JPS61295881A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPS61295881A
JPS61295881A JP60135390A JP13539085A JPS61295881A JP S61295881 A JPS61295881 A JP S61295881A JP 60135390 A JP60135390 A JP 60135390A JP 13539085 A JP13539085 A JP 13539085A JP S61295881 A JPS61295881 A JP S61295881A
Authority
JP
Japan
Prior art keywords
contact
unit
vibrating body
vibrator
vibration wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60135390A
Other languages
Japanese (ja)
Other versions
JPH0634600B2 (en
Inventor
Takayuki Tsukimoto
貴之 月本
Ichiro Okumura
一郎 奥村
Takuo Okuno
奥野 卓夫
Kazuhiro Izukawa
和弘 伊豆川
Hiroyuki Seki
裕之 関
Naoya Kaneda
直也 金田
Akira Hiramatsu
平松 明
Hitoshi Mukojima
仁 向島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60135390A priority Critical patent/JPH0634600B2/en
Priority to US06/843,568 priority patent/US4752711A/en
Publication of JPS61295881A publication Critical patent/JPS61295881A/en
Publication of JPH0634600B2 publication Critical patent/JPH0634600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain uniform contacting state by constructing to contact a movable unit with a vibrator by a contacting member of spherical contact supported by many elastic units displaceably. CONSTITUTION:A movable unit 3 is formed of a ringlike structure 3a, a ringlike elastic unit 3b made of rubber or sponge bonded to the structure 3a, and many semispherical contacts 3d bonded to the unit 3b. The unit 3 is combined with the vibrator 2 with an electrostrictive element 1 to form a vibration motor. The unit 3 is contacted with the vibrator 2 by the contacts 3d. The vibrator 2 is made, for example, of metal material such as brass or copper having low internal loss of vibration energy. The contacts 3d has wear resistance, and uses a quenched copper or ceramic material or metal or plastic surface-treated with wear resistance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は振動体に生ぜしめた進行性振動波により振動体
と接している移動体を摩擦駆動する、bわゆる振動波モ
ーター特にその移動体の構造に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a so-called vibration wave motor that frictionally drives a moving body in contact with the vibrating body by progressive vibration waves generated in the vibrating body, particularly the moving body. It is related to the structure of

〔発明の背景〕[Background of the invention]

振動波モーターの公知例を概略第4図および第5図にて
説明すると、1は電歪素子または磁歪素子など電気機械
エネルギー変換素子、例えばPZT(チタン酸ジルコン
鉛)である。2はリング状の板の形をした振動体で弾性
物質からなシ、その片面に前記電歪素子1が接着されて
いる。振動体2は電歪素子工と共にステータ(不図示)
側に保持されている。3は移動体であシ、この例では振
動体2の他面に対し押圧接触されたリング板状のロータ
を形成している。電歪素子1は振動体2の周方向に複数
個配列されてお)、そのうちの一部の群に対して他の群
は振動波の波長λの1/4波長分だけずれたピッチで配
置される。群内での各電歪素子はA波長のピッチで、相
隣シ合うものの極性が逆になるように配置されてbる。
A known example of a vibration wave motor will be schematically explained with reference to FIGS. 4 and 5. Reference numeral 1 indicates an electromechanical energy conversion element such as an electrostrictive element or a magnetostrictive element, for example, PZT (lead zirconium titanate). Reference numeral 2 denotes a ring-shaped vibrating body made of an elastic material, and the electrostrictive element 1 is adhered to one side of the vibrating body. The vibrating body 2 is a stator (not shown) together with an electrostrictive element.
held on the side. Reference numeral 3 designates a moving body, which in this example forms a ring plate-shaped rotor that is pressed into contact with the other surface of the vibrating body 2 . A plurality of electrostrictive elements 1 are arranged in the circumferential direction of the vibrating body 2), and some groups of the electrostrictive elements 1 are arranged at a pitch shifted from other groups by 1/4 wavelength of the wavelength λ of the vibration wave. be done. The electrostrictive elements in the group are arranged at a pitch of A wavelength so that adjacent ones have opposite polarities.

