JPS61294768A - New battery - Google Patents
New batteryInfo
- Publication number
- JPS61294768A JPS61294768A JP60137505A JP13750585A JPS61294768A JP S61294768 A JPS61294768 A JP S61294768A JP 60137505 A JP60137505 A JP 60137505A JP 13750585 A JP13750585 A JP 13750585A JP S61294768 A JPS61294768 A JP S61294768A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- discharge
- manganese dioxide
- charging
- discharging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
正極活物質,負極活物質としてそれぞれ二酸化マンガン
,亜鉛を用いる電池(以下MnO2−Zn電池と略す)
はたとえば乾電池として広く使用されている。しかし,
現在のところこの電池は良好な充放電特性を有しておら
ず,主に電解液としてKOHのようなアルカリの水溶液
を用いた電池においてある程度充電が可能であることが
示されているにすぎない(たとえば,R.Chemel
li等,SecondSymposium on Ma
nganganese Dioxide(昭和55年1
0月,京都),Extended Abstracts
,page 57(1980))。一方,乾電池用二酸
化マンガンは酸性条件下で硫酸マンガンから電解法によ
つても製造されており(たとえば,電気化学協会電池技
術委員会発行「電池技術」15ページ(昭和56年10
月),このことから前述のMnO2−Zn電池を放電後
に硫酸イオンを含む酸性(溶液のpHが7以下であるこ
と)条件下で充電できる可能性があることが分る。たと
えば,正,負両極における充放電反応として以下の反応
が考えられる。[Detailed description of the invention] A battery using manganese dioxide and zinc as positive electrode active material and negative electrode active material, respectively (hereinafter abbreviated as MnO2-Zn battery)
For example, it is widely used as a dry battery. but,
At present, this battery does not have good charge/discharge characteristics, and it has only been shown that charging is possible to some extent, mainly in batteries using an aqueous alkaline solution such as KOH as the electrolyte. (For example, R. Chemel
li et al., SecondSymposium on Ma
nganganese dioxide (1981)
October, Kyoto), Extended Abstracts
, page 57 (1980)). On the other hand, manganese dioxide for dry batteries is also produced by the electrolytic method from manganese sulfate under acidic conditions (for example, "Battery Technology", published by the Electrochemical Society Battery Technology Committee, p. 15 (October 1982)).
This indicates that it is possible to charge the above-mentioned MnO2-Zn battery under acidic conditions (the pH of the solution is 7 or less) containing sulfate ions after discharging. For example, the following reaction can be considered as a charge/discharge reaction at both the positive and negative electrodes.
正極:MnO2+SO42−+4H++2e−MnSO
4+2H2O−(1)
負極:Zn+2H2OZn(OH)2+2H++2e−
−(2)合計:MnO2+Zn+SO42−+2H+M
nSO4+Zn(OH)2−(3)
又,(1),(2)の放電反応で示した反応の他に,放
電時には通常MnO2−Zn電池の正極側で起こるとい
われている(高村,荻原,城上著「電池と未来発電」電
子通信学会編,22頁)反応(4)2MnO2+2H2
O+2e−→2MnOOH+2OH−−(4)も併発し
て起ることも考えられる。そして,(4)の反応で生成
するMnOOHがpH値が比較的小さい溶液を用いる本
発明の条件下ではMnO2とMn2+に不均化(2Mn
OOH→MnO2+Mn2++2OH−)して(A.E
ra等,Electrochim.Acta,12,1
199(1967)),結局(1)の放電側の反応に帰
結されるようになることも考えられる。本発明はこのよ
うな考えの下に成され,事実電解液として酸性を示す硫
酸亜鉛の溶液(たとえば,ZnSO4の2M水溶液はp
H計による測定で3.73のpH値を示した)を電解液
に用いるとMnO2−Zn電池が良い再充電性を示すこ
とを見出し本発明を完成するに到つた。本発明において
は,電解質としてZnSO4を用いて電池を作製してい
るが,(NH4)2SO4等の補助電解質を加えること
も可能である。二酸化マンガンは通常,導電性を与える
ために,ケツチエンブラツク,アセチレンブラツク等の
炭素を混合して使用するが,さらにナイロン等の高分子
化合物やガラス類,アルミナ等の二酸化マンガンを分散
させることのできる物質共存下で正極用電極材料を作製
してもよい。これらの物質共存下で作製した場合には,
正極電極材料の強度や電池の放電特性等で利点が認めら
れた。又,本発明では充放電に伴う正極電極材料の性能
劣化を妨ぐ目的でイオン交換膜,透析膜等のセパレータ
ーを正極と負極の間に介在させて,負極側から二酸化マ
ンガン等を含む正極電極材料側へと充放電に不都合な影
響を及ぼす物質がくるのを妨ぐことも行なつた。本発明
において電解質を溶解させる溶媒としては,水及びアル
コール類を含有する水が主に用いられている。その他,
アセトンやピリジン等の水溶性の化合物を含有する水も
溶媒として用いることができる。Positive electrode: MnO2+SO42-+4H++2e-MnSO
4+2H2O-(1) Negative electrode: Zn+2H2OZn(OH)2+2H++2e-
-(2) Total: MnO2+Zn+SO42-+2H+M
nSO4 + Zn(OH)2- (3) In addition to the reactions shown in (1) and (2), it is said that during discharge, normally occurs on the positive electrode side of MnO2-Zn batteries (Takamura, Ogiwara, Jogami, “Batteries and Future Power Generation” edited by Institute of Electronics and Communication Engineers, p. 22) Reaction (4) 2MnO2 + 2H2
It is also conceivable that O+2e-→2MnOOH+2OH-- (4) also occurs concurrently. Under the conditions of the present invention, which uses a solution with a relatively low pH value, MnOOH produced in the reaction (4) is disproportionated to MnO2 and Mn2+ (2Mn2+).
OOH→MnO2+Mn2++2OH-) (A.E
ra et al., Electrochim. Acta, 12, 1
199 (1967)), it is conceivable that the reaction will eventually result in the reaction on the discharge side of (1). The present invention was made based on this idea, and in fact, a solution of zinc sulfate which is acidic as an electrolyte (for example, a 2M aqueous solution of ZnSO4 is
The present invention was completed based on the discovery that a MnO2-Zn battery exhibits good rechargeability when a MnO2-Zn battery (which showed a pH value of 3.73 as measured by an H meter) is used as an electrolyte. In the present invention, the battery is manufactured using ZnSO4 as the electrolyte, but it is also possible to add an auxiliary electrolyte such as (NH4)2SO4. Manganese dioxide is usually mixed with carbon such as ketstyen black or acetylene black in order to provide conductivity, but it is also possible to disperse manganese dioxide in polymer compounds such as nylon, glass, alumina, etc. An electrode material for a positive electrode may be produced in the coexistence of a substance that can be used. When fabricated in the coexistence of these substances,
Advantages were recognized in terms of the strength of the positive electrode material and the discharge characteristics of the battery. Furthermore, in the present invention, a separator such as an ion exchange membrane or a dialysis membrane is interposed between the positive electrode and the negative electrode in order to prevent performance deterioration of the positive electrode material due to charging and discharging. Efforts were also made to prevent substances that would have an adverse effect on charging and discharging from reaching the material. In the present invention, water and water containing alcohol are mainly used as the solvent for dissolving the electrolyte. others,
Water containing water-soluble compounds such as acetone and pyridine can also be used as a solvent.
以下に実施例を示す。充放電は北斗電工(株)製HA−
301型ポランシヨスタツト/ガルベノスタツト又は日
本電気(株)製パーソナルコンピユーターで制御された
充放電装置(ガルバノスタツト機構を有する)を用いて
行なつた。開路電圧及び閉路電圧は,これらの機器,装
置の読取値である。又,正極電極材料を加圧下に成型す
る際には理研精機(株)製油圧加圧機を用いた。下記実
施例においては,通常,電池作製後にまず閉路電圧が所
定の電圧(多くの場合0.9V)になるまでに電池を放
電させた後に充電を行ない,さらにこの充電後に放電を
行なわせ又必要に応じて充放電サイクルを繰返した。放
電時の閉路電圧の初期値は通常1.45Vから1.8V
の間にあり,放電中の閉路電圧の平均値は通常約1.1
5Vから1.25Vの間であつた。Examples are shown below. Charging and discharging is done using HA- manufactured by Hokuto Denko Co., Ltd.
The charging and discharging device (having a galvanostat mechanism) controlled by a Model 301 polanciostat/galvanostat or a personal computer manufactured by NEC Corporation was used. Open circuit voltage and closed circuit voltage are the readings of these devices. In addition, when molding the positive electrode material under pressure, a hydraulic pressure machine manufactured by Riken Seiki Co., Ltd. was used. In the following examples, normally after battery fabrication, the battery is first discharged until the closed-circuit voltage reaches a predetermined voltage (0.9V in most cases), then charged, and then discharged again after this charging. Charge/discharge cycles were repeated according to the conditions. The initial value of the closed circuit voltage during discharge is usually 1.45V to 1.8V.
The average value of the closed circuit voltage during discharge is usually about 1.1
It was between 5V and 1.25V.
実施例1.
80mgの二酸化マンガン(三井金属鉱業(株)製TA
M)と20mgのケツチエンブラツク(ライオン(株)
販売の炭素類)をメノウ製乳鉢中で混合してすりつぶし
てから,400kg/cm2の圧力下に直径13mmの
円板状に成型する。この円板状正極電極剤,2MのZn
SO4水溶液100μlをしみ込ませたガラス繊維製濾
紙(東洋濾紙(株)製GA−100を直径13mmの円
板状に切りとつたまの。以下の他の実施例においても特
に記載がない場合には東洋濾紙(株)製GA−100を
ガラス繊維製濾紙として用いた)及び厚さ0.4mmの
亜鉛板を重ね,さらに集電体としての白金板を正極電極
材料(本実施例中上記の円板状正極電極剤のこと)に密
着させて図1の電池を作製した。この電池は金具等を用
いることにより全体が一体となつて固定されている。Example 1. 80 mg manganese dioxide (TA manufactured by Mitsui Mining & Mining Co., Ltd.)
M) and 20mg Ketuchen Black (Lion Co., Ltd.)
After mixing and grinding the commercially available carbonaceous substances in an agate mortar, the mixture is molded into a disk shape with a diameter of 13 mm under a pressure of 400 kg/cm2. This disk-shaped positive electrode material, 2M Zn
Glass fiber filter paper (GA-100 manufactured by Toyo Roshi Co., Ltd.) impregnated with 100 μl of SO4 aqueous solution was cut into a disc shape with a diameter of 13 mm.In other examples below, unless otherwise specified, GA-100 manufactured by Toyo Roshi Co., Ltd. was used as a glass fiber filter paper) and a zinc plate with a thickness of 0.4 mm were stacked, and a platinum plate as a current collector was used as a positive electrode material (the above circle in this example). The battery shown in FIG. 1 was produced by bringing the material into close contact with a plate-shaped positive electrode material. This battery is fixed as a whole by using metal fittings or the like.
この電池を20mAの定電流で放電させると7分5秒後
に閉路電圧は0.9Vに低下した。この後,この電池を
20mAの直流定電流により15分間充電した。このよ
うにして充電した電池を20mAの定電流で放電させる
と閉路電圧が0.9Vに低下するまで9分間の放電を行
なうことができた。放電初期電圧は約1.5Vであり,
平均放電電圧(閉路電圧)は約1.2Vであつた。この
放電の後,続けて20mAの定電流で15分間充電して
から20mAの定定流で放電させた場合には閉路電圧が
0.9Vに低下するまで9分間の放電時間が得られた。When this battery was discharged at a constant current of 20 mA, the closed circuit voltage decreased to 0.9 V after 7 minutes and 5 seconds. Thereafter, this battery was charged for 15 minutes with a constant DC current of 20 mA. When the battery charged in this manner was discharged at a constant current of 20 mA, the discharge could be performed for 9 minutes until the closed circuit voltage decreased to 0.9V. The initial discharge voltage is approximately 1.5V,
The average discharge voltage (closed circuit voltage) was about 1.2V. After this discharge, when the battery was charged at a constant current of 20 mA for 15 minutes and then discharged at a constant current of 20 mA, a discharge time of 9 minutes was obtained until the closed circuit voltage decreased to 0.9V.
又,同様の操作により10mAの定電流で15分間充電
した後に放電させた場合には,閉路電圧が0.9Vに低
下するまでに12分間の10mA定電流放電を行なうこ
とができた。なお,以下の他の実施例を含めて,本発明
の電池の充放電を空気下で行なつてもN2等の不活性ガ
ス下で行なつても充放電特性にはほとんど変化がなかつ
た。Furthermore, when the battery was charged at a constant current of 10 mA for 15 minutes and then discharged using the same operation, the 10 mA constant current discharge could be performed for 12 minutes before the closed circuit voltage decreased to 0.9V. In addition, including the following other examples, there was almost no change in the charging and discharging characteristics of the batteries of the present invention whether they were charged or discharged in air or in an inert gas such as N2.
実施例2.
厚さ0.4mmの亜鉛板の上に2MのZnSO4水溶液
100μlをしみ込ませた直径13mmの円板状ガラス
繊維製濾紙をのせる。一方,40mgの二酸化マンガン
(三井金属鉱業(株)製TAM)と10mgのケツチエ
ンブラツクをメノウ製乳鉢中で混合してすりつぶして粉
状混合物を調製する。この粉状混合物を上記円板状ガラ
ス繊維製濾紙上にほゞ均等に分布するようにのせる。そ
してさらにこの上に集電体としての白金板をのせて全体
を固定して第1図の電池を作製した。この電池を窒素ガ
ス雰囲気下に置き又シールドして水の蒸散を妨ぎ2mA
の定電流で放電させ,約3時間後に閉路電圧が0.9V
になつた時点で放電を止める。ついで,この電池を2m
Aの定電流で240分間充電し10分間の体止期間を置
いた後に2mAの定電流で放電させると閉路電圧が0.
9Vになるまで170分間の放電を行なうことができ,
又閉路電圧が0.5Vになるまでには190分間の放電
を行なうことができた。0.9Vになるまでの放電時間
を基に計算すると,この充放電の電流効率は71%であ
り,又放電時間から計算される二酸化マンガンの利用率
は一電子放電を基礎にすると46%である。上記の充放
電のサイクルは繰返し行なうことができ,14サイクル
目の充放電においても放電時間にほとんど変化がなかつ
た。Example 2. A disk-shaped glass fiber filter paper with a diameter of 13 mm impregnated with 100 μl of a 2M ZnSO4 aqueous solution is placed on a zinc plate with a thickness of 0.4 mm. On the other hand, 40 mg of manganese dioxide (TAM, manufactured by Mitsui Kinzoku Mining Co., Ltd.) and 10 mg of Ketchen Black are mixed and ground in an agate mortar to prepare a powdery mixture. This powdery mixture is placed on the disk-shaped glass fiber filter paper so as to be approximately evenly distributed. Further, a platinum plate as a current collector was placed on top of this and the whole was fixed to produce the battery shown in FIG. 1. This battery was placed in a nitrogen gas atmosphere and shielded to prevent water evaporation.
After about 3 hours, the closed circuit voltage reached 0.9V.
Stop discharging when the temperature reaches the limit. Next, connect this battery to 2m
If the battery is charged for 240 minutes at a constant current of A, and then discharged at a constant current of 2 mA after a 10 minute dead period, the closed circuit voltage will be 0.
It is possible to discharge for 170 minutes until the voltage reaches 9V.
Furthermore, it was possible to perform discharge for 190 minutes until the closed circuit voltage reached 0.5V. When calculated based on the discharge time until the voltage reaches 0.9V, the current efficiency of this charging and discharging is 71%, and the utilization rate of manganese dioxide calculated from the discharge time is 46% based on one-electron discharge. be. The above charge/discharge cycle could be repeated, and there was almost no change in the discharge time even in the 14th charge/discharge cycle.
実施例3.
40mgの二酸化マンガン(三井金属鉱業TAM),4
0mgのナイロン粉末(スペイシーケミカル(株)より
供給の焼結用ナイロン粉末)及び20mgのケツチエン
ブラツクをメノウ製乳鉢中で混合してすりつぶし,40
0kg/cm2の圧力下に成型する。実施例1.と同様
にして,このようにして成型した円板状直径13mmの
正極用電極材料,2MのZnSO4水溶液(100μl
)をしみ込ませた直径13mmの円板状ガラス繊維製濾
紙,亜鉛板及び白金板(集電体)を集ねて第1図の電池
を作製した。この電池を窒素ガス下に置き又シールドし
て水の蒸散を妨ぎ2mAの定電流で放電させると,15
5分後に閉路電圧は0.9Vとなつた。この放電の後に
,この電池を2mAの定電流で60分間充電しついで2
mAの定電流で放電させると閉路電圧が0.9Vに低下
するまで56分間放電することができた。充電時の最終
電圧は約1.6V,放電時の初期閉路電圧は約1.5V
であり,充放電の電流効率は93%,エネルギー効率は
約65%であつた。Example 3. 40mg manganese dioxide (Mitsui Metal Mining TAM), 4
0 mg of nylon powder (nylon powder for sintering supplied by Spacey Chemical Co., Ltd.) and 20 mg of Ketsuchen Black were mixed and ground in an agate mortar.
Molding under a pressure of 0 kg/cm2. Example 1. In the same manner as above, the electrode material for the positive electrode having a disk shape with a diameter of 13 mm, which was molded in this way, and a 2M ZnSO4 aqueous solution (100 μl) were added.
The battery shown in FIG. 1 was prepared by assembling a disk-shaped glass fiber filter paper impregnated with 13 mm in diameter, a zinc plate, and a platinum plate (current collector). When this battery is placed under nitrogen gas and shielded to prevent water evaporation and discharged at a constant current of 2 mA, 15
After 5 minutes, the closed circuit voltage became 0.9V. After this discharge, the battery was charged at a constant current of 2 mA for 60 minutes and then
When discharged at a constant current of mA, it was possible to discharge for 56 minutes until the closed circuit voltage decreased to 0.9V. The final voltage during charging is approximately 1.6V, and the initial closed circuit voltage during discharging is approximately 1.5V.
The charging/discharging current efficiency was 93% and the energy efficiency was about 65%.
又,同様の充放電をナイロンの代りに他の高分子化合物
を用いる他は上記と同様にして作製した電池について行
なわさせたところ,充電時間とそれに対する放電時間に
ついて下表の結果を得た。In addition, similar charging and discharging was performed on a battery prepared in the same manner as above except that another polymer compound was used in place of nylon, and the results shown in the table below regarding the charging time and the corresponding discharging time were obtained.
表1.電池の充電時間及び放電時間
いずれの場合も2mAの定電流充放電であり,閉路電圧
が0.9Vになるまで放電させた。表に示した高分子化
合物はPolysciences社より購入のものであ
る。Table 1. In both the charging and discharging times of the battery, the battery was charged and discharged at a constant current of 2 mA, and the battery was discharged until the closed circuit voltage reached 0.9 V. The polymer compounds shown in the table were purchased from Polysciences.
又,高分子化合物の代りに下表の物質(いずれも粉状)
を用いる他は本実施例の上記の電池作製法と同様の方法
により,本実施例の上記の電池と同様の電池を作製し,
本実施例の上記の充放電と同様の充放電を行なうことに
より下表の充電時間及び放電時間を得た。Also, instead of the polymer compound, use the substances in the table below (all in powder form)
A battery similar to the above battery of this example was manufactured by the same method as the above battery manufacturing method of this example except that
The charging and discharging times shown in the table below were obtained by performing charging and discharging in the same manner as the above-mentioned charging and discharging in this example.
表2.電池の充電時間及び放電時間
又,表1に示したものの他,ナフイオン(デユポン社商
標),ポリアクリルアミド,ナイロン−6,ポリ塩化ビ
ニール,ポリウレタン,アンバーライト等のイオン交換
樹脂,メラミン樹脂等の高分子化合物を用いても充放電
を行なうことができた。ポリウレタンの場合には,発泡
ウレタンのようにかさ高いものを用いても177分間の
充電時間に対して155分間の放電時間が得られた。さ
らに,表1の番号6の電池について,ZnSO4を溶か
す溶媒を水から水とメチルアルコールの混合物(水とメ
チルアルコールの体積比=9:1)に変えても表1の番
号6に示したのとほぼ同じ充電時間と放電時間が得られ
,この電池について充放電を3回続けて行なつた後にも
放電時間の低下は認められなかつた。又,同様に水とア
セトンの混合物をZnSO4を溶かす溶媒(水とアセト
ンの体積比=20:1)に用いても充放電を行なうこと
ができた。Table 2. In addition to the charging and discharging times of batteries, in addition to those shown in Table 1, ion exchange resins such as naphion (trademark of DuPont), polyacrylamide, nylon-6, polyvinyl chloride, polyurethane, and amberlite, and high-density resins such as melamine resin, etc. Charging and discharging were also possible using molecular compounds. In the case of polyurethane, even when using a bulky material such as urethane foam, a discharge time of 155 minutes was obtained compared to a charging time of 177 minutes. Furthermore, regarding the battery No. 6 in Table 1, even if the solvent for dissolving ZnSO4 was changed from water to a mixture of water and methyl alcohol (volume ratio of water and methyl alcohol = 9:1), the results shown in No. 6 in Table 1 remained the same. Almost the same charging and discharging times were obtained, and no decrease in the discharging time was observed even after charging and discharging this battery three times in a row. Similarly, charging and discharging could be performed using a mixture of water and acetone as a solvent for dissolving ZnSO4 (volume ratio of water and acetone = 20:1).
本実施例を通して,用いた二酸化マンガン(三井金属鉱
業(株)製TAM)の量は40mg,加えられた高分子
化合物等の物質の量は40mgであり,又加えられたケ
ツチエンブラツクの量は20mgであつた。充放電はい
ずれも2mAの定電流で行なつた。Throughout this example, the amount of manganese dioxide (TAM manufactured by Mitsui Kinzoku Mining Co., Ltd.) used was 40 mg, the amount of substances such as polymer compounds added was 40 mg, and the amount of Kettian Black added was 40 mg. It was 20 mg. Both charging and discharging were performed at a constant current of 2 mA.
実施例4.
実施例3.で作製した電池のうち,正極電極材料作製に
際して二酸化マンガンと共存させた物質が表1に示され
た高分子化合物のうち番号1,2,3,4,5及び6に
対応する高分子化合物である場合に,2mAの定電流で
表1に示した充電時間の充電を行ない,ついで2mAの
定電流で閉路電圧が0.9Vに降下するまで放電させる
充放電サイクルを行なわさせた。その結果,3回目の充
放電サイクル時においても放電時間は表1に示した放電
時間とほぼ同じであつた。Example 4. Example 3. Among the batteries prepared in the above, the substances coexisting with manganese dioxide during the preparation of the positive electrode material were polymer compounds corresponding to numbers 1, 2, 3, 4, 5, and 6 among the polymer compounds shown in Table 1. In one case, a charge/discharge cycle was performed in which the battery was charged at a constant current of 2 mA for the charging time shown in Table 1, and then discharged at a constant current of 2 mA until the closed circuit voltage dropped to 0.9V. As a result, the discharge time during the third charge/discharge cycle was almost the same as the discharge time shown in Table 1.
又,表1の番号4及び6及び表2の番号5の電池(いず
れも実施例3.に記載)について,同様に2mAの定電
流で各々の表中の対応する箇所に示された時間(充電時
間)の充電を行ない,ついで2mAの定電流で閉路電圧
が0.9Vに降下するまで放電させる充放電サイクルを
行なわさせた。その結果,いずれの場合にも,10回目
の充放電サイクル時においても放電時間は各々の表中の
対応する箇所に示された放電時間とほぼ同じであつた。In addition, for the batteries No. 4 and 6 in Table 1 and No. 5 in Table 2 (both described in Example 3), the batteries were similarly tested at a constant current of 2 mA for the times indicated in the corresponding locations in each table ( A charge/discharge cycle was performed in which the battery was charged for a period of time (charging time) and then discharged at a constant current of 2 mA until the closed circuit voltage dropped to 0.9 V. As a result, in all cases, the discharge time was almost the same as the discharge time shown in the corresponding section in each table even during the 10th charge/discharge cycle.
又,実施例3.で作製した電池のうち正極電極材料作製
に際して二酸化マンガンと共存させた物質が焼結用ナイ
ロン粉末である場合に,2mAの定電流で60分間の充
電を行ない,ついで閉路電圧が0.9Vになるまで2m
Aの定電流で放電させるという充放電サイクルを継続し
て繰返し行なわさせた。その結果,140回の充放電サ
イクルを行なつた後にも放電時間(56分間)はほとん
ど変化せず,この電池の二次電池としての性能の劣化は
140回の充放電サイクル後にもほとんど見られないこ
とが分つた。この放電時間は電流効率にして約93%に
相当し,繰返し充放電サイクル中の最終充電時の閉路電
圧(充電を終えた時点での閉路電圧)は,繰返し充放電
を通して,1.6ないし1.7Vであつた。又,放電時
の初期閉路電圧は1.4ないし1.5Vであつた。そし
て,放電時の閉路電圧の平均値は約1.15Vであり,
開路電圧は放電が終りに近づいた時点においては1.4
ないし1.5Vの値を示した。Also, Example 3. When the material coexisting with manganese dioxide in the preparation of the positive electrode material in the battery prepared was nylon powder for sintering, charging was performed for 60 minutes at a constant current of 2 mA, and then the closed circuit voltage became 0.9 V. up to 2m
A charge/discharge cycle of discharging at a constant current of A was continuously repeated. As a result, the discharge time (56 minutes) remained almost unchanged even after 140 charge/discharge cycles, and almost no deterioration in the performance of this battery as a secondary battery was observed even after 140 charge/discharge cycles. I found out that there isn't. This discharge time corresponds to approximately 93% current efficiency, and the closed circuit voltage at the final charge during repeated charge/discharge cycles (the closed circuit voltage at the end of charging) is 1.6 to 1. It was .7V. Further, the initial closed circuit voltage during discharge was 1.4 to 1.5V. The average value of the closed circuit voltage during discharge is approximately 1.15V,
The open circuit voltage is 1.4 when the discharge is nearing the end.
It showed a value of 1.5V to 1.5V.
実施例5.
実施例3.と同様にして40mgの二酸化マンガン(三
井金属鉱業(株)TAM),40mgのナイロン粉末(
スペイシーケミカル(株)より供給の焼結用ナイロン粉
末)及び20mgのケツチエンブラツクから成る正極電
極材料を円板状に成型する。この正極電極材料,100
μlの水を含む直径13mmの円板状ガラス繊維製濾紙
,イオン交換膜又は透析膜,100μlの2MZnSO
4水溶液を含む直径13mmの円板状ガラス繊維製濾紙
及び亜鉛板をこの順に重ね,さらに集電体としての白金
板を正極電極材料に密着させ,全体を金具等で固定して
第2図の電池を作製した。そして,この電池について実
施例4.と同様にして,2mAの定電流で60分間充電
後閉路電圧が0.9Vに低下するまで2mAの定電流で
放電させるという充放電サイクルを繰返し行なわさせた
。その結果,イオン交換膜として旭ガラス(株)製AM
V,ASV又はDMVの陰イオン交換膜を用いた場合に
は,いずれの場合も87%ないし92%の電流効率で9
0回以上の充放電を行なうことが可能であつた。又,イ
オン交換膜として旭ガラス(株)製CMVを用いた場合
にも充放電を行なうことが可能であつた。さらに,イオ
ン透析用のセロハンを透析膜として用いた場合にも上記
のような充放電を90% の電流効率で100回(10
0サイクル)以上行なうことができた。Example 5. Example 3. In the same manner as above, 40 mg of manganese dioxide (TAM, Mitsui Kinzoku Mining Co., Ltd.) and 40 mg of nylon powder (
A positive electrode material consisting of sintering nylon powder (supplied by Spacey Chemical Co., Ltd.) and 20 mg of Ketchen Black was molded into a disk shape. This positive electrode material, 100
Disc-shaped glass fiber filter paper 13 mm in diameter containing μl of water, ion exchange membrane or dialysis membrane, 100 μl of 2MZnSO
4 Disc-shaped glass fiber filter paper containing an aqueous solution with a diameter of 13 mm and a zinc plate are stacked in this order, and a platinum plate as a current collector is closely attached to the positive electrode material, and the whole is fixed with metal fittings etc. to form the structure shown in Figure 2. A battery was created. Regarding this battery, Example 4. Similarly, a charge/discharge cycle was repeated in which the battery was charged at a constant current of 2 mA for 60 minutes and then discharged at a constant current of 2 mA until the closed circuit voltage decreased to 0.9 V. As a result, AM manufactured by Asahi Glass Co., Ltd. was used as an ion exchange membrane.
When V, ASV or DMV anion exchange membranes are used, the current efficiency is 87% to 92% in all cases.
It was possible to perform charging and discharging zero or more times. Charging and discharging was also possible when CMV manufactured by Asahi Glass Co., Ltd. was used as the ion exchange membrane. Furthermore, when cellophane for ion dialysis is used as a dialysis membrane, the above charging and discharging can be performed 100 times (10 times) at a current efficiency of 90%.
0 cycles) or more.
実施例6.
400mgのナイロン−6(Polysciences
社販売)を10cm3のギ酸に溶かし,この溶液を激し
く撹拌しながら80mgのケツチエンブラツク及び40
0mgの粉状二酸化マンガン(東洋曹達(株)製HH−
P型)を加える。このようにして得た分散液のうち0.
10mlを集電体である1cm×1cmの炭素繊維製布
(呉羽化学工業(株)製KGF−100)上にほぼ均一
に塗布してから,乾燥法によりギ酸を除く。このように
して集電体である炭素繊維製布上に形成された正極電極
材料,2MのZnSO4水溶液100μlをしみ込ませ
たガラス繊維製濾紙,及び亜鉛板を用いて第1図の電池
を作製した。この電池の正負両極を導線でつなぎ閉路電
圧が0.5V以下になるまで十分放電させた後に,2m
Aの定電流で15分間充電した。この後,2mAの定電
流放電を行なわせると,放電初期時の閉路電圧は2.0
Vであり,閉路電圧は放電10分後に1.1Vに,又放
電12分後に約0.5Vとなつた。この電池について,
このような充放電(15分間の2mAでの定電流充電と
それに続く閉路電圧が0.5Vになるまでの2mAにお
ける定電流放電)を繰返し行なわさせた。その結果,7
回目の充放電サイクルにおいても上記と同様の放電挙動
を示した。又,この電池について,充電時の終止電圧(
その電圧に達すると充電を止める電圧)を2.2V,放
電時の終止電圧(閉路電圧がその電圧に低下すると放電
を止める電圧)を0.9Vに各々設定して,2mAの定
電流で充放電を行なわさせた。その結果,10回目の充
放電サイクル時の充電時間,放電時間は各々13分,9
分であり,100回目の充放電サイクル時の充電時間,
放電時間は各々10分,8分であつた。Example 6. 400 mg nylon-6 (Polysciences
Dissolve 10cm3 of formic acid in 10cm3 of formic acid, stir vigorously and add 80mg of Ketsuchen Black and 40cm3
0mg powdered manganese dioxide (HH- manufactured by Toyo Soda Co., Ltd.)
P type) is added. Of the dispersion thus obtained, 0.
After applying 10 ml almost uniformly onto a 1 cm x 1 cm carbon fiber cloth (KGF-100, manufactured by Kureha Chemical Industry Co., Ltd.) as a current collector, the formic acid is removed by a drying method. The battery shown in Fig. 1 was fabricated using the positive electrode material formed on the carbon fiber cloth as the current collector, glass fiber filter paper impregnated with 100 μl of a 2M ZnSO4 aqueous solution, and a zinc plate. . After connecting the positive and negative poles of this battery with a conductor and discharging it sufficiently until the closed circuit voltage becomes 0.5V or less,
The battery was charged at a constant current of A for 15 minutes. After this, when a constant current discharge of 2 mA is performed, the closed circuit voltage at the initial stage of discharge is 2.0
The closed circuit voltage was 1.1 V after 10 minutes of discharge, and about 0.5 V after 12 minutes of discharge. About this battery,
Such charging and discharging (constant current charging at 2 mA for 15 minutes, followed by constant current discharging at 2 mA until the closed circuit voltage reached 0.5 V) was repeated. As a result, 7
The same discharge behavior as above was also exhibited in the second charge/discharge cycle. Also, regarding this battery, the final voltage (
Set the voltage that stops charging when it reaches that voltage to 2.2V, and the final voltage during discharging (the voltage that stops discharging when the closed circuit voltage drops to that voltage) to 0.9V, and charge with a constant current of 2mA. A discharge was caused. As a result, the charging time and discharging time at the 10th charge/discharge cycle were 13 minutes and 9 minutes, respectively.
minutes, and the charging time at the 100th charge/discharge cycle,
The discharge time was 10 minutes and 8 minutes, respectively.
さらに,ナイロン−6の代りに他の高分子化合物を用い
溶媒としてギ酸の代りに当該高分子化合物を溶解させる
溶媒を用いる他は本実施例の上記の手法と同様にして,
二酸化マンガンと当該高分子化合物及びケツチエンブラ
ツクを含有する正極電極材料を炭素繊維製布上に形成さ
せ,これを用いてナイロン−6を用いた場合と同様の電
池を作製した。これらの電池について2mAの定電流充
放電を行なうと,15分間の充電時間に対して高分子化
合物が6,6−ナイロン,ポリアクリロニトリル,ポリ
メタクリル酸メチルのいずれかである場合に5ないし1
2分間の間の放電時間が得られた。Furthermore, in the same manner as the above method of this example, except that another polymer compound was used instead of nylon-6 and a solvent that dissolved the polymer compound was used instead of formic acid.
A positive electrode material containing manganese dioxide, the polymer compound, and Ketchen Black was formed on a carbon fiber cloth, and a battery similar to that using nylon-6 was produced using this material. When these batteries are charged and discharged at a constant current of 2 mA, 5 to 1 % of the polymer compound is 6,6-nylon, polyacrylonitrile, or polymethyl methacrylate for 15 minutes of charging time.
A discharge time of 2 minutes was obtained.
又,本実施例の上記の例では二酸化マンガンとして東洋
曹達(株)製HH−P型のものを用いているが,このも
のの代りに三井金属鉱業(株)製のTAD,TSV,又
はTAMのいずれの二酸化マンガンを用いてもほぼ上記
の電池の充放電挙動と同じ充放電挙動を示す電池が得ら
れた。さらに,2MのZnSO4水溶液の代りに0.1
MのZnSO4水溶液を用いて,上記の方法と同様にし
てナイロン−6を用いる電池を作製した。この電池も,
上記のような充放電サイクルにおいて上記の電池とほぼ
同様の充放電挙動を示したが,5回目の充放電サイクル
の放電時における放電時間が2MのZnSO4水溶液を
用いた電池の場合より約15%短くなつている等若干の
性能の低下が見られた。In addition, in the above example of this embodiment, HH-P type manganese dioxide manufactured by Toyo Soda Co., Ltd. is used, but instead of this manganese dioxide, TAD, TSV, or TAM manufactured by Mitsui Mining Mining Co., Ltd. is used. No matter which manganese dioxide was used, a battery was obtained that exhibited almost the same charging and discharging behavior as the battery described above. Furthermore, instead of 2M ZnSO4 aqueous solution, 0.1
A battery using nylon-6 was fabricated using a ZnSO4 aqueous solution of M in the same manner as described above. This battery also
During the charge/discharge cycles described above, it showed almost the same charge/discharge behavior as the battery described above, but the discharge time during the fifth charge/discharge cycle was approximately 15% longer than that of the battery using a 2M ZnSO4 aqueous solution. A slight decrease in performance was observed, such as the length becoming shorter.
実施例7.
白金を電極として用いてMnSO4水溶液を電気分解し
て白金板上に電解法による二酸化マンガンを析出させた
。このものと,2MのZnSO4水溶液をしみ込ませた
ガラス繊維製濾紙及び亜鉛板を重ねて第1図の電池を作
製した。この電池を用いて,他の実施例に記載されてい
る電池と同様の充放電を行なうことができた。Example 7. An aqueous MnSO4 solution was electrolyzed using platinum as an electrode, and manganese dioxide was electrolytically deposited on a platinum plate. This was layered with a glass fiber filter paper impregnated with a 2M ZnSO4 aqueous solution and a zinc plate to produce the battery shown in FIG. 1. Using this battery, charging and discharging could be performed in the same way as the batteries described in other Examples.
実施例8.
実施例3.でナイロン粉末(焼結用ナイロン粉末)を用
い電解液として2MのZnSO4水溶液を用いて作製さ
れた電池について,電解液に補助電解質として(NH4
)2SO4を加えた。この場合に得られた電池も,(N
H4)2SO4を加えない電解液を用いて得られた電池
とほぼ同様の充放電挙動を示した。Example 8. Example 3. Regarding a battery manufactured using nylon powder (nylon powder for sintering) and a 2M ZnSO4 aqueous solution as the electrolyte, (NH4) was added to the electrolyte as an auxiliary electrolyte.
)2SO4 was added. The battery obtained in this case is also (N
H4)2S04 was not added to the battery, which exhibited almost the same charging and discharging behavior as the battery obtained using the electrolytic solution.
第1図は電池の装置図を示す。1.は白金板,炭素繊維
製布等の集電体,2.は正極電極材料,3.は電解液を
含む物質,4.は亜鉛板,5.はリード線を示す。
第2図も電池の装置図を示す。1.は白金板,炭素繊維
製布等の集電体,2.は正極電極材料,3.は水又は電
解液を含む物質,4.はイオン交換膜等のセパレーター
,5.は電解液を含む物質,6.は亜鉛板,7.はリー
ド線を示す。FIG. 1 shows a schematic diagram of the battery. 1. A current collector such as a platinum plate or carbon fiber cloth; 2. is the positive electrode material, 3. is a substance containing an electrolyte; 4. is a zinc plate, 5. indicates a lead wire. FIG. 2 also shows a diagram of the battery arrangement. 1. A current collector such as a platinum plate or carbon fiber cloth; 2. is the positive electrode material, 3. is a substance containing water or an electrolyte; 4. 5. is a separator such as an ion exchange membrane; is a substance containing an electrolyte, 6. is a zinc plate, 7. indicates a lead wire.
Claims (6)
、亜鉛を用いて作製された負極、及び硫酸亜鉛を用いて
作製された電解液を用いる充電可能な電池。(1) A rechargeable battery using a positive electrode material made using manganese dioxide, a negative electrode made using zinc, and an electrolyte made using zinc sulfate.
せることのできる物質と共存している状態において作製
された正極電極材料を用いる特許請求の範囲第1項に記
載の電池。(2) The battery according to claim 1, which uses a positive electrode material produced in a state in which manganese dioxide coexists with a substance that can appropriately disperse manganese dioxide.
物質が高分子化合物であることを特徴とする特許請求の
範囲第2項に記載の電池。(3) The battery according to claim 2, wherein the substance capable of appropriately dispersing manganese dioxide is a polymer compound.
物質がガラス類、ゼオライト、アルミナ及びシリカ等の
ように電気化学的に高い反応性を有していない物質であ
ることを特徴とする特許請求の範囲第2項に記載の電池
。(4) A patent claim characterized in that the substance capable of appropriately dispersing manganese dioxide is a substance that does not have high electrochemical reactivity, such as glass, zeolite, alumina, and silica. A battery according to scope 2.
ことを特徴とする特許請求の範囲第1項から第4項まで
のいずれかに記載の電池。(5) The battery according to any one of claims 1 to 4, wherein the solvent of the electrolytic solution is water or water containing alcohol.
交換膜又は透析膜を介在させることを特徴とする特許請
求の範囲第1項から第5項までのいずれかに記載の電池
。(6) The battery according to any one of claims 1 to 5, characterized in that an ion exchange membrane or a dialysis membrane is interposed as a separator between the positive electrode side and the negative electrode side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60137505A JPS61294768A (en) | 1985-06-24 | 1985-06-24 | New battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60137505A JPS61294768A (en) | 1985-06-24 | 1985-06-24 | New battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61294768A true JPS61294768A (en) | 1986-12-25 |
JPH0578148B2 JPH0578148B2 (en) | 1993-10-28 |
Family
ID=15200232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60137505A Granted JPS61294768A (en) | 1985-06-24 | 1985-06-24 | New battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61294768A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02276159A (en) * | 1989-01-31 | 1990-11-13 | Tosoh Corp | Secondary battery |
EP0747982A1 (en) * | 1995-06-07 | 1996-12-11 | Eveready Battery Company | Cathodes for electrochemical cells having additives |
CN1035706C (en) * | 1992-09-08 | 1997-08-20 | 内蒙古乌海市企业家俱乐部 | rechargeable zinc-manganese battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5135931A (en) * | 1974-09-19 | 1976-03-26 | Toyota Motor Co Ltd | Gasuhatsuseiki no tenkakairo |
JPS5237171A (en) * | 1975-09-12 | 1977-03-22 | Hisashi Narikawa | Offhand food packaging container |
JPS57189460A (en) * | 1981-05-16 | 1982-11-20 | Sumakichi Shiratori | Primary charging battery |
-
1985
- 1985-06-24 JP JP60137505A patent/JPS61294768A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5135931A (en) * | 1974-09-19 | 1976-03-26 | Toyota Motor Co Ltd | Gasuhatsuseiki no tenkakairo |
JPS5237171A (en) * | 1975-09-12 | 1977-03-22 | Hisashi Narikawa | Offhand food packaging container |
JPS57189460A (en) * | 1981-05-16 | 1982-11-20 | Sumakichi Shiratori | Primary charging battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02276159A (en) * | 1989-01-31 | 1990-11-13 | Tosoh Corp | Secondary battery |
JPH0773060B2 (en) * | 1989-01-31 | 1995-08-02 | 東ソー株式会社 | Secondary battery |
CN1035706C (en) * | 1992-09-08 | 1997-08-20 | 内蒙古乌海市企业家俱乐部 | rechargeable zinc-manganese battery |
EP0747982A1 (en) * | 1995-06-07 | 1996-12-11 | Eveready Battery Company | Cathodes for electrochemical cells having additives |
Also Published As
Publication number | Publication date |
---|---|
JPH0578148B2 (en) | 1993-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dzieciuch et al. | Rechargeable cells with modified MnO2 cathodes | |
JP3019326B2 (en) | Lithium secondary battery | |
Kordesch et al. | The rechargeability of manganese dioxide in alkaline electrolyte | |
JP4301527B2 (en) | Aqueous rechargeable battery | |
US5952124A (en) | Rechargeable electrochemical cell with modified manganese oxide positive electrode | |
CN102110839A (en) | Battery | |
EP3319152A1 (en) | Doped conductive oxide and improved electrochemical energy storage device polar plate based on same | |
KR20000001242A (en) | Secondary cell with zinc sulfate aqueous solution | |
US5707761A (en) | Nickel positive electrode and alkaline storage battery using the same | |
CN112952037B (en) | Pre-sodium-modified sodium ion battery positive electrode and pre-sodium-modification method and application thereof | |
WO2005041343A1 (en) | Electrochemical energy storage device | |
CN115312879A (en) | Aqueous electrolyte and battery | |
CN100511782C (en) | Alkaline secondary battery positive electrode material and alkaline secondary battery | |
JPS61294768A (en) | New battery | |
KR20000015510A (en) | AQUEOUS ZnSO4 SOLUTION SECONDARY BATTERY WITH MANGANATE AS ADDITIVE | |
Nobili et al. | Fundamental principles of battery electrochemistry | |
Kuriyama et al. | Solid-state metal hydride batteries using tetramethylammonium hydroxide pentahydrate | |
JPH11111335A (en) | Nonaqueous electrolyte secondary battery | |
CN114497539B (en) | Aqueous rechargeable battery based on copper ferrocyanide anode and phenazine organic matter cathode | |
CA1055566A (en) | Load leveling battery device | |
CN115084485B (en) | Carbon fiber loaded manganese molybdate/manganese oxide nano heterojunction material and preparation method and application thereof | |
JP2819201B2 (en) | Lithium secondary battery | |
EP0178036A1 (en) | Improved electrolytes containing vanadium for electrochemical cells | |
WO1993018557A1 (en) | High capacity rechargeable cell having manganese dioxide electrode | |
JPS59872A (en) | Manufacture of enclosed nickel-cadmium storage battery |