JPS61294954A - Offset 4-phase differential psk modulator-demodulator - Google Patents

Offset 4-phase differential psk modulator-demodulator

Info

Publication number
JPS61294954A
JPS61294954A JP60134054A JP13405485A JPS61294954A JP S61294954 A JPS61294954 A JP S61294954A JP 60134054 A JP60134054 A JP 60134054A JP 13405485 A JP13405485 A JP 13405485A JP S61294954 A JPS61294954 A JP S61294954A
Authority
JP
Japan
Prior art keywords
parallel
differential
data
circuit
parallel data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60134054A
Other languages
Japanese (ja)
Inventor
Nobutaka Amada
信孝 尼田
Takaharu Noguchi
敬治 野口
Hiroyuki Kimura
寛之 木村
Masaharu Kobayashi
正治 小林
Takao Arai
孝雄 荒井
Yasushi Yude
弓手 康史
Kuniaki Miura
三浦 邦昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60134054A priority Critical patent/JPS61294954A/en
Priority to AT86108197T priority patent/ATE103748T1/en
Priority to EP86108197A priority patent/EP0206203B1/en
Priority to DE3689746T priority patent/DE3689746T2/en
Priority to KR1019860004894A priority patent/KR900007030B1/en
Publication of JPS61294954A publication Critical patent/JPS61294954A/en
Priority to US07/321,778 priority patent/US5189564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To simplify a demodulation circuit by providing the 1st and 2nd differential coders converting the 1st and 2nd parallel data code into the code change to eliminate the need for the control of a phase difference of a recovered carrier always at 0 deg.. CONSTITUTION:A serial/parallel conversion circuit 2 converts inputted serial data A into 2 systems of parallel data B and C. Differential coders 3a, 3b convert the code of parallel data B, C into a code change. The differential coder 3a, 3b consist respectively of an EOR circuit 31a and a delay device 32a, and an EOR circuit 31b and a delay device 32b, and an orthogonal modulation circuit 4 consists of balanced modulators 41a, 41b, a carrier oscillator 42, a 90 deg. phase shifter 43 and an adder 44. A synchronous detection circuit 5 consists of phase detectors 51a, 51b, a carrier recovery circuit 52, a 90 deg. phase shifter 53 and low-pass filters 55a, 55b, and differential decoders 7a, 7b consist respectively of an EOR circuit 71a, a delay device 72a and an EOR circuit 71b and a delay device 72b.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、4相差動PSK変復調装置に係り、特に非線
形伝送路を介して送受信するのに好適なオフセット4相
差動PSK変復調装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a four-phase differential PSK modulator and demodulator, and particularly to an offset four-phase differential PSK modulator and demodulator suitable for transmitting and receiving via a nonlinear transmission path.

〔発明の背景〕[Background of the invention]

ディジタル無線通信分野においては、比較的狭帯域伝送
ができ、かつ復調器の構成が容易な4相差動位相変調(
QDPSK)方式が広く用いられている。しかし、この
QDPSK方式では非線形伝送路を通した場合には帯域
が拡がり、また符号誤り率特性も劣化する。これは、帯
域幅が限られ、かつ搬送波電力対雑音電力比(Cハ)を
あまり大きく取れない伝送系9例えば衛星通信や移動通
信においては克服すべき重要な問題となっている。
In the field of digital wireless communications, four-phase differential phase modulation (
QDPSK) is widely used. However, in this QDPSK system, when passing through a nonlinear transmission path, the band expands and the bit error rate characteristics also deteriorate. This is an important problem to be overcome in transmission systems 9, such as satellite communications and mobile communications, where the bandwidth is limited and the carrier power-to-noise power ratio (C) cannot be very large.

このような観点から、近年、オフセットQPSK方式が
注目されている。これは、信学技報。
From this point of view, the offset QPSK method has been attracting attention in recent years. This is an IEICE technical report.