このような構成の振動波モーターにおいて一つの群の電
歪素子にVo−8inωTの交流電圧全印加し、もう一
方の群の電歪素子VcvO−COSωTの交流電圧を印
加すると、各電歪素子は相隣シ合うものどうし極性が逆
向きで二つの群どうし90°位相のずれた交流電圧が印
加されて振動をする。この振動が伝えられて振動体2F
i電歪素子1の配置ピクチに従って曲げ撮動をする。こ
の曲げ振動は、振動体2が一つおきの電歪素子の位置で
出っ張ると、他の一つおきの電歪素子の位置で引っ込む
という風になる。一方、前記の如く電歪素子の一群は他
゛の一群に対し、1/4波長ずれた位置に、Sるため曲
げ振動は電圧素子の配列方向に進行する。交流電圧が印
加されている間、次々と振動が励起されて、進行性曲げ
振動波となって振動体2″f!:周方向に伝わってゆく
In a vibration wave motor with such a configuration, when a full AC voltage of Vo-8inωT is applied to the electrostrictive elements in one group, and an AC voltage of VcvO-COSωT is applied to the electrostrictive elements in the other group, each electrostrictive element becomes An alternating current voltage is applied to the two groups, with polarities opposite to each other and a phase shift of 90° between the two groups, causing vibration. This vibration is transmitted to the vibrating body 2F
Bending photography is performed according to the arrangement picture of the i-electrostrictive element 1. This bending vibration occurs in such a way that the vibrating body 2 protrudes at every other electrostrictive element position and then retracts at every other electrostrictive element position. On the other hand, as described above, one group of electrostrictive elements is shifted by 1/4 wavelength from the other group, so that bending vibration progresses in the direction in which the voltage elements are arranged. While the AC voltage is being applied, vibrations are excited one after another and become progressive bending vibration waves that propagate in the circumferential direction of the vibrating body 2″f!.

このときの波の進行状態が第5図(a)(b) (e)
(d) Ic示しである。いま、進行性曲げ振動波が矢
示X!方向に進むとする。0を静止状態に於ける振動体
の中心面とするとこの中心面は振動状態では鎖線で示す
中立面6となシ、この中立面6では曲げによる応力が拮
抗している。いま中立面6と直交する断面を一般的に7
で表わし、断面7と中立面6との交線を一般的に5で表
わし、断面7と振動体2の移動体3側の表面との交線上
の点を一般的にPで表わし、これらを特定的に表わすと
きには、添数字を付して表わすことにする。中立面6と
直交する断面7についてみると、これら二面の交線5で
は応力がかからず、交線5は上下振動をするだけである
。同時に断面7は交線5を中心として左右の振シ子振動
をする。従って、点Pは上下運動と左右運動を合成した
運動をするが、これを次に詳説する。
The progress state of the wave at this time is shown in Figure 5 (a), (b), and (e).
(d) Ic is shown. Now, the progressive bending vibration wave is pointing to arrow X! Suppose you move in the direction. If 0 is the central plane of the vibrating body in the resting state, this central plane is the neutral plane 6 shown by the chain line in the vibrating state, and the stress due to bending is balanced on this neutral plane 6. Generally, the cross section perpendicular to the neutral plane 6 is 7.
The line of intersection between the cross section 7 and the neutral plane 6 is generally represented by 5, and the point on the line of intersection between the cross section 7 and the surface of the vibrating body 2 on the moving body 3 side is generally represented by P. When specifically expressed, a subscript number will be added. Looking at the cross section 7 perpendicular to the neutral plane 6, no stress is applied to the intersection line 5 of these two surfaces, and the intersection line 5 only vibrates vertically. At the same time, the cross section 7 vibrates left and right with the intersection line 5 as the center. Therefore, point P moves in a combination of vertical and horizontal movements, which will be explained in detail next.

第5図(1)は任意の一時点での状態を示してお)、面
0と中立面6との交線51t−通る断面7皿と振動体2
の移動体3側の表面との交線上の点P1は、左右振動の
右死点となっていて上方向運動だけしておシ、他方、波
の正側(面Oの上側)にある交線5sic対応する点p
mには左方向(波の進行方向X1と逆のX言方向)の運
動成分が加わシ、また波の負側(面Oの下側)にある交
線53に対応する点P3には右方向の運動成分が加わる
Figure 5 (1) shows the state at an arbitrary point in time), a cross section 7 passing through the intersection line 51t of the plane 0 and the neutral plane 6 and the vibrating body 2.
Point P1 on the line of intersection with the surface of the moving body 3 is the right dead center of the left-right vibration, and only upward movement is possible. Point p corresponding to line 5sic
A motion component in the left direction (in the X direction opposite to the wave traveling direction A motion component in the direction is added.

