JPS61293141A - Voltage compensation circuit for synchronous brushless multiphase generator of inductor type - Google Patents

Voltage compensation circuit for synchronous brushless multiphase generator of inductor type

Info

Publication number
JPS61293141A
JPS61293141A JP13159685A JP13159685A JPS61293141A JP S61293141 A JPS61293141 A JP S61293141A JP 13159685 A JP13159685 A JP 13159685A JP 13159685 A JP13159685 A JP 13159685A JP S61293141 A JPS61293141 A JP S61293141A
Authority
JP
Japan
Prior art keywords
winding
windings
slots
series
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13159685A
Other languages
Japanese (ja)
Inventor
Hideki Ikegami
池上 秀喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denyo Co Ltd
Original Assignee
Denyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denyo Co Ltd filed Critical Denyo Co Ltd
Priority to JP13159685A priority Critical patent/JPS61293141A/en
Publication of JPS61293141A publication Critical patent/JPS61293141A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compensate the reduction of output voltage and improve the regulation of the output voltage, by providing slots arranged on a stator core, with series windings, and by providing slots arranged at the specified positions of the polar arc sections of a rotating field core, with voltage compensating windings. CONSTITUTION:At the specified positions of a field core 1, slots 2 are arranged and wound up with compensating windings 3, and direct current obtained by rectifying a generated electromotive force with a commutator (not shown) is applied to field windings 4. A stator core 6 is provided with slots 7, and the slots 7 are wound up with main armature windings 8, and the slots 7a, 7b (The slots for one phase are shown in figure.) at specified positions are arranged at 120 deg. intervals and are wound up with series windings 9 which are connected to the main armature windings 8 in series with load. A generator is started under no-load, and load is connected to output terminals, and magnetic flux in proportion with load current flowing through the series windings 9 is generated, and the magnetic flux is cut off by the compensating windings 3, and a speed electromotive force is generated. The electromotive force is rectified and is fed to the field windings 4, and the reduction of output voltage is compensated. As a result, the regulation of output voltage can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は誘導子形ブラシレス多相同期発電機の電圧補償
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a voltage compensation circuit for an inductor type brushless multiphase synchronous generator.

(従来の技術) 従来、この種装置としては、変流器とりアクタ使用の方
式、または自動電圧調整器を用いる方法が殆んどである
(Prior Art) Conventionally, most of the devices of this type have been a method using a current transformer and an actor, or a method using an automatic voltage regulator.

(発明が解決しようとする問題点) しかるに、上記従来方式は同期発電機本体の外に、変流
機とりアクタ若しくは自動電圧調整器を用いるので、コ
スト高となる欠点があった。本発明はこの問題点を解決
した誘導子形ブラシレス多相同期発電機の電圧補償回路
を提供することにある。
(Problems to be Solved by the Invention) However, the above-mentioned conventional system uses a current transformer actuator or an automatic voltage regulator in addition to the synchronous generator main body, and therefore has the disadvantage of high cost. The object of the present invention is to provide a voltage compensation circuit for an inductor type brushless multiphase synchronous generator that solves this problem.

(問題点を解決するための手段およびその作用)本発明
は多相、例えば3相の同期発電機における固定子鉄心に
設けられた電機子巻線用スロットに直巻巻線を施し、こ
の直巻巻線と電機子巻線とを直列接続して負荷に接続し
、上記直巻巻線を施してなる小磁極に対応したピンチで
界磁磁極面の所定位置にスロットを設けて補償巻線を施
し、この巻線に誘起した起電力を整流器を介して界磁巻
線に供給するように接続して構成し、負荷電流に基づく
電圧降下分を補償することを特徴とする。
(Means for Solving the Problems and Their Effects) The present invention provides a series winding in a slot for armature winding provided in a stator core in a multi-phase, for example, three-phase synchronous generator. The winding and the armature winding are connected in series and connected to the load, and a compensation winding is created by providing a slot at a predetermined position on the field magnetic pole surface with a pinch corresponding to the small magnetic pole formed by applying the series winding. The electromotive force induced in the winding is connected to the field winding through a rectifier to compensate for the voltage drop based on the load current.

(実施例) 以下、本発明の実施例を図面を参照して説明する。第1
図は補償巻線、界磁巻線を含む界磁鉄心の正面図、第2
図は誘導子形ブラシレス同期発電機の鉄心部の正面図で
ある。界磁鉄心1は、第1図に示すように、補償巻線用
スロット2が形成され、該スロットには第1図に示すよ
うに補償巻線3が巻装される。4は界磁巻線、5はロー
タのシャフトである。固定子鉄心6は、第2図に示すよ
うに、電機子巻線用スロット7が形成され、該スロット
7に電機子巻線8が巻装されると共に、所定位置のスロ
ット7−a、7−bには直巻巻線9が施される。第2図
は一相分のみを示したもので、3相分の場合は電気角1
20度間隔間隔装される。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure shows a front view of the field core including the compensation winding and field winding, and the second
The figure is a front view of the iron core of an inductor type brushless synchronous generator. As shown in FIG. 1, the field core 1 has a compensation winding slot 2 formed therein, and a compensation winding 3 is wound around the slot as shown in FIG. 4 is a field winding, and 5 is a rotor shaft. As shown in FIG. 2, the stator core 6 has armature winding slots 7 formed therein, and armature windings 8 are wound around the slots 7, and slots 7-a and 7 at predetermined positions are formed in the stator core 6. -b is provided with a series winding 9. Figure 2 shows only one phase, and in the case of three phases, the electrical angle is 1
They are spaced at 20 degree intervals.

この直巻巻線9は第3図に示すように、主電機子巻線8
と直列接続されて負荷に接続されると共に、上記補償巻
線3の出力は整流器10を介して界磁巻線4に接続され
る。上記直巻巻線9、補償巻線3および整流器10は電
圧補償回路11を形成する。上記整流器10は界磁鉄心
1に固設され、界磁巻線4、補償巻線3と共にロータ1
3を形成する。なお、l1iII磁巻線12の出力も整
流器10′を介して界磁巻線4に接続され、−1−記ロ
ータに内蔵される。
This series winding 9 is connected to the main armature winding 8 as shown in FIG.
The compensation winding 3 is connected in series with the load, and the output of the compensation winding 3 is connected to the field winding 4 via a rectifier 10. The series winding 9, the compensation winding 3 and the rectifier 10 form a voltage compensation circuit 11. The rectifier 10 is fixed to the field core 1, and is attached to the rotor 1 along with the field winding 4 and the compensation winding 3.
form 3. Incidentally, the output of the l1iIII magnetic winding 12 is also connected to the field winding 4 via the rectifier 10', and is housed in the -1- rotor.

ただし、界磁鉄心1に形成される補償巻線用スロット2
の位置は、直巻巻線9の分布状態において、スロット2
に収設される補償巻線3によって主電機子巻線8の出力
電圧補償が最も効果的である位置に選定されるべきもの
とする。
However, the compensation winding slot 2 formed in the field core 1
is located at the slot 2 in the distribution state of the series winding 9.
The position should be selected where the output voltage compensation of the main armature winding 8 is most effective by the compensation winding 3 housed in the main armature winding 8.

補償巻線3に最も効率よく発電させるには、主電機子巻
線8の反作用磁束が界磁極極面の鉄心が減磁される側、
すなわちロータの回転方向が反時計方向であれば、補償
巻線用スロット2の位置が、第4図のA−C,F−H側
にあるように巻装した方が、補償巻線3の発電効率がよ
い。これは増磁される側の界磁極面が飽和されているた
めで、直巻巻線9による磁束の発生が弱いためと考えら
れるからである。
In order for the compensation winding 3 to generate power most efficiently, the reaction magnetic flux of the main armature winding 8 must be directed to the side where the iron core of the field pole face is demagnetized,
In other words, if the rotation direction of the rotor is counterclockwise, it is better to wind the compensation winding 3 so that the compensation winding slot 2 is located on the A-C, F-H side in FIG. Good power generation efficiency. This is thought to be because the field pole face on the side to be magnetized is saturated, and the generation of magnetic flux by the series winding 9 is weak.

一方直巻巻線と補償巻線の関係は、直巻巻線を施してな
る小班1函に対応したピッチで磁界極極面の所定位置に
補償巻線のスロットを設けて補償巻線を施し、この巻線
に誘起した起電力を整流器を介して界磁巻線に供給する
ように接続した構成にすることにより、負荷電流に基づ
く電圧降下を最も良く補償することができる。
On the other hand, the relationship between the series winding and the compensation winding is such that slots for the compensation winding are provided at predetermined positions on the magnetic field pole face at a pitch corresponding to one small box formed by the series winding, and the compensation winding is applied. By connecting the electromotive force induced in the winding to the field winding through a rectifier, it is possible to best compensate for the voltage drop due to the load current.

次に動作を説明する。Next, the operation will be explained.

まず、発電機を無狛荷で運転し、次に、出力端子へ三相
負荷を接続すると、第3図に示されるように、電機子巻
線8と直列に接続されている直巻巻線9に負荷電流が流
れ、負荷電流に比例した磁束が発生する。この磁束を界
磁極極面に巻装されている補償巻線3が切って速度起電
力を発生する。
First, when the generator is operated with no load and then a three-phase load is connected to the output terminal, as shown in FIG. A load current flows through 9, and a magnetic flux proportional to the load current is generated. A compensation winding 3 wound around the field pole face cuts this magnetic flux to generate a speed electromotive force.

補償巻線3は上記速度起電力を整流器10を介して界磁
巻線4に供給し、出力電圧の低下を補償する。次に、上
記実験データを下記に示す。
The compensation winding 3 supplies the speed electromotive force to the field winding 4 via the rectifier 10 to compensate for the drop in output voltage. Next, the above experimental data is shown below.

第4図は実験に使用した誘導子形ブラシレス多相同期発
電機の1相当りの各巻線を示し、A、B。
Figure 4 shows each winding of the inductor type brushless multiphase synchronous generator used in the experiment, A and B.

C・・・HTJは補償巻線3を収納するスロットの位置
を示す記号であり、a、bは直巻巻線9の位置を示し、
8は電機子巻線−相分のみの位置を示す。
C...HTJ is a symbol indicating the position of the slot that accommodates the compensation winding 3, a and b indicate the position of the series winding 9,
8 indicates the position of only the armature winding phase.

表1は実験データをまとめたもので、補償巻線3を(A
−B、E−G)(A−C,F−H> (A−E、F−J
)(C−E、H−J)の各位置に配設し、無負荷の場合
と定格負荷の場合における直巻巻線9と主電機子巻線8
との配置の位相差が0度のとき、および90度のときの
実験で求めた補償巻線3の誘起電圧値を示している。
Table 1 summarizes the experimental data and shows that the compensation winding 3 is (A
-B, E-G) (A-C, F-H> (A-E, F-J
) (C-E, H-J), and the series winding 9 and the main armature winding 8 in the case of no load and in the case of rated load.
The induced voltage values of the compensation winding 3 obtained through experiments are shown when the phase difference between the two positions is 0 degrees and 90 degrees.

表−1 ± 終 1“ I−′ 第5図は表1に示した実験結果をグラフにしたものであ
る。上記実験データによると、主電機子巻線8の巻線位
置に対して直巻巻線9は(a −b )すなわち、主電
機子巻線の反作用磁束と直巻巻線9の磁束の方向を同位
相にした方が、90度位相差にした場合よりも補償巻線
9に発電する発電量が最も大きく、また補償巻線9の巻
線位置が(A−、C,j−、)T)に施したときに上記
発電量が最も大きい。このことは第5図の曲線(El)
を見ても明らかである。
Table 1 ± End 1"I-' Figure 5 is a graph of the experimental results shown in Table 1. According to the above experimental data, the winding position of the main armature winding 8 is The winding 9 is (a-b).In other words, it is better to make the direction of the reaction magnetic flux of the main armature winding and the magnetic flux of the series winding 9 in the same phase than to make the direction of the compensation winding 9 90 degrees out of phase. The amount of power generated is the largest when the winding position of the compensation winding 9 is (A-, C, j-,)T).This is shown in Fig. 5. Curve (El)
It is clear from looking at.

なお、第5図に示された曲線(イ)、(II)、(ハ)
、(ニ)。
Note that the curves (A), (II), and (C) shown in FIG.
, (d).

(*) 、 (へ) 、 0) 、 (f)は表1に記
載された同記号が示す電圧値を曲線で表示したものであ
る。
(*), (f), 0), and (f) are voltage values indicated by the same symbols listed in Table 1, which are expressed as curves.

本実施例は回転界磁形について述べたが、回転電機子形
でも同様であり、更に誘導子形ブラシレス三相同期発電
機に限定されることなく多相交流同期発電機でも同様で
ある。
Although this embodiment has been described with reference to a rotating field type generator, the same applies to a rotating armature type generator, and is not limited to an inductor type brushless three-phase synchronous generator, but also a multi-phase AC synchronous generator.

(発明の効果) 本発明は以−に説明したように界磁極、極面にスロット
を設け、該スロットに電圧補償巻線を施すだけで、出力
電圧の低下を補償できるので、従来方式のように、変流
器とりアクドルを用いたり、若しくは自動電圧調整器を
使用しないので、低コストであり、しかも出力電圧変動
率が良好であるという効果を奏する。
(Effects of the Invention) As explained below, the present invention can compensate for a drop in output voltage by simply providing slots on the field poles and pole faces and applying voltage compensation windings to the slots. Furthermore, since neither a current transformer nor an automatic voltage regulator is used, the cost is low and the output voltage fluctuation rate is good.

【図面の簡単な説明】[Brief explanation of drawings]

実施例の第1図は補償巻線、界磁巻線を含む界磁鉄心の
正面図、第2図はブラシレス同期発電機の鉄心部の正面
図、第3図は発電機1相当りの巻線相互の関係および接
続を示す図、第4図は本発明の実験に用いた誘導子形ブ
ラシレス多相同期発電機の1相当りの各巻線の相互関係
位置を示す図、第5図は直巻巻線と主電機子巻線との配
設位置差が岨1および90↓のときの、補償巻線の配設
位置を変えた場合における補償巻線の誘起電圧値の実験
データである。 1・・・界磁鉄心    2・・・補償巻線用スロット
3・・・補償巻線    4・・・界磁巻線6・・・固
定子鉄心   8・・・主電機子巻線9・・・直巻巻線
    10・・・整流器11・・・電圧補償回路 1
3・・・ロータ特許出願人   デンヨー株式会社 第1図 第2図 第3図 74図
Fig. 1 of the embodiment is a front view of a field core including a compensation winding and a field winding, Fig. 2 is a front view of the iron core of a brushless synchronous generator, and Fig. 3 is a winding equivalent to one generator. Figure 4 is a diagram showing the relationship and connection between wires, Figure 4 is a diagram showing the mutual relationship positions of each winding of the inductor type brushless multiphase synchronous generator used in the experiments of the present invention, and Figure 5 is a diagram showing the mutual relationship of each winding of the inductor type brushless multiphase synchronous generator used in the experiments of the present invention. This is experimental data of the induced voltage value of the compensation winding when the arrangement position of the compensation winding is changed when the difference in arrangement position between the winding and the main armature winding is 1 and 90↓. 1... Field core 2... Compensation winding slot 3... Compensation winding 4... Field winding 6... Stator core 8... Main armature winding 9...・Series winding 10... Rectifier 11... Voltage compensation circuit 1
3... Rotor patent applicant Denyo Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 74

Claims (1)

【特許請求の範囲】[Claims] 固定子鉄心にスロットを設け、このスロットに直巻巻線
を施し、他方回転界磁鉄心の極弧部の所定位置にもスロ
ットを設け、このスロットに電圧補償用巻線を施して成
ることを特徴とする誘導子形ブラシレス多相同期発電機
の電圧補償回路。
A slot is provided in the stator core, a series winding is applied to this slot, and a slot is also provided at a predetermined position in the pole arc portion of the rotating field core, and a voltage compensation winding is provided in this slot. This is a voltage compensation circuit for an inductor type brushless multiphase synchronous generator.
JP13159685A 1985-06-17 1985-06-17 Voltage compensation circuit for synchronous brushless multiphase generator of inductor type Pending JPS61293141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13159685A JPS61293141A (en) 1985-06-17 1985-06-17 Voltage compensation circuit for synchronous brushless multiphase generator of inductor type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13159685A JPS61293141A (en) 1985-06-17 1985-06-17 Voltage compensation circuit for synchronous brushless multiphase generator of inductor type

Publications (1)

Publication Number Publication Date
JPS61293141A true JPS61293141A (en) 1986-12-23

Family

ID=15061753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13159685A Pending JPS61293141A (en) 1985-06-17 1985-06-17 Voltage compensation circuit for synchronous brushless multiphase generator of inductor type

Country Status (1)

Country Link
JP (1) JPS61293141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179251A (en) * 1988-12-28 1990-07-12 Shindaiwa Kogyo Kk Brushless self-exciting synchronous generator
FR2842361A1 (en) * 2002-07-10 2004-01-16 Leroy Somer Moteurs High efficiency alternators having magnetic body with winding and shock absorbers carrying electrical conductor through holes perpendicular rotation axis.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531441A (en) * 1976-06-23 1978-01-09 Ericsson Telefon Ab L M Power supply for travellinggwave tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531441A (en) * 1976-06-23 1978-01-09 Ericsson Telefon Ab L M Power supply for travellinggwave tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179251A (en) * 1988-12-28 1990-07-12 Shindaiwa Kogyo Kk Brushless self-exciting synchronous generator
FR2842361A1 (en) * 2002-07-10 2004-01-16 Leroy Somer Moteurs High efficiency alternators having magnetic body with winding and shock absorbers carrying electrical conductor through holes perpendicular rotation axis.

Similar Documents

Publication Publication Date Title
Drury Control techniques drives and controls handbook
KR100215534B1 (en) Dual-stator induction synchronous motor
US7388310B2 (en) Synchronous electrical machine comprising a stator and at least one rotor, and associated control device
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
CN110739891B (en) Electric excitation synchronous reluctance brushless power generation system
Miller Brushless permanent-magnet motor drives
JP2003199306A (en) Dynamo-electric machine
CN113162354A (en) Brushless electric excitation synchronous generator with wide rotating speed range
US4656410A (en) Construction of single-phase electric rotating machine
JPS61293141A (en) Voltage compensation circuit for synchronous brushless multiphase generator of inductor type
US10770999B2 (en) Brushless, self-excited synchronous field-winding machine
Usinin et al. New brushless synchronous machine for vehicle application
RU2660945C2 (en) Magnetoelectric machine
JPS61161942A (en) Voltage compensating circuit of synchronous generator
JPH077999A (en) Ac generator
CN216564875U (en) Electric motor
JPH11215729A (en) Storage battery charger device
JPH0528065B2 (en)
US1301334A (en) Electricity transforming and converting apparatus.
SU879710A1 (en) Synchronous electric machine
SU1341705A1 (en) Thyratron electric machine
JP2753721B2 (en) Brushless self-excited synchronous generator
JPH0540698Y2 (en)
JPH0626063Y2 (en) Brushless 4-pole 3-phase generator
JP2530297B2 (en) AC generator