C8−81−52,1981年における鈴本他2名によ
る[狭帯域ディジタル角度変調波の基本的性質」と題す
る文献において論じられている通り、同相CP、)及び
直交(Q)チャネルのデータの符号変化点を互いに1/
2デ一タ周期ずらして変調する方式である。これにより
変調波の包絡線が零交差しなくなり、非線形伝送路を通
しても帯域は大して拡がらないという利点をもっている
C8-81-52, 1981 by Suzumoto et al. [Fundamental Properties of Narrowband Digital Angle Modulated Waves] change points to 1/1/1 of each other
This is a method of modulating by shifting two data cycles. This has the advantage that the envelope of the modulated wave does not cross zero, and the band does not expand much even through a nonlinear transmission path.

しかし、このオフセットQPSK方式では、従来のQP
SK方式で用いられている差動符号及び復号方式が使え
ず、復調器側では絶体位相を検出する必要があった。
However, in this offset QPSK method, the conventional QPSK
The differential code and decoding method used in the SK method could not be used, and it was necessary to detect the absolute phase on the demodulator side.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このオフセットQPSK方式に適合し
たオフセット4相差動PSK変復調装置1を提供するこ
とにある。
An object of the present invention is to provide an offset four-phase differential PSK modulation/demodulation device 1 that is compatible with this offset QPSK method.

〔発明の概要〕[Summary of the invention]

本発明は、P及びQチャネルそれぞれ独立に、入力され
たデータの符号を符号変化に変換する(例えば、0の場
合は前の符号を継続し、1の場合は前の符号を反転させ
る)差動符号器を変調器側に設け、復調器側では検波し
たデータの符号変化をとらえてこれをもとの符号に変換
する差動復号器を同じくP及びQチャネルそれぞれ独立
に設けるものである。
The present invention independently converts the sign of input data into a sign change (for example, if it is 0, the previous sign is continued, and if it is 1, the previous sign is inverted). A dynamic encoder is provided on the modulator side, and on the demodulator side, differential decoders are provided independently for each of the P and Q channels to capture a change in the code of detected data and convert it to its original code.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

同図において、1は伝送すべきディジタルデータ(A)
の入力端子、2は入力されたシリアルデータ(A)を2
系統のパラレルデータ(B)及び(C)に変換する直列
−並列変換回路、3a及びμはパラレルデータ(B)及
び(C)の符号を符号変化に変換する差動符号器、4は
それぞれ独立に差動符号化されたパラレルデータ(D)
及びCg)を互いに90度位相が異なる2つの搬送波で
平衡変調する直交変調回路、40は変調された信号の出
力端子であり、差動符号器3a及び3bはそれぞれEO
R回路31eLと遅延器324及びgOR回路316と
遅延器324で、直交変調回路4は平衡変調器41α、
41bと搬送波発振器42と90度移相器43と加算器
44とで構成される。以上がオフセット4相差動PSK
(0−QDPSK)の変調回路である。
In the same figure, 1 is the digital data (A) to be transmitted.
input terminal, 2 input serial data (A)
Serial-to-parallel converter circuit that converts the parallel data (B) and (C) of the system, 3a and μ are differential encoders that convert the signs of the parallel data (B) and (C) into sign changes, and 4 are each independent Parallel data differentially encoded (D)
and Cg) with two carrier waves having a phase difference of 90 degrees from each other, 40 is an output terminal of the modulated signal, and differential encoders 3a and 3b are each EO
The quadrature modulation circuit 4 includes the R circuit 31eL, the delay device 324, the gOR circuit 316, and the delay device 324, and the orthogonal modulation circuit 4 includes a balanced modulator 41α,
41b, a carrier wave oscillator 42, a 90-degree phase shifter 43, and an adder 44. The above is offset 4-phase differential PSK
(0-QDPSK) modulation circuit.

さらに第1図において、50はo−QDPSK変調信号
の入力端子、5は入力された変調信号をその変調信号と
位相同期した2つの直交搬送波で位相検波する同期検波
回路、 6a及び6bは同期検波された2系統の信号の
正負をそれぞれ伝送されてきたパラレルデータの速度に
同期したタイミングで判別し、ディジタル信号に変換す
る符号識別回路、7α及び7bはディジタル信号に変換
された2系統の信号(F)及び(G)それぞれの符号変
化からもとの符号に逆変換する差動復号器、8は復号し
たパラレルデータ(H)及び(I)をシリアルデータ(
J)に変換する並列−直列変換回路、9は最終的に復調
されたディジタルデータ(J)の出力端子であり、同期
検波回路5は位相検波器51a、514とキャリア再生
回路52と90度移相器53と低域フィルり55〜55
にとで、差動復号器゛7・及び7にはそれぞれEOR回
路71・と遅延器72二及びEOR回路71にと遅延器
72Aとで構成≧れる。以上がこのo−QDPSK復調
回路であるう 第2図は第1図に示した回路の各部動作を示す波形図で
ある。以下、同図により本実施例の動作を説明する。
Further, in FIG. 1, 50 is an input terminal for an o-QDPSK modulation signal, 5 is a synchronous detection circuit that detects the phase of an input modulation signal using two orthogonal carrier waves that are phase-synchronized with the modulation signal, and 6a and 6b are synchronous detection circuits. 7α and 7b are code identification circuits that distinguish the positive and negative of the two systems of signals at timings synchronized with the speed of the transmitted parallel data, and convert them into digital signals. F) and (G) A differential decoder that converts each sign change back to the original code, and 8 converts the decoded parallel data (H) and (I) into serial data (
9 is the output terminal of the finally demodulated digital data (J), and the synchronous detection circuit 5 is connected to the phase detectors 51a, 514 and the carrier regeneration circuit 52 by 90 degrees. Phaser 53 and low frequency fill 55-55
In this case, the differential decoders 7 and 7 each include an EOR circuit 71, a delay device 722, and an EOR circuit 71 and a delay device 72A. The above is the o-QDPSK demodulation circuit. FIG. 2 is a waveform diagram showing the operation of each part of the circuit shown in FIG. 1. The operation of this embodiment will be explained below with reference to the same figure.

第2図において、<1〉は変調回路側の動作波形を示し
、 <it>及び<iii>は復調回路側の動作波形を
示す。また、〈11〉は変調回路におけるキャリア位相
に対して復調回路で再生したキャリアの位相差φが0度
及び180度の場合、<+ii>は同じく±90度の場
合を示している。まず、くしの変調回路側において、入
力されたディジタルデータ(A)を2ビツト毎に区切り
、先行ビットをXR、仮のビットなYR(γこだしRは
整数)とおくと、直列−並列変換器2で変換されたパラ
レルデータ(B)及び(C)は図に示すように1/2デ
一タ周期(T/2)ずれた形で交互に出力される。
In FIG. 2, <1> indicates an operating waveform on the modulation circuit side, and <it> and <iii> indicate operating waveforms on the demodulation circuit side. Further, <11> indicates the case where the phase difference φ of the carrier reproduced by the demodulation circuit with respect to the carrier phase in the modulation circuit is 0 degrees and 180 degrees, and <+ii> indicates the case where the same is ±90 degrees. First, on the modulation circuit side of the comb, divide the input digital data (A) into every 2 bits, set the leading bit as XR, and set the temporary bit as YR (γ coefficient R is an integer). Then, serial-parallel conversion is performed. The parallel data (B) and (C) converted by the converter 2 are output alternately in a form shifted by 1/2 data cycle (T/2) as shown in the figure.

次にこのパラレルデータXR及びYRは差動符号器3a
及び3bによりデータPR及び鋸に変換される。これを
論理式で示すと次のようになる。
Next, this parallel data XR and YR is sent to the differential encoder 3a.
and 3b are converted into data PR and saw. This can be expressed as a logical formula as follows.

PK=XR■Px−+・・・・曲・ (1)QK=YK
■QK−1・・・・・・・・・(2)ただし、■は排他
的論理和を示す。
PK=XR■Px-+・・・Song・ (1)QK=YK
■QK-1 (2) However, ■ indicates exclusive OR.

そしてこのデータPK及びQKは直交変調器4で変調さ
れる。この変調信号は、同相中ヤリアcpをccs w
ct 、直交キャリアcQをsin wct (WCは
キャリア角周波数)とおくと次式で示される。
The data PK and QK are then modulated by a quadrature modulator 4. This modulation signal converts the in-phase carrier cp to ccs w
ct and the orthogonal carrier cQ as sin wct (WC is the carrier angular frequency), it is expressed by the following equation.