その後、波が進行して、第5図(b)に示すように波の
正側に前記の交線51が来ると、点Pgは左方向の運動
をすると同時に上方向の運動をする。
Thereafter, as the wave progresses, as shown in FIG. 5(b), when the above-mentioned intersection line 51 comes to the positive side of the wave, point Pg moves to the left and at the same time moves upward.

更に同図(ci)の時点では読点P1は上下振動の上死
点だ来て左方向の運動“だけをする。更に(a)の時点
では読点P!は左方向の運動と下方向運動をする。
Furthermore, at the time of (ci) in the same figure, the reading point P1 has reached the top dead center of the vertical vibration and makes only a leftward movement.Furthermore, at the time of (a), the reading point P! makes a leftward movement and a downward movement. do.

さらに波が進行し、右方向と下方向の運動、右方向と上
方向の運動を経て同図(&)の状態に戻る。他の点PS
#PSKつbても同様のことが云える。
The wave further advances, moving rightward and downward, moving rightward and upward, and then returning to the state shown in the figure (&). Other points PS
The same thing can be said for #PSK.

このような一連の運動過程によ〕点pFi回転楕円運動
をし、その回転半径は、振動体2の中立面6から移動体
側表面まで(即ち点Pまで)の長さの関数となる。
As a result of such a series of motion processes, the point pFi undergoes spheroidal elliptical motion, and the radius of rotation thereof is a function of the length from the neutral plane 6 of the vibrating body 2 to the moving body side surface (that is, to the point P).

一方、移動体3は振動体2に加圧接触してbるので、例
えば第5図(c)に代表的に示すように、移動体2に対
して凸になった振動体2の部分の点P1の回転楕円運動
が移動体3をXz方向に摩擦駆動する。点P1だけでな
く、振動体2の前記移動体3側の表面上の全ての点が点
P1と同じように移動体3を摩擦駆動する。以上が振動
波モーターの原理である。
On the other hand, since the movable body 3 comes into pressure contact with the vibrating body 2, for example, as typically shown in FIG. The spheroidal motion of the point P1 frictionally drives the moving body 3 in the Xz direction. Not only the point P1 but all the points on the surface of the vibrating body 2 on the movable body 3 side frictionally drive the movable body 3 in the same way as the point P1. The above is the principle of a vibration wave motor.

さて、振動波モーターの駆動性能を良くするには、撮動
体に対して移動体が均一な接触状態になっていることが
必要である。このために、移動体を複数の小片に分け、
各々の小片を弾性体で支持する構造にしたものが特開昭
59−178987゜特開昭59−183087に示さ
れているが、各小片の接触部の形状に関しては、いずれ
も面又は線状の比較的広い面で圧接されている例が開示
されているだけである。ところで面又は線を小片に分割
し、弾性支持を行う場合、目的である均一な接触状態を
得るためには、分割を行り前と同様、分割後の各々の小
片を高い面精度で加工しなければならないという面倒が
ある。又、高い面精度で小片が加工されていても、第6
図、に示すように加圧力が移動体の小片3cと振動体2
との接触位置の真上に作用しなければ(即ちたとえばP
位置に加圧力が作用したときは)、小片(接触部材)3
cにモーメントがかかり、無加圧時に実線で示すように
接していた小片3cが第6図、第7の点線で示す3 a
’のように変形し、均一な接触は行われない。
Now, in order to improve the driving performance of the vibration wave motor, it is necessary that the moving object be in uniform contact with the imaging object. For this purpose, the moving object is divided into multiple pieces,
A structure in which each small piece is supported by an elastic body is shown in JP-A-59-178987 and JP-A-59-183087, but the shape of the contact part of each small piece is either plane or linear. Only an example is disclosed in which the material is pressed against a relatively wide surface. By the way, when a surface or line is divided into small pieces and elastically supported, in order to obtain the desired uniform contact state, each small piece after division must be processed with high surface accuracy, just as before the division. There is a hassle of having to do it. Also, even if a small piece is machined with high surface accuracy, the 6th
As shown in the figure, the pressing force is applied to the small piece 3c of the moving body and the vibrating body 2.
(i.e., if P
), small piece (contact member) 3
A moment is applied to c, and the small piece 3c that was in contact with it as shown by the solid line when no pressure is applied changes to 3a shown by the dotted line in Figures 6 and 7.
', and the contact is not uniform.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の点に鑑み、高い面精度の加工を要せず
に、しかし均一な接触状態に移動体を保つことのできる
振動波モーターの提供を目的とする。
In view of the above points, the present invention aims to provide a vibration wave motor that can maintain a moving body in a uniform contact state without requiring high surface precision machining.

