子のコーナ一部に集中し、材料と素子の間の接着性が
弱くなったた】1 えられる。
The difference between Comparative Examples 1 and 2 is due to the curing accelerator itself, and it was confirmed that the former caused corrosion in a part of the corner of the element, and the latter caused corrosion in the entire element. The reason for this is that in the case of Comparative Example 1, due to the lack of thermal stability, distortion due to rapid curing was concentrated in a part of the corner of the element, weakening the adhesiveness between the material and the element.

また比較例3か弱いのは、接着力が低いことによる。実
施例1を除りば全般的に比較例4が良好であるが、エポ
キシシランを(51用していないことから充填剤とエポ
キシ樹脂との密着性(ぬれ性)が低下するため、本発明
の実施例1より信頼性が劣ったものと思われる。
Furthermore, the reason why Comparative Example 3 is weak is due to the low adhesive strength. Comparative Example 4 is generally good except for Example 1, but since it does not use epoxy silane (51), the adhesion (wettability) between the filler and the epoxy resin decreases, so the present invention It seems that the reliability was inferior to that of Example 1.

なお、表1の接着性は、各成形品ザンブルを赤の染料を
とかしたメタノール中に入れ、5気圧かけて6時間放置
し、リードピンとの界面を切削して浸入レベルで判定し
た。◎はほとんど浸入なしで△ば半分ちかくまで浸入し
ていることを示す。
The adhesion shown in Table 1 was determined by placing each molded product, Zumble, in methanol in which red dye had been dissolved, applying 5 atm and leaving it for 6 hours, cutting the interface with the lead pin, and determining the penetration level. ◎ indicates almost no infiltration, and △ indicates almost half infiltration.

〔発明の効果〕 本発明により耐湿性、電気特性、接着性、熱安定性と硬
化性を両立させた良好なエポキシ樹脂組成物が得られた
[Effects of the Invention] According to the present invention, a good epoxy resin composition that is compatible with moisture resistance, electrical properties, adhesiveness, thermal stability, and curability was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例と比較例の材料の混練時間と流動性の関
係を、第2図は混練温度と流動性の関係を示す図である
。第3図は耐湿性を評価するのに用いたテスト素子の概
略図である。 符号の説明 1 金線ボンディング用パッド 2 アルミニウム配線 3 シリコン 〕1練時間(分) 第1図 汎毫東皇度 (’C) 第2図
FIG. 1 is a diagram showing the relationship between kneading time and fluidity of the materials of Examples and Comparative Examples, and FIG. 2 is a diagram showing the relationship between kneading temperature and fluidity. FIG. 3 is a schematic diagram of the test element used to evaluate moisture resistance. Explanation of symbols 1 Gold wire bonding pad 2 Aluminum wiring 3 Silicon] 1 training time (minutes) Fig. 1 General Tokodo ('C) Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1、エポキシ樹脂、硬化剤、硬化促進剤および表面処理
剤を含有するエポキシ樹脂組成物において、硬化促進剤
としてテトラフェニルホスホニウムテトラフェニルボレ
ートとトリフェニルホスフィンを、表面処理剤としてエ
ポキシシランとメルカプトシランを併用したことを特徴
とするエポキシ樹脂組成物。
1. In an epoxy resin composition containing an epoxy resin, a curing agent, a curing accelerator, and a surface treatment agent, tetraphenylphosphonium tetraphenylborate and triphenylphosphine are used as the curing accelerator, and epoxysilane and mercaptosilane are used as the surface treatment agent. An epoxy resin composition characterized in that it is used in combination.
JP13734085A 1985-06-24 1985-06-24 Epoxy resin composition Granted JPS61296019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13734085A JPS61296019A (en) 1985-06-24 1985-06-24 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13734085A JPS61296019A (en) 1985-06-24 1985-06-24 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS61296019A true JPS61296019A (en) 1986-12-26
JPH043404B2 JPH043404B2 (en) 1992-01-23

Family

ID=15196357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13734085A Granted JPS61296019A (en) 1985-06-24 1985-06-24 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS61296019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202621A (en) * 1987-02-18 1988-08-22 Matsushita Electric Works Ltd Epoxy resin molding material
JPH06228280A (en) * 1992-12-10 1994-08-16 Shin Etsu Chem Co Ltd Curing agent for epoxy resin composition, epoxy resin composition and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202621A (en) * 1987-02-18 1988-08-22 Matsushita Electric Works Ltd Epoxy resin molding material
JPH06228280A (en) * 1992-12-10 1994-08-16 Shin Etsu Chem Co Ltd Curing agent for epoxy resin composition, epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JPH043404B2 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
JP2006518800A (en) Quaternary organic phosphonium salt-containing molding composition
JPWO2004074344A1 (en) Epoxy resin composition and semiconductor device
JPH045041B2 (en)
US5731370A (en) Semiconductor encapsulating epoxy resin compositions with 2-phenyl-4,5-dihydroxymethylimidazole curing accelerator
JPH05259316A (en) Resin-sealed semiconductor device
JPS61296019A (en) Epoxy resin composition
JPS58174416A (en) Epoxy resin composition for sealing of semiconductor
JPH0733429B2 (en) Epoxy resin composition
JP2005290111A (en) Resin composition for encapsulation and semiconductor device
JPH043403B2 (en)
JP2003268071A (en) Epoxy resin composition and semiconductor device using the same
JP2004140186A (en) Method of manufacturing semiconductor device
JP2002097258A (en) Epoxy resin composition
JPH04296046A (en) Resin-sealed semiconductor device
JP2005281624A (en) Resin composition for sealing and semiconductor device
JP2003252961A (en) Epoxy-based resin composition and semiconductor device using the composition
JP2002284965A (en) Epoxy-based resin composition and semiconductor device using the same
JP2001081156A (en) Epoxy resin composition and resin sealing-type semiconductor device
JPH02235918A (en) Epoxy resin composition for semiconductor sealing
JP2002275246A (en) Epoxy resin composition and semiconductor device
JP2002284961A (en) Epoxy-based resin composition and semiconductor device using the same
JP2002275247A (en) Epoxy resin composition and semiconductor device
JP2003082068A (en) Epoxy resin composition and semiconductor device using the same
JPS59113021A (en) Epoxy resin composition for sealing semiconductor
JP3880598B2 (en) Resin composition for sealing and electronic device sealing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees