JPS61292702A - Motor position controller - Google Patents

Motor position controller

Info

Publication number
JPS61292702A
JPS61292702A JP13408785A JP13408785A JPS61292702A JP S61292702 A JPS61292702 A JP S61292702A JP 13408785 A JP13408785 A JP 13408785A JP 13408785 A JP13408785 A JP 13408785A JP S61292702 A JPS61292702 A JP S61292702A
Authority
JP
Japan
Prior art keywords
controller
speed
motor
change
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13408785A
Other languages
Japanese (ja)
Inventor
Hiroshi Kikuchi
博 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13408785A priority Critical patent/JPS61292702A/en
Publication of JPS61292702A publication Critical patent/JPS61292702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To obtain a motor position controller which can control a robot with high locus accuracy by changing the compensating element gain of a servo system according to the change of the moment of inertia, etc. CONSTITUTION:The output (u) of a speed controller 11 is supplied to a controlled system 10 and the speed is set at (v). Thus the momentary values (u) and (v) are supplied to an estimator 12 for estimation of the parameter (moment of inertia) of the controlled system 10. Based on this result of estimation, the controller 11 changes its coefficient (gain). While a position controller 31 calculates the value which is newly supplied to the controller 11 from the value supplied to the controller 11 and the target position value. Thus it is possible to cope with the change of the moment of inertia due to the change of posture of a robot arm and the change of disturbance torque of the centrifugal force, etc. Then the high locus accuracy is secured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はロボットの制御111に係り、eK高軌跡精度
を得るのに好適なモータの位置制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to robot control 111, and relates to a motor position control device suitable for obtaining eK high trajectory accuracy.

〔発明の背景〕[Background of the invention]

従来の電動式ロボットの制御は(社)日本産業用ロボッ
ト工業会編集・発行のロボットム5BのP95〜P99
に記載された方法で行われていた。
Conventional electric robot control is explained in pages 95 to 99 of Robotom 5B, edited and published by the Japan Industrial Robot Association.
This was done using the method described in.

しかし、ロボットのアームの姿勢変化による慣性モーメ
ント変化、遠心力などの外乱トルク変化に対処すること
ができず、この為、軌跡精度が悪かった。
However, it was not possible to deal with changes in the moment of inertia due to changes in the posture of the robot arm and changes in disturbance torque such as centrifugal force, resulting in poor trajectory accuracy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を除去したことに
よりロボットを高軌跡精度で制御できるモータの位置制
御装置を提供することにある。
An object of the present invention is to provide a motor position control device that can control a robot with high trajectory accuracy by eliminating the drawbacks of the prior art described above.

〔発明の概要〕[Summary of the invention]

従来技術の欠点は、サーボ系の補償要素のゲインを一定
にしていることにあり、すなわち本発明はこのゲインを
慣性モーメント等の変化に合せて変えればよい。よって
慣性モーメント等を推定して速度制御系を構成し、さら
にこの速度制御系に合せて位置制御系を構成することに
よりロボットの軌跡精度を向上できるものである。
The drawback of the prior art is that the gain of the compensation element of the servo system is kept constant; in other words, the present invention only needs to change this gain in accordance with changes in the moment of inertia, etc. Therefore, by configuring a speed control system by estimating the moment of inertia, etc., and further configuring a position control system in accordance with this speed control system, the trajectory accuracy of the robot can be improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図乃至第5図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図はロボットの一動作軸の一般的構成を表わす。制
御装置1は移動目標値、エンコーダ7とカウンタ6より
得られる現在位置X、タコジェネレータ5とA/Dコン
バータ6より得られる現在速度νとからモータ4のアン
プ5にD/Aコンバータ2を介して与える入力μを算出
する。ここで、入力μとこの出力である現在速度νとの
関係を一般に次式のように表わすことができる(計測自
動制御学会発行、システム同定、 P 77 ’)。
FIG. 1 shows the general configuration of one motion axis of the robot. The control device 1 transmits the data to the amplifier 5 of the motor 4 via the D/A converter 2 from the movement target value, the current position Calculate the input μ given by Here, the relationship between the input μ and the current speed ν, which is the output, can be generally expressed as the following equation (System Identification, published by the Society of Instrument and Control Engineers, p. 77').

v(A)+α1シCA−1)+−”+α、u(A−n)
= AltL(A I )+・・・・・・+h、Itb
(A−ル)・・・・・・(1)ここで、α1・・・α@
*hl・・・ハは慣性モーメントなどに関連する未知パ
ラメータである。これらの未知パラメータは入力μと出
力Vとから、例えば、計測自動制御学会発行、システム
同定。
v(A)+α1 CA-1)+-”+α, u(A-n)
= AltL(AI)+・・・・・・+h, Itb
(A-ru)...(1) Here, α1...α@
*hl...H is an unknown parameter related to the moment of inertia, etc. These unknown parameters are determined from the input μ and the output V, for example, in System Identification, published by the Society of Instrument and Control Engineers.

P75〜P79に記載された最小2乗法によって推定が
可能である。なお、式(1)において、例えばtlcA
 −1) 、1L(’−1) ハ各々時刻(A−1)T
(T:サンプリング間隔)における出力V及び入力μの
値である。
Estimation is possible by the least squares method described in P75 to P79. In addition, in formula (1), for example, tlcA
-1), 1L('-1) c Each time (A-1)T
These are the values of the output V and the input μ at (T: sampling interval).

第2図に上記推定値を用いた場合の速度制御系の構成を
示す。未知パラメータの推定値をα1・・・・・・◇・
、飢・・・・・・含・、速度目標値をυ、(A)と表わ
せば、時刻(A−1)Tにおける人力tL(A−1)は
FIG. 2 shows the configuration of the speed control system when the above estimated values are used. The estimated value of the unknown parameter is α1・・・・・・◇・
, Starvation... Including... If the speed target value is expressed as υ, (A), then the human power tL(A-1) at time (A-1)T is.

式(1)Kおける未知パラメータを推定値忙、またv 
(A)を目標値に置き換えることにより次式のようにも
とまる。
Equation (1) The unknown parameters in K are estimated values, and v
By replacing (A) with the target value, the following equation is obtained.

△ tL(A−1)=(v7(A)+cL1υ(4−1)+
・・・+α、v(A−n)−らμ(A−2)−・・・−
飢(A−n))/か1・・・・・・(2) 速度制御器11は上式より入力μをもとめる。また推定
器12は制御対象1oの入力μと出力Vとから未知パラ
メータを推定するものであり、この推定結果に基づき速
度制御器11の係数を修正する。
△tL(A-1)=(v7(A)+cL1υ(4-1)+
...+α, v(A-n)-raμ(A-2)-...-
(A-n))/1... (2) The speed controller 11 obtains the input μ from the above equation. Furthermore, the estimator 12 estimates unknown parameters from the input μ and output V of the controlled object 1o, and modifies the coefficients of the speed controller 11 based on the estimation results.

次に、時刻ATの位置x (4を目標位置3:、(A)
に制御する方法を述べる。速度制御系として好ましい動
特性を持つ制御系を第5図における規範モデル21とし
、この人力u、yと出力の速度17Mとの関係が次式で
表わされるようにする。
Next, position x at time AT (4 as target position 3:, (A)
We will explain how to control this. A control system having preferable dynamic characteristics as a speed control system is assumed to be the reference model 21 in FIG. 5, and the relationship between the human power u, y and the output speed 17M is expressed by the following equation.

tJH(A)+a+MuyCA−1)+−”+ ayv
M(A−n)= bIMtLM(’−1)−1−+ h
mMlLMcA−rL) −・−、・印・(5)さらに
、このとき、速度Uyを積分器22にて積分した位置Z
Mと入力μMとの関係は次式のようになる。
tJH(A)+a+MuyCA-1)+-"+ ayv
M(A-n)=bIMtLM('-1)-1-+h
mMlLMcA-rL) −・−,・mark・(5) Furthermore, at this time, the position Z obtained by integrating the velocity Uy by the integrator 22
The relationship between M and input μM is as shown in the following equation.

z(’)+ c 1M3cy (’−1) + −十c
aM”M(ルーm)=d1MtLM(A−1)+・・・
+d−rnMuM(A−rrL)・・・・・・・・・(
4)ここにlm=3+1である。時刻JTにおけるこの
規範モデルの位置’M(A)を目標位置sr (A)に
する入力t&H(A−1)は、式(4)における、rM
(a)をx、(A)に置き換えることにより次式のよう
にもとまる。
z (') + c 1M3cy ('-1) + -10c
aM"M (room m)=d1MtLM(A-1)+...
+d−rnMuM(A−rrL)・・・・・・・・・(
4) Here lm=3+1. The input t&H(A-1) that changes the position 'M(A) of this reference model at time JT to the target position sr(A) is rM in equation (4).
By replacing (a) with x and (A), the following equation is obtained.

uM(A−1) = (sr(A)+ CI M り(
(A−1)+ …+ CyHyZM(A−m)−4Ma
y(A−2)−・・−d7rLh4ux (’−m))
/’m”f+〔xJ4. xM、 uy ]   、、
、 、、、・、、 (5)この時の規範モデルの出力速
度v M(4は、このIAM(’−1)を式(3)に代
入してもとまる。
uM(A-1) = (sr(A)+ CI M ri(
(A-1)+ ...+ CyHyZM(A-m)-4Ma
y(A-2)--d7rLh4ux ('-m))
/'m”f+[xJ4. xM, uy] ,,
, , , . . . (5) The output speed v M (4) of the reference model at this time is determined by substituting this IAM('-1) into equation (3).

−dntuM(A−2)−=−dmMtLIIJ(’ 
m’))+ h2MtLMcA−1)+−+hny1t
LM(A−yc)−alMvy(A−1)  ”・(Z
syvM(’−f’L)=f2C2r(A)、 Zy 
# t’y + uMl  −−−−−=−−−−−(
6)よって、時刻JTの位置x(A)を目標位置3:f
(旬に制御する位置制御系の構成は第4図のようになる
-dntuM(A-2)-=-dmMtLIIJ('
m'))+h2MtLMcA-1)+-+hny1t
LM(A-yc)-alMvy(A-1) ”・(Z
syvM('-f'L)=f2C2r(A), Zy
# t'y + uMl −−−−−=−−−−−(
6) Therefore, position x(A) at time JT is set to target position 3:f
(The configuration of the position control system that is controlled at high speed is shown in Fig. 4.

即ち、位置制御器51で上記式(6)に基づいて規範モ
デル21の速度t1Mをもとめ、この速度IJMを上記
速度制御系20の速度目標値とする。これにより、速度
制御系20の速度υを起範モデル21の速度tJMに制
御され、速度制御系20の速度υを積分器32で積分し
た位置Xは目標値[、r、に制御される。
That is, the position controller 51 determines the speed t1M of the reference model 21 based on the above equation (6), and sets this speed IJM as the speed target value of the speed control system 20. As a result, the speed υ of the speed control system 20 is controlled to the speed tJM of the reference model 21, and the position X obtained by integrating the speed υ of the speed control system 20 by the integrator 32 is controlled to the target value [,r,.

第5図は、式(5)及び式(6)の”M + 9Mを各
々X。
FIG. 5 shows "M + 9M" in equations (5) and (6) respectively.

υに置き換えたものであり、実際の位置X、速度Vを位
置側(財)器にフィードバックすることにより第4図よ
りも外乱に強い制御を行うことができる。
υ, and by feeding back the actual position

〔発明の効果〕〔Effect of the invention〕

本発明によれば、慣性モーメントなどの制御系のパラメ
ータが変化しても、目標とする角度にモータの回転角度
を制御することができるので、ロボットの軌跡精度を向
上することができる。
According to the present invention, even if the parameters of the control system such as the moment of inertia change, the rotation angle of the motor can be controlled to a target angle, so the accuracy of the trajectory of the robot can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のモータ制御系全体の構成図
、第2図は速度制御系の構成図、第5図は規範モデルの
制御系の説明図、第4図及び第5図は位置制御系のブロ
ック図である。 5・・・アンプ、4・・・モータ、5・・・タコジェネ
レータ、10・・・制御対象、11・・・速度制御器、
12・・・推定器、21・・・規範モデル、51・・・
位置制御器、20・・・速度制御系。 第2 圀 嘉−5口
Fig. 1 is a block diagram of the entire motor control system according to an embodiment of the present invention, Fig. 2 is a block diagram of the speed control system, Fig. 5 is an explanatory diagram of the control system of the standard model, and Figs. is a block diagram of a position control system. 5... Amplifier, 4... Motor, 5... Tacho generator, 10... Controlled object, 11... Speed controller,
12... Estimator, 21... Normative model, 51...
Position controller, 20...speed control system. 2nd Kuniyoshi - 5 mouths

Claims (1)

【特許請求の範囲】[Claims] 1、モータと、このモータの速度検出手段と、このモー
タの回転角度検出手段と、このモータを駆動するアンプ
とからなる制御対象と、このアンプに指令を与える制御
装置とよりなるモータの制御系において、この制御装置
に、上記制御対象の入出力から上記制御対象のパラメー
タを推定する推定器と、この推定器の結果によって変化
するゲインを有する上記制御対象の速度制御器と、この
速度制御器に入力した値と位置目標値とから新たにこの
速度制御器へ入力する値を演算する位置制御器を設けた
ことを特徴とするモータの位置制御装置。
1. A motor control system consisting of a controlled object consisting of a motor, a speed detection means for this motor, a rotation angle detection means for this motor, an amplifier that drives this motor, and a control device that gives commands to this amplifier. In this control device, an estimator for estimating parameters of the controlled object from input and output of the controlled object, a speed controller for the controlled object having a gain that changes depending on the result of the estimator, and the speed controller 1. A position control device for a motor, comprising a position controller that calculates a new value to be input to the speed controller from a value input to the speed controller and a position target value.
JP13408785A 1985-06-21 1985-06-21 Motor position controller Pending JPS61292702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13408785A JPS61292702A (en) 1985-06-21 1985-06-21 Motor position controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13408785A JPS61292702A (en) 1985-06-21 1985-06-21 Motor position controller

Publications (1)

Publication Number Publication Date
JPS61292702A true JPS61292702A (en) 1986-12-23

Family

ID=15120110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13408785A Pending JPS61292702A (en) 1985-06-21 1985-06-21 Motor position controller

Country Status (1)

Country Link
JP (1) JPS61292702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426908A (en) * 1987-07-23 1989-01-30 Nippon Kokan Kk Control method for arc locus of biaxial feed drive mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426908A (en) * 1987-07-23 1989-01-30 Nippon Kokan Kk Control method for arc locus of biaxial feed drive mechanism

Similar Documents

Publication Publication Date Title
Lorenz et al. High-resolution velocity estimation for all-digital, ac servo drives
US4617502A (en) Method and apparatus for controlling a robot hand along a predetermined path
CN109873586B (en) Motor mechanical parameter identification method and system based on high-order sliding-mode observer
JPH0230522B2 (en)
EP0201605A1 (en) System for controlling the speed of a servo motor
JPS59161708A (en) Servo driving unit
Lin et al. Adaptive fuzzy logic-based velocity observer for servo motor drives
JPS61292702A (en) Motor position controller
JPS58169212A (en) Position controller of servomotor
JP2906255B2 (en) Servo control device
JP3625215B2 (en) Data collection method for motor load inertia identification
JPS583002A (en) Control system of robot
JP2846896B2 (en) NC servo simulator
JPH0816205A (en) Servo control system and its tuning method
Kim et al. Full digital controller of permanent magnet AC servo motor for industrial robot and CNC machine tool
JP3269198B2 (en) Position control device
JPS61114304A (en) Digital controller
JPS62126403A (en) Speed control system
JPH03213716A (en) Rotary shaft control device
JPS6180304A (en) Integrated adjustment method of gain of multi-joint robot
JPH0231407B2 (en) ICHIGIMEKIKONOSEIGYOHOSHIKI
JPS5493781A (en) Driver of servo-system
JP2002078369A (en) Adjusting method and apparatus for servo motor controller
JP2003345402A (en) Position control device
Naumović PI-like Observer Structures in Digitally Controlled DC Servo Drives: Theory and Experiment