〔発明の概要〕[Summary of the invention]

本発明の振動波モーターは、移動体の振動体との接触部
を、多数の球面接触をなす接触部材で構成すると共に、
これらの接触部材を各個独立の弾力的変位が可能なよう
に弾性部材で支持したことに特徴がある。
In the vibration wave motor of the present invention, the contact portion of the movable body with the vibrating body is composed of a plurality of contact members making spherical contact, and
A feature is that these contact members are supported by elastic members so that they can be elastically displaced independently.

〔発明の実施例〕[Embodiments of the invention]

第1図(a)は本発明の第1実施例における移動体の側
面図で、移動体3はリング状の構造体3m。
FIG. 1(a) is a side view of a moving body in a first embodiment of the present invention, in which the moving body 3 is a ring-shaped structure 3m.

これに接着されたゴム、スデンジ、などでできているリ
ング状の弾性体3b、および該弾性体3bに接着された
多数の半球状の接触部材3dよシなる。第1図(b)は
、このような構成の移動体3を電歪素子1付き振動体2
(その構成・機能は第4図第5図を用いて前述した所と
同じ)と組合せた振動波モーターの縦断面図であり、移
動体3は上記接触部材3dにて撮動体2と接触している
。振動体2は振動エネルギーの内部損失の少り例えば真
ちゅう、鋼などの金属材料で作られる。移動体構造体3
aは金属やプラスチックなど形状をしりかシ保てる材料
であれば何で作ってもよ−。接触部材3dは耐摩耗性で
あシ、焼入鋼やセラミックス、又は金属やプラスチック
に耐摩耗表面処理を施したものを用いる。
A ring-shaped elastic body 3b made of rubber, rubber, etc. is bonded to this, and a number of hemispherical contact members 3d are bonded to the elastic body 3b. FIG. 1(b) shows a moving body 3 having such a configuration as a vibrating body 2 with an electrostrictive element 1.
(The structure and function are the same as those described above using FIG. 4 and FIG. 5). ing. The vibrating body 2 is made of a metal material such as brass or steel, which has a low internal loss of vibration energy. Mobile structure 3
A can be made of any material that can maintain its shape, such as metal or plastic. The contact member 3d is made of hardened steel, ceramics, or metal or plastic with wear-resistant surface treatment.

移動体を上記の如き構成とすることkよシ、構造体3a
や振動体2の平坦度に多少の歪みや狂いがおっても、接
触部材3dは各々弾力的に支持されて振動体2に良く追
従し、均−表接触が得られる。また、接触部材3dが球
状をしてh″Cm動体2と点で接触を行うため、その接
触部の面精度は必要なく、加圧力が例えば第1図(b)
に示す偏りたP位置に作用して、モーメントが接触部材
3dにかかっても、同図中点線で示すように接触部が球
上を多少移動するだけでアフ、接触状態は変化せず、均
一な接触が保たれる。このように振動体表面および移動
体の接触部材3dの面精度はきわめて緩和され、移動体
の振動体への加圧力の作用位置を任意に選べる。
In addition to having the moving body configured as described above, the structure 3a
Even if there is some distortion or deviation in the flatness of the vibrating body 2, the contact members 3d are each elastically supported and follow the vibrating body 2 well, and even surface contact can be obtained. In addition, since the contact member 3d has a spherical shape and makes point contact with the h''Cm moving body 2, the surface precision of the contact portion is not required, and the pressing force is, for example, as shown in Fig. 1(b).
Even if a moment is applied to the contact member 3d by acting on the biased P position shown in the figure, the contact part will only move a little on the sphere as shown by the dotted line in the figure, but the contact state will not change and will be uniform. good contact is maintained. In this way, the surface accuracy of the vibrating body surface and the contact member 3d of the movable body is extremely relaxed, and the position where the pressing force is applied to the vibrating body of the movable body can be arbitrarily selected.