PK −cnswct+QK −sin wct−・曲
(3)次K、復調回路側では、(3)式で示される変調
信号を同期検波回路5で検波する。このとき、キャリア
再生回路52で再生した同相キャリアcP′をccs(
wct+φ)、直交キャリアcQ′をsin(wct+
φ)とおくと、その検波出力信号は次式で示される。
PK -cnswct+QK -sin wct-.(3) Order K On the demodulation circuit side, the modulated signal expressed by equation (3) is detected by the synchronous detection circuit 5. At this time, the in-phase carrier cP' regenerated by the carrier regeneration circuit 52 is converted into ccs(
wct+φ), and the orthogonal carrier cQ′ is sin(wct+
φ), the detected output signal is expressed by the following equation.

PK−坦φ−QK−通φ ・曲・・・・ (4)PK−
sinφ+QK−Q)Sφ ・曲面(5)そしてキャリ
ア再生回路52が正常に動作している状態では変調回路
側との位相差φは0度、±90度、±180度等の値と
なる。
PK-tanφ-QK-tsuφ ・Song... (4) PK-
sinφ+QK−Q)Sφ Curved surface (5) When the carrier regeneration circuit 52 is operating normally, the phase difference φ with the modulation circuit side takes values such as 0 degrees, ±90 degrees, and ±180 degrees.

第2図〈11〉は、この位相差φが0度及び180度の
場合におけろ動作波形を示している。例えばφが0度の
場合、符号識別回路6α及び6妙の出力信号(F)及び
(G)にはそれぞれデータPK及びQKが表われる。こ
れを差動復号器7cL及び7bを通すとそれぞれの出力
信号(H)及び(I)にはもとのパラレルデータXK及
びYKが表われる。この過程を論理式で示すと次のよう
になる。
FIG. 2 (11) shows operating waveforms when this phase difference φ is 0 degrees and 180 degrees. For example, when φ is 0 degrees, data PK and QK appear in the output signals (F) and (G) of the code identification circuits 6α and 6o, respectively. When this is passed through differential decoders 7cL and 7b, the original parallel data XK and YK appear as output signals (H) and (I), respectively. This process can be expressed as a logical formula as follows.

PR■Pa−+=(XR■Pに−1)■PK−1三X・
・・・・・ (6)QK■QK−1=(YR■QK−1
)■QK−IEYK・・・・・・ (7)また、φが1
80度の場合には(4)及び(5)式かられかるように
(F)及び(G)にはPR及びQKが表われるが、差動
復号器7a及び76の働きにより(H)及び(I)には
もとのXK及びYRが復号される。すなわち論理式では
、 ミXK  ・・・・・・・・・ (8)Qx■QK−+
=(Yx■QK−1)■PK−+=Y■QR−1■QK
−’ミYK  ・・・・・・・・・ (9)と示される
PR■Pa-+=(XR■P-1)■PK-13X・
... (6) QK■QK-1=(YR■QK-1
) ■QK-IEYK・・・・・・ (7) Also, φ is 1
In the case of 80 degrees, PR and QK appear in (F) and (G) as seen from equations (4) and (5), but due to the action of differential decoders 7a and 76, (H) and In (I), the original XK and YR are decoded. In other words, in the logical formula, MiXK ・・・・・・・・・ (8)Qx■QK−+
=(Yx■QK-1)■PK-+=Y■QR-1■QK
-'Mi YK ...... (9) is indicated.

このように、もとのパラレルデータnとYKカ得lpれ
れば、これらを並列−直列変換回路8によりシリアルデ
ータに変換、し、最終的な復調データ(J)が得られる
In this way, when the original parallel data n and YK data lp are obtained, they are converted into serial data by the parallel-to-serial conversion circuit 8, and the final demodulated data (J) is obtained.

これと同様に、φが±913度の場合においても第2図
<1ii>に示すようにXRとYKの表れるチャネルが
反転するだけであり、XRとYxの前後関係は維持され
るのでこれをその順序で並列−直列変換すれば問題ない
。この方法については後で詳述する。
Similarly, even when φ is ±913 degrees, the channels in which XR and YK appear are simply reversed, as shown in Figure 2 <1ii>, and the front-to-back relationship between XR and Yx is maintained. There is no problem if you perform parallel-to-serial conversion in that order. This method will be detailed later.

第6図は本発明による変調回路の一具体例を示す図であ
る。同図において、21.22a、224及び5ScL
、5511はDタイプの7リツプフロツグ(D−FF)
、1oは入力データ(A)のクロック信号CK1の入力
端子である。第4図は第3図に示す回路の各部動作を示
す波形図である。以下、この第4図を用いて動作を説明
する。入力されたクロックCK1は1)−FF21によ
り1/2分周さ。1.ayりCN3及び西5がつくられ
る。そしてこの0石及びCN3の立二りのタイミングで
入力されたシリアルデータ(A)をD−FF22cL及
び224を用いてラッチするとパラレルデータXル及び
YLが得られる。差動符号器3α及び64では、第1図
の実施例で示した遅延器324及び524をそれぞれD
−FF35a及び33/4で構成しているだけであり、
その動作は全く同一である。ただし、第3図に示す構成
だと、PR及びQRは第4図に示すようにXR及びYR
に対して1周期だけ遅れて出力されるが、これについて
は何ら問題ない。そしてこの差動符号化されたパラレル
データPR及びQRを直交変調回路4で変調する。この
ように、本具体例によれば簡単な構成で0−QDPSK
の変調回路が実現できる。
FIG. 6 is a diagram showing a specific example of a modulation circuit according to the present invention. In the same figure, 21.22a, 224 and 5ScL
, 5511 is a D type 7 lip frog (D-FF)
, 1o is an input terminal for the clock signal CK1 of input data (A). FIG. 4 is a waveform diagram showing the operation of each part of the circuit shown in FIG. 3. The operation will be explained below using FIG. 4. The input clock CK1 is frequency-divided by 1/2 by 1)-FF21. 1. Ayri CN3 and West 5 will be created. Then, by latching the serial data (A) inputted at the timing of 0 and CN3 using the D-FFs 22cL and 224, parallel data X1 and YL are obtained. In the differential encoders 3α and 64, the delay units 324 and 524 shown in the embodiment of FIG.
-It is only composed of FF35a and 33/4,
Its operation is exactly the same. However, in the configuration shown in Figure 3, PR and QR are XR and YR as shown in Figure 4.
Although the output is delayed by one cycle, there is no problem with this. Then, the differentially encoded parallel data PR and QR are modulated by the orthogonal modulation circuit 4. In this way, according to this specific example, 0-QDPSK can be achieved with a simple configuration.
A modulation circuit can be realized.

第5図は本発明による復調回路の一具体例を示す図であ
る。同図において、614.61J!rは比較器、 6
2cL+62’、64.73a、73’、83はD−F
F’、65はクロック再生回路、 65.66はインバ
ータ回路、81cL。
FIG. 5 is a diagram showing a specific example of a demodulation circuit according to the present invention. In the same figure, 614.61J! r is a comparator, 6
2cL+62', 64.73a, 73', 83 are D-F
F', 65 is a clock regeneration circuit, 65.66 is an inverter circuit, 81cL.

81には論理積(AND)回路、82は論理和(OR)
回路、90は復調データ(J)にビット同期したクロッ
クCK1′の出力端子である。同期検波回路5で検波し
た2系統の信号はそれぞれ比較器616及び61bとD
−FF62α及び62にで構成される符号識別回路6α
と6hでディジタy信号CF’)及び(G)に変換され
る。このタイミングはクロック再生回路63で再生した
クロックCK1’をD−F’F64により1/分周した
クロックCK2’及びCK2’の立上りエツジで制御さ
れる。差動復号回路7eL、74は第1図の実施例にお
ける遅延器72cL、 724をD−F’F73α、7
6kに置き換えただけであり、その動作は全く同一であ
る。次に動作復号されたパラレルデータ(H)及び(I
)はそれぞれ再生クロックCK2’及びCK2’とAN
D回路e1a及び81にで論理積される。この2つの信
号(L)及び(M)をさらにOR回路82で論理和し、
D−F’F85により再生クロックCK1′の立上りタ
イミングでラッチすると最終的なシリアルに変換された
復調デー−タが得られる。
81 is a logical product (AND) circuit, 82 is a logical sum (OR)
The circuit 90 is an output terminal of a clock CK1' which is bit synchronized with the demodulated data (J). The two systems of signals detected by the synchronous detection circuit 5 are sent to comparators 616 and 61b and D, respectively.
- Code identification circuit 6α composed of FF62α and FF62
and 6h, it is converted into digital y signals CF') and (G). This timing is controlled by the rising edges of clocks CK2' and CK2', which are obtained by dividing the clock CK1' reproduced by the clock reproducing circuit 63 by 1/1 by the D-F'F64. The differential decoding circuit 7eL, 74 replaces the delay device 72cL, 724 in the embodiment of FIG.
6k, and the operation is exactly the same. Next, the operationally decoded parallel data (H) and (I
) are the reproduced clocks CK2' and CK2' and AN
The D circuits e1a and 81 are ANDed. These two signals (L) and (M) are further logically summed by an OR circuit 82,
When latched by the D-F'F85 at the rising timing of the recovered clock CK1', the final demodulated data converted into serial data is obtained.

第6図はこの様子を示した動作波形図であり、〈1〉は
再生キャリアの位相差φが0度及び180度の場合、<
11〉はφが±90°度の場合を示している。このよう
にφが如何なる値であっても送信データを誤りなく復調
できる。
FIG. 6 is an operation waveform diagram showing this situation, and <1> means that when the phase difference φ of the reproduced carrier is 0 degrees and 180 degrees, <
11> shows the case where φ is ±90 degrees. In this way, transmission data can be demodulated without error no matter what value φ is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非線形伝送路に強いオフセット4相P
SK方式においても、差動方式が適用できるので、給体
位相を検出、言い換えれば再生キャリアの位相差φを常
に0度に制御する必要がなく、復調回路の簡略化に大き
な効果がある。
According to the present invention, the offset 4-phase P
Since a differential method can also be applied to the SK method, there is no need to detect the phase of the feeder, in other words, it is not necessary to always control the phase difference φ of the reproduced carrier to 0 degrees, which has a great effect on simplifying the demodulation circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)は本発明の一実施例を示す構成図
、第2図<i> 、 <ii> 、 <iii>は第1
図(イ)。 (ロ)に示す実施例の動作波形図、第3図は本発明によ
る変調回路の一具体例を示す回路図、第4図は第3図に
示す回路の動作波形図、第5図は本発明による復調回路
の一具体例を示す回路図、第6図<i> 、 <ii>
は第5図に示す回路の動作波形図である。 2・・・・・・直列−並列変換回路、 36.3k・・・・・・差動符号器、 7a、74・・・・・・差動復号器、 8・・・・・・並列−直列変換回路。
Figures 1 (a) and (b) are configuration diagrams showing one embodiment of the present invention, and Figure 2 <i>, <ii>, and <iii> show the first embodiment.
Figure (a). FIG. 3 is a circuit diagram showing a specific example of the modulation circuit according to the present invention, FIG. 4 is an operating waveform diagram of the circuit shown in FIG. 3, and FIG. A circuit diagram showing a specific example of the demodulation circuit according to the invention, FIG. 6 <i>, <ii>
5 is an operating waveform diagram of the circuit shown in FIG. 5. FIG. 2...Series-parallel conversion circuit, 36.3k...Differential encoder, 7a, 74...Differential decoder, 8...Parallel- Series conversion circuit.

Claims (1)

【特許請求の範囲】 1、入力された直列のディジタルデータを第1及び第2
の並列データに変換し、かつ該第1及び第2の並列デー
タの符号変化点を互いに1/2並列データ周期だけずら
して出力する直列−並列変換器と、互いに90度位相の
異なる二つの直交搬送波を該第1及び第2の並列データ
で平衡変調する直交変調器と、該直交変調器から送出さ
れた信号を伝送路を介して受信し、その受信した信号を
互いに90度位相が異なる二つの直交搬送波で位相検波
する同期検波器と、該同期検波器で検波された第1及び
第2の信号の正負を判別し、それぞれディジタル信号に
変換する第1及び第2の符号識別器を備えた変復調装置
において、該第1及び第2の並列データの符号を符号の
変化に変換する第1及び第2の差動符号器を設けたこと
を特徴とするオフセット4相差動変復調装置。 2、入力された直列のディジタルデータを第1及び第2
の並列データに変換し、かつ該第1及び第2の並列デー
タの符号変化点を互いに1/2並列データ周期だけずら
して出力する直列−並列変換器と、互いに90度位相の
異なる二つの直交搬送波を該第1及び第2の並列データ
で平衡変調する直交変調器と、該直交変調器から送出さ
れた信号を伝送路を介して受信し、その受信した信号を
互いに90度位相が異なる二つの直交搬送波で位相検波
する同期検波器と、該同期検波器で検波された第1及び
第2の信号の正負を判別し、それぞれディジタル信号に
変換する第1及び第2の符号識別器を備えた変復調装置
において、該第1及び第2の符号識別器から出力される
第1及び第2のディジタル信号の符号変化からもとの符
号をそれぞれ復号する第1及び第2の差動復号器を設け
たことを特徴とするオフセット4相差動PSK変復調装
置。 3、特許請求の範囲第2項において、該第1及び第2の
差動符号器それぞれから出力される第1及び第2の並列
信号を該並列信号のデータ速度の2倍の速度で交互に取
り出し直列信号に変換する並列−直列変換器を設けたこ
とを特徴とするオフセット4相差動PSK変復調装置。 4、特許請求の範囲第1項において、該第1及び第2の
符号識別器から出力される第1及び第2のディジタル信
号の符号化からもとの符号をそれぞれ復号する第1及び
第2の差動復号器を設けたことを特徴とするオフセット
4相差動PSK変復調装置。 5、特許請求の範囲第4項において、該第1及び第2の
差動復号器それぞれから出力される第1及び第2の並列
信号を該並列信号のデータ速度の2倍の速度で交互に取
り出し直列信号に変換する並列−直列変換器を設けたこ
とを特徴とするオフセット4相差動PSK変復調装置。
[Claims] 1. Input serial digital data to the first and second
a serial-to-parallel converter that converts the first and second parallel data into parallel data and outputs them with the sign change points of the first and second parallel data shifted from each other by 1/2 parallel data period; A quadrature modulator that balance-modulates a carrier wave using the first and second parallel data; and a quadrature modulator that receives the signal sent from the quadrature modulator via a transmission path, and transmits the received signal to two modulators that have a phase difference of 90 degrees from each other. It includes a synchronous detector that performs phase detection using two orthogonal carrier waves, and first and second code discriminators that determine whether the first and second signals detected by the synchronous detector are positive or negative and convert them into digital signals, respectively. An offset four-phase differential modulation and demodulation device characterized in that the offset four-phase differential modulation and demodulation device is provided with first and second differential encoders that convert codes of the first and second parallel data into changes in code. 2. Input serial digital data to the first and second
a serial-to-parallel converter that converts the first and second parallel data into parallel data and outputs them with the sign change points of the first and second parallel data shifted from each other by 1/2 parallel data period; A quadrature modulator that balance-modulates a carrier wave using the first and second parallel data; and a quadrature modulator that receives the signal sent from the quadrature modulator via a transmission path, and transmits the received signal to two modulators that have a phase difference of 90 degrees from each other. It includes a synchronous detector that performs phase detection using two orthogonal carrier waves, and first and second code discriminators that determine whether the first and second signals detected by the synchronous detector are positive or negative and convert them into digital signals, respectively. In the modulation/demodulation device, the first and second differential decoders each decode the original code from the code change of the first and second digital signals output from the first and second code discriminators. An offset four-phase differential PSK modulator and demodulator, characterized in that: 3. In claim 2, the first and second parallel signals output from the first and second differential encoders are alternately output at a data rate twice as high as the data rate of the parallel signals. An offset four-phase differential PSK modulation/demodulation device comprising a parallel-to-serial converter for taking out and converting into a serial signal. 4. In claim 1, the first and second code discriminators decode the original codes from the encoding of the first and second digital signals output from the first and second code discriminators, respectively. 1. An offset four-phase differential PSK modulation and demodulation device, characterized in that it is provided with a differential decoder. 5. In claim 4, the first and second parallel signals output from the first and second differential decoders are alternately output at a rate twice the data rate of the parallel signals. An offset four-phase differential PSK modulation/demodulation device comprising a parallel-to-serial converter for taking out and converting into a serial signal.
JP60134054A 1985-06-21 1985-06-21 Offset 4-phase differential psk modulator-demodulator Pending JPS61294954A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60134054A JPS61294954A (en) 1985-06-21 1985-06-21 Offset 4-phase differential psk modulator-demodulator
AT86108197T ATE103748T1 (en) 1985-06-21 1986-06-16 RECORDING AND PLAYBACK DEVICE USING A SHIFTED QUATERNARY PHASE DIFFERENCE DIFFERENCE KEYING MODULATOR/DEMODULATOR.
EP86108197A EP0206203B1 (en) 1985-06-21 1986-06-16 Recording and reproducing apparatus using a modulator/demodulator for Offset Quadrature Differential Phase-Shift Keying
DE3689746T DE3689746T2 (en) 1985-06-21 1986-06-16 Recording and reproducing device using a modulator / demodulator with shifted quaternary phase difference keying.
KR1019860004894A KR900007030B1 (en) 1985-06-21 1986-06-19 Offset qudra phase differential p.s.k. modem device
US07/321,778 US5189564A (en) 1985-06-21 1989-03-10 Magnetic recording/reproducing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134054A JPS61294954A (en) 1985-06-21 1985-06-21 Offset 4-phase differential psk modulator-demodulator

Publications (1)

Publication Number Publication Date
JPS61294954A true JPS61294954A (en) 1986-12-25

Family

ID=15119283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134054A Pending JPS61294954A (en) 1985-06-21 1985-06-21 Offset 4-phase differential psk modulator-demodulator

Country Status (1)

Country Link
JP (1) JPS61294954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285458A (en) * 1990-03-20 1994-02-08 Fujitsu Limited System for suppressing spread of error generated in differential coding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285458A (en) * 1990-03-20 1994-02-08 Fujitsu Limited System for suppressing spread of error generated in differential coding

Similar Documents

Publication Publication Date Title
JPS5911226B2 (en) Data communication method using angle-modulated carrier wave with constant amplitude
US4128828A (en) Differential detection systems with non-redundant error correction
US4052558A (en) Data transmission system
US4438524A (en) Receiver for angle-modulated carrier signals
JPS61294954A (en) Offset 4-phase differential psk modulator-demodulator
EP0206203B1 (en) Recording and reproducing apparatus using a modulator/demodulator for Offset Quadrature Differential Phase-Shift Keying
EP0567650B1 (en) Phase-modulation transmitter and receiver
US3406255A (en) Data transmission techniques using orthogonal fm signal
JPS6030241A (en) Modulator and demodulator of digital signal
JPH0730601A (en) Data receiver
JP2944040B2 (en) Optical transmission system
JPH0763163B2 (en) Digital transmission system
KR100226994B1 (en) DIGITAL DEMODULATING METHOD AND DEVICE OF ó /4 QPSK
EP0534180B1 (en) MSK signal demodulating circuit
JPH09130440A (en) Detection circuit device
KR950003667B1 (en) Minimum shift keying modulator and demodulator using bfsk demodulating method
JPH066397A (en) Delay detector
JPS60183858A (en) Clock synchronizing circuit of msk demodulator
JP2890936B2 (en) Word synchronization method
JPS6339240A (en) Encoding and modulating circuit
JPS63217753A (en) Carrier recovery circuit
JPS60198947A (en) Transmission coding circuit for msk modulation- demodulation system
JPH0223748A (en) Radio communication system
WO2000035100A1 (en) Data coding
JPH10322406A (en) Clock recovery system