第2図(a)は本発明の他の実施例に係る移動体の背面
図の一部を、同図(b)はAA’断面を示している。
FIG. 2(a) shows a part of a rear view of a moving body according to another embodiment of the present invention, and FIG. 2(b) shows a cross section taken along line AA'.

この実施例では移動体は弾性円板(例えば金属板)3e
に径方向切込31″f:入れ、各々に半球形接触部材3
dを固着したもので6D、弾性板3・は第1図の実施例
での弾性体3bの働きをすると同時に、構造体3&も兼
ねている。
In this embodiment, the moving body is an elastic disk (for example, a metal plate) 3e.
A radial cut 31″f: is made in each of the hemispherical contact members 3.
d is fixed, and the elastic plate 3• functions as the elastic body 3b in the embodiment shown in FIG. 1, and also serves as the structural body 3&.

第3図(a)は更に別の実施例に係る移動体の側面図、
第3図(b)はその背面図である。前記第1.第2実施
例では接触部材3dが各個別の複数個であシ、その製作
および弾性体への接着が大変である。
FIG. 3(a) is a side view of a moving body according to yet another embodiment,
FIG. 3(b) is a rear view thereof. Said 1st. In the second embodiment, there are a plurality of individual contact members 3d, and it is difficult to manufacture them and adhere them to the elastic body.

そこで第3図の実施例では各接触部材3dを、それと同
一材料で十分柔軟な弾力を有する薄い部分3gでつない
でおくようにしたもので、これによフ、接触部材を一度
に成形したシ鍛造したシすることができ、また弾性材(
3b又は3e)への接着も容易に行うことができる。
Therefore, in the embodiment shown in FIG. 3, each contact member 3d is connected by a thin part 3g made of the same material and having sufficient elasticity, which allows the contact members to be molded at once. Can be made of forged material and also made of elastic material (
3b or 3e) can also be easily bonded.

第8図は本発明に用い得る接触部材3dの他の例を示し
、円錐形の頂部を球面形にしたものである。このように
、接触部のみ球状であれば、加工の製作その他の都合で
、他の部分の形状はどのよう表彰でもよい。
FIG. 8 shows another example of the contact member 3d that can be used in the present invention, in which the top of the conical shape is made into a spherical shape. As described above, as long as only the contact portion is spherical, the other portions may have any shape depending on the manufacturing process or other circumstances.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、移動体は多数の個別に変位可能に弾性
体で支持された球面接触の接触部材で振動体に接するの
で、均一な接触状態が得られるばかシでなく、接触部材
は接触面が球面であるため高い面精度の加工を必要とせ
ずに、しかも、偏した加圧力によルモーメントを受けた
場合にも接触部が多少転動するのみで、均一な接触状態
を確保できる。また移動体と振動体が上記の如き接触を
なすので、両者間の空気膜だよって生ずる問題はなく、
また摩耗粉がこれら間に詰まることもない。
According to the present invention, since the movable body contacts the vibrating body with a large number of individually displaceable spherical contact members supported by elastic bodies, a uniform contact state cannot be obtained; Since the surface is spherical, there is no need for high surface precision machining, and even if the contact part is subjected to a moment due to uneven pressure, the contact part will only roll slightly, ensuring a uniform contact condition. . In addition, since the moving body and the vibrating body are in contact as described above, there is no problem caused by an air film between them.
Further, wear particles will not get stuck between these.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(&)は本発明の第1実施例に係る移動体の側面
図、第1図中)はこれを振動体に接せした状態を示す縦
断面図、第2図(a) 、 (b)は夫々本発明の第2
実施例に係る移動体の背面図およびA A’断面図、第
3図(a) 、 (b) Fi夫々本発明の第3実施例
に係る移作動説明図、第6図、第7図は改良従来例の部
分状態を示す断面図、第8図は本発明に用いられる接触
部材の他の例を示す図である。 1・・・電気−機械エネルギー変換素子2・・・振動板
      3・・・移動体3a・・・構造体    
 3b・・・弾性体3e・・・弾性板。 第1図(a) 第2図(a>
FIG. 1 (&) is a side view of the moving body according to the first embodiment of the present invention, FIG. (b) is the second embodiment of the present invention, respectively.
The rear view and AA' sectional view of the moving body according to the embodiment, FIGS. 3(a) and 3(b) respectively, and FIGS. FIG. 8 is a sectional view showing a partial state of the improved conventional example, and is a view showing another example of the contact member used in the present invention. 1... Electric-mechanical energy conversion element 2... Vibration plate 3... Moving body 3a... Structure
3b...Elastic body 3e...Elastic plate. Figure 1 (a) Figure 2 (a>

Claims (1)

【特許請求の範囲】[Claims]  電気−機械エネルギー変換素子を複数個配列接合され
た振動体に生ぜしめた進行性振動波によって該振動体と
接触する移動体を摩擦駆動する振動波モーターにおいて
、該移動体の該振動体との接触部は球面接触をなす多数
の接触部材により構成されていると共に、これらの接触
部材は各個独立の弾力的変位が可能なように弾性部材で
支持されていることを特徴とする振動波モーター。
In a vibration wave motor that frictionally drives a moving body that comes into contact with the vibrating body by a progressive vibration wave generated in a vibrating body in which a plurality of electro-mechanical energy conversion elements are arranged and bonded, A vibration wave motor characterized in that the contact part is constituted by a large number of contact members making spherical contact, and each of these contact members is supported by an elastic member so that each contact member can be elastically displaced independently.
JP60135390A 1985-03-29 1985-06-21 Vibration wave motor Expired - Lifetime JPH0634600B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60135390A JPH0634600B2 (en) 1985-06-21 1985-06-21 Vibration wave motor
US06/843,568 US4752711A (en) 1985-03-29 1986-03-25 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60135390A JPH0634600B2 (en) 1985-06-21 1985-06-21 Vibration wave motor

Publications (2)

Publication Number Publication Date
JPS61295881A true JPS61295881A (en) 1986-12-26
JPH0634600B2 JPH0634600B2 (en) 1994-05-02

Family

ID=15150586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60135390A Expired - Lifetime JPH0634600B2 (en) 1985-03-29 1985-06-21 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPH0634600B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119581A (en) * 1988-10-26 1990-05-07 Olympus Optical Co Ltd Ultrasonic motor
JPH07231685A (en) * 1994-02-21 1995-08-29 Kanagawa Kagaku Gijutsu Akad Surface acoustic wave linear motor
WO2024105930A1 (en) * 2022-11-18 2024-05-23 株式会社村田製作所 Rotor and ultrasonic motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119581A (en) * 1988-10-26 1990-05-07 Olympus Optical Co Ltd Ultrasonic motor
JPH07231685A (en) * 1994-02-21 1995-08-29 Kanagawa Kagaku Gijutsu Akad Surface acoustic wave linear motor
WO2024105930A1 (en) * 2022-11-18 2024-05-23 株式会社村田製作所 Rotor and ultrasonic motor

Also Published As

Publication number Publication date
JPH0634600B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4742260A (en) Piezoelectrically driving device
US11114954B2 (en) Ultrasonic motor having generators formed of cooperating and spaced apart first and second sub-generators
CN101542890B (en) Piezoelectric linear motor
JPH03190573A (en) Oscillation wave motor
JPH01283072A (en) Oscillatory wave motor
JPS62100178A (en) Oscillatory wave motor
EP2073369A1 (en) Vibration actuator
JPH0532991B2 (en)
JPS61224883A (en) Vibration wave motor
CN110661445B (en) Parallel three-degree-of-freedom piezoelectric resonance self-actuating mechanism and excitation method thereof
JPS61295881A (en) Vibration wave motor
JPH0636673B2 (en) Drive
JPS62259485A (en) Piezoelectric driving apparatus
US4779019A (en) Electrostriction motor
JPH05252767A (en) Ultrasonic motor
CN109478856B (en) Actuator
JPS61295880A (en) Vibration wave motor
JP4578799B2 (en) Piezoelectric actuator and electronic device using the same
JPS61295882A (en) Vibration wave motor
JPS63294268A (en) Piezoelectric actuator
CN112217415B (en) Frame type planar three-degree-of-freedom piezoelectric resonance self-actuating mechanism and excitation method thereof
JPH06106029B2 (en) Ultrasonic motor
JPH0552137B2 (en)
JPS631380A (en) Ultrasonic motor
JPS63220781A (en) Piezoelectric actuator and driving method thereof