JPS61114304A - Digital controller - Google Patents

Digital controller

Info

Publication number
JPS61114304A
JPS61114304A JP23545684A JP23545684A JPS61114304A JP S61114304 A JPS61114304 A JP S61114304A JP 23545684 A JP23545684 A JP 23545684A JP 23545684 A JP23545684 A JP 23545684A JP S61114304 A JPS61114304 A JP S61114304A
Authority
JP
Japan
Prior art keywords
controlled
motor
digital
digital signal
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23545684A
Other languages
Japanese (ja)
Inventor
Katsushi Nishimoto
西本 克史
Hidenori Sekiguchi
英紀 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23545684A priority Critical patent/JPS61114304A/en
Publication of JPS61114304A publication Critical patent/JPS61114304A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To shorten the sampling time and to attain the servo control at a high speed by using exclusively a digital signal processor to perform each operation of servo control. CONSTITUTION:A target position Xc, a target speed Vc, etc. are delivered from a host processor 1, and a motor 13 is controlled via a D/A converter 11 and a power amplifier 12. Here a digital signal rocessor DSP10 is provided and executes exclusively the multiplication and addition at a high speed for voice synthesization, etc. The DSP10 contains an observer 10-1, an integration circuit 10-2, a function generating circuit 10-3, an arithmetic circuit 10-4, etc. Thus the DSP10 reads the present position by an encoder 14 for each sampling time point and at the same time calculates the optimum control amount U. The motor 13 is controlled by the control amount U.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばロボットの制御のような機械系の制御
に係り、特にそのサーボ*aにおいて高速に演算ができ
るようなディジタルサーボ制御装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the control of mechanical systems such as robot control, and particularly to a digital servo control device that can perform high-speed calculations in its servo*a. It is something.

〔従来の技術〕[Conventional technology]

例えばロボットのvIrIJの場合のように目標値を与
えてこれに追従させるサーボ制御装置は、第4図に示す
如く、開数発生器20を有し、モータ24の目標位置X
cと目標速度Vcをこれに入力すると、これに対応した
目標値XRとモータ24の動き初めのみ加速度αRを出
力する。αRはモータの立ち上がり(応答速度)を速め
るために必要なものである。
For example, in the case of vIrIJ of a robot, a servo control device that gives a target value and makes it follow the target value has a numerical value generator 20 as shown in FIG.
When c and target speed Vc are input, the corresponding target value XR and acceleration αR are output only at the beginning of the movement of the motor 24. αR is necessary to increase the start-up (response speed) of the motor.

この加速度αRはD/A変換回路21でアナログ値に変
換され、加算器22を経由してパワーアンプ23に増幅
されたのちモータ24を駆動させる。モータ24の現在
位置はエンコーダ25により検出されて、このエンコー
ダ25の出力パルスがカウンタ26でカウントされ、こ
れが前記目標値XRと比較器27にて比較され、その差
のディジタル値がD/A変換回路28でアナログ化され
る。
This acceleration αR is converted into an analog value by a D/A conversion circuit 21, and is amplified by a power amplifier 23 via an adder 22, and then drives a motor 24. The current position of the motor 24 is detected by an encoder 25, the output pulses of the encoder 25 are counted by a counter 26, this is compared with the target value XR by a comparator 27, and the digital value of the difference is converted into a D/A converter. The circuit 28 converts the signal into an analog signal.

このD/A変換回路28のアナログ値は目標値と現在値
の偏差を示すものであるが、これが状態観測器(オブザ
ーバ)30といわれるシミュレータと積分器29に伝達
されて状態観測器30から推定出力される推定速度偏差
値Z1及び推定位置偏差値z2が出力され、また積分器
29から位置偏差の積分値z3が出力される。これらの
各値21、z2及びz3はそれぞれ係数回路33.32
.31によりフィードバック係数に+−に3が乗ぜられ
、加算1s34.35を経由して加算器22に送出され
、パワーアンプ23の入力となり、モータ24をこれに
応じて制御するものとなる。
The analog value of this D/A conversion circuit 28 indicates the deviation between the target value and the current value, and this is transmitted to a simulator called a state observer 30 and an integrator 29 and estimated from the state observer 30. The estimated speed deviation value Z1 and the estimated position deviation value z2 are output, and the integrator 29 outputs the integral value z3 of the position deviation. Each of these values 21, z2 and z3 is input to the coefficient circuit 33, 32 respectively.
.. 31 multiplies the feedback coefficient by +3 and sends it to the adder 22 via addition 1s 34.35, and becomes an input to the power amplifier 23, which controls the motor 24 accordingly.

すなわち、従来のサーボ制御装置は制御をよく行うため
にシステムの状態変数を全てフィードバックすることが
望ましいが必らずしも全て測定できるわけではない、そ
こで観測器といわれるシミュレータを用いて系の状態変
数を推定する。このように推定された状態変数は最適レ
ギュレータの理論を用いて適当なフィードバック係数が
乗算されてフィードバックされる。
In other words, it is desirable for conventional servo control devices to feed back all the state variables of the system in order to perform good control, but it is not always possible to measure them all. Therefore, a simulator called an observer is used to measure the state of the system. Estimate variables. The state variables estimated in this way are multiplied by an appropriate feedback coefficient using the optimal regulator theory and fed back.

なお関数発生器20はホストプロセッサからの目標値指
令に対してサーボ制御装置がそれに追従できるように滑
らかな目標値関数を発生させるものである。
The function generator 20 generates a smooth target value function so that the servo control device can follow the target value command from the host processor.

このような、第4図で示す回路では、前記推定速度偏差
値”Zs 、推定位置偏差値Zz、位置偏差の積分値2
3等はアナログ値であり、観測器30や積分器29、ま
た各係数回路31〜33等はオペアンプで構成されてお
り、このような回路構成のために従来はアナログ技術が
用いられてきた。
In the circuit shown in FIG. 4, the estimated speed deviation value "Zs", the estimated position deviation value Zz, and the integral value of the position deviation 2
3 etc. are analog values, and the observation device 30, the integrator 29, and each coefficient circuit 31 to 33 are composed of operational amplifiers, and conventionally, analog technology has been used for such a circuit configuration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらアナログ制御回路では、コントローラのパ
ラメータを抵抗、コンデンサなどで設定するので、いっ
たん固定されてしまうと特性が運動や時間の経過につれ
て変化するような制御対象、例えばロボットのようなも
のの制御には、その特性の変化に応じてコントローラの
パラメータを変化させる必要があるため、良好な制御が
行えないという欠点があった。また乗算や加算をオペア
ンプで行うため、必然的にドリフトやオフセットの問題
があり補償するのは容易でない。
However, in analog control circuits, controller parameters are set using resistors, capacitors, etc., so once fixed, the characteristics of a controlled object such as a robot change with movement or the passage of time. Since it is necessary to change the parameters of the controller according to changes in the characteristics, there is a drawback that good control cannot be performed. Furthermore, since multiplication and addition are performed using operational amplifiers, there are inevitably problems with drift and offset, which are difficult to compensate for.

そこでフレキシブルな制御が行えるソフトウェア制W(
ディジタル制vIJ)が近年行われているが、マイクロ
コンピュータを用いたソフトウェア制御では演算速度が
遅(、したがってサンプリング周期が長くなり、特にロ
ボットのような高速動作が要求される場合には十分な制
御性能を上げることができなかった。
Therefore, a software system W (
Digital systems (vIJ) have been implemented in recent years, but software control using microcomputers has a slow calculation speed (and therefore a long sampling period), making it difficult to maintain sufficient control especially when high-speed operation is required, such as in robots. I couldn't improve the performance.

ディジタル制御では、サンプリング時間、つまり制御量
を制御対象へ入力する間隔をできるだけ短かくすること
が、外乱に強い、良い制御を行うために必須のことであ
るにもかかわらず、従来のディジタル制御ではこれに応
じられないという問題があった。
In digital control, it is essential to make the sampling time, that is, the interval at which the controlled variable is input to the controlled object, as short as possible in order to perform good control that is resistant to external disturbances. The problem was that they could not respond to this request.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記の問題点を解決した、高速のディジタル制
御装置を提供するため、目標値を出力する目標値出力手
段と、この目標値に達するように制御される被制御体と
、該被制御体の状態を出力する被制御体の状態出力手段
と、前記目標値と被制御体の状態を比較してその差に応
じて被制御体を制御するディジタルサーボ制御装置にお
いて、オブザーバ機能と積分機能を有するディジタル・
シグナル・プロセッサを備え、サーボ系の部分をホスト
プロセッサより切り離してサーボ演算をこのディジタル
・シグナル・プロセッサにより行うようにしたことを特
徴とする。
In order to provide a high-speed digital control device that solves the above-mentioned problems, the present invention includes a target value output means for outputting a target value, a controlled object that is controlled to reach the target value, and a controlled object that is controlled to reach the target value. A digital servo control device that compares the target value and the state of the controlled object and controls the controlled object according to the difference, includes an observer function and an integral function. Digital
It is characterized in that it is equipped with a signal processor, the servo system part is separated from the host processor, and servo calculations are performed by this digital signal processor.

〔作用〕[Effect]

本発明では高速に乗算、加算などのディジタル演算が実
行できるディジタル・シグナル・プロセッサを専用に用
いてサーボ制御の各演算を行うように構成したので、サ
ンプリング時間を早(することが可能となり、外乱に強
い、精度のよい、高速なサーボ制御を行うことができる
In the present invention, each servo control operation is performed using a dedicated digital signal processor that can perform digital operations such as multiplication and addition at high speed. It is capable of strong, accurate, and high-speed servo control.

〔実施例〕〔Example〕

本発明の一実施例を第1図〜第3図にもとづき説明する
An embodiment of the present invention will be described based on FIGS. 1 to 3.

第1図は本発明の一実施例構成図、第2図はそのブロッ
ク図、第3図は本発明の詳細な説明するフローチャート
である。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a block diagram thereof, and FIG. 3 is a flow chart explaining the present invention in detail.

図中、1はホストプロセッサであって目標位置Xcや目
標速度Vc等を出力するもの、10はディジタル・シグ
ナル・プロセッサ(以下DSPという)、1工はD/A
コンバータであってDSPloより出力されるディジタ
ル値をアナログ値に変換するもの、12はパワーアンプ
であって第4図のパワーアンプ23に対応するもの、1
3はモータ、14はエンコーダであってそれぞれ第4図
のモータ24、エンコーダ25に対応するものである。
In the figure, 1 is a host processor that outputs target position Xc, target velocity Vc, etc., 10 is a digital signal processor (hereinafter referred to as DSP), and 1 is a D/A.
1 is a converter that converts the digital value output from the DSPLo into an analog value; 12 is a power amplifier corresponding to the power amplifier 23 in FIG. 4;
3 is a motor, and 14 is an encoder, which correspond to the motor 24 and encoder 25 in FIG. 4, respectively.

ディジタル・シグナル・プロセッサは本来ディジタルフ
ィルタや音声合成などのために開発された乗算、加算を
高速に実行する専用のマイクロプロセッサである。この
ディジタル・シグナル・プロセッサ10は、オブザーバ
10−1、積分回路10−2、関数発生器10−3、演
算回路10−4等を具備しており、後述するような処理
を行う。
A digital signal processor is a specialized microprocessor that can perform multiplication and addition at high speed, and was originally developed for digital filters and speech synthesis. This digital signal processor 10 includes an observer 10-1, an integrating circuit 10-2, a function generator 10-3, an arithmetic circuit 10-4, and performs processing as described below.

DSPlOは、本発明の特徴的なものであり、ホストプ
ロセッサ1から目標位置Xcとその時の移動速度Vcが
DSPIOに与えられると、DSPIOはサンプリング
時間毎に現在位置をエンコーダ14から読みながら各サ
ンプリング時点で最適な1llllilu (第11!
!Jの例ではD/Aコンバータ11への出力電圧)を算
出する。このときDSPloは次のような演算を行うこ
とになる。この場合、D/Aコンバータ11、パワーア
ンプ12、モータ13、エンコーダ14からなる制御対
象が次の(11式で示す状態方程式(制御対象の特性を
示すもの)で表わされていると、状態観測器としての機
能によるオブザーバの推定式は次の(2)式で表わすこ
とができる。
The DSPIO is a feature of the present invention, and when the target position Xc and the movement speed Vc at that time are given to the DSPIO from the host processor 1, the DSPIO reads the current position from the encoder 14 at each sampling time, The optimal 1llllilu (11th!
! In the example of J, the output voltage to the D/A converter 11) is calculated. At this time, DSPlo will perform the following calculations. In this case, if the controlled object consisting of the D/A converter 11, power amplifier 12, motor 13, and encoder 14 is expressed by the state equation (indicating the characteristics of the controlled object) shown in the following (Equation 11), the state The estimation equation of the observer based on the function as an observation device can be expressed by the following equation (2).

Z (k+1) =A−Z (k) +b−u  −・
−=−=(1)7 (k+1)”C’ ・Z (k+1
>Z−(21) ここでU;制御入力 y;出力値であり、この場合は位置偏差で22である。
Z (k+1) = A-Z (k) +b-u −・
-=-=(1)7 (k+1)"C' ・Z (k+1
>Z-(21) where U: control input y: output value, which in this case is the positional deviation of 22.

またA、b、Cは制御対象の特性から決るものであって
、 Aは行列;b、cはベクトルである。
Further, A, b, and C are determined based on the characteristics of the controlled object, where A is a matrix; b and c are vectors.

そしてC′は転置ベクトルであり、またkはサンプリン
グ時点を表わす。
and C' is the transposed vector, and k represents the sampling time point.

そして前記(1)式で示す状態方程式に対し、オブザー
バの推定式は次のように構成される。
For the state equation shown in equation (1) above, the observer estimation equation is constructed as follows.

Z (k+1) −A−Z (k) +b −u+f・
(yテムのyに対応するオブザーバの出力値である。
Z (k+1) -A-Z (k) +b -u+f・
(This is the output value of the observer corresponding to y in ytem.

モしてrは、 められることになる。Moshi r is, You will be punished.

本発明の動作を第3図のフローチャートにしたがって説
明する。
The operation of the present invention will be explained according to the flowchart of FIG.

(1)、DSPloはホストプロセッサ1から出力され
た目標位置Xc及びその時の移動速度Vcを受取ったと
き、エンコーダ14の出力を読み取り現在位置を知る。
(1) When the DSPro receives the target position Xc and the current moving speed Vc output from the host processor 1, it reads the output of the encoder 14 and learns the current position.

そして演算回路10−4にて次の(3)式により位置偏
差を算出する。
Then, the arithmetic circuit 10-4 calculates the positional deviation using the following equation (3).

位置偏差−目標位置−現在位置   −・−−−一−−
・(3)セ) この位置偏差が零であれば目標位置に一
致した状態であるので、ホストプロセッサ1から次の目
標位置および移動速度を受取る。
Position deviation − Target position − Current position −・−−−1−−
(3) C) If this positional deviation is zero, it means that the target position has been matched, and therefore the next target position and moving speed are received from the host processor 1.

(3)シかし前記位置偏差が零でなければオブザーバ1
0−1により速度偏差を計算する。
(3) If the position deviation is not zero, observer 1
Calculate the speed deviation by 0-1.

(4)  続いて位置偏!!z2の積分量Z3を積分回
路10−2にて計算する。これは定常偏差の解消に必要
である。
(4) Next is position bias! ! An integral amount Z3 of z2 is calculated by an integrating circuit 10-2. This is necessary to eliminate steady-state deviations.

Z 3 ”” f Z 2 d t         
−−−−−−−−−−(4)(5)  こうして全ての
状態変数である位置偏差22、速度偏差Z1、位置偏差
の積分量Z3を求めたのち、次の(5)式により演算回
路10−4は最適レギュレータ理論により求めたフィー
ドバック係数を各状態変数に乗じて加算し最適の制御量
を求め、この最適制御量を送出し、これをD/Aコンバ
ータ11にてアナログ値に変換してパワーアンプ12で
増幅し、モータ13を制御することになる。
Z 3 ”” f Z 2 d t
−−−−−−−−−−(4)(5) After obtaining all the state variables such as positional deviation 22, speed deviation Z1, and integral amount of positional deviation Z3, calculate using the following equation (5). The circuit 10-4 multiplies each state variable by the feedback coefficient determined by the optimal regulator theory and adds it to determine the optimal control amount, sends out this optimal control amount, and converts it into an analog value using the D/A converter 11. The signal is then amplified by the power amplifier 12 and the motor 13 is controlled.

u=−(kt  ・Z+  +kz  ・Z2 +に3
1 Z3)・−−一一一−−−−−・−(5) このようにして演算を高速に実行するため、高速で柔軟
なモータのディジタル制御装置を提供することができる
u=-(kt ・Z+ +kz ・Z2 +3
1 Z3)・--111--------・-(5) Since calculations are executed at high speed in this manner, a high-speed and flexible digital control device for a motor can be provided.

なお前記説明ではサーボ制御対象としてモータの例につ
いて説明したが、本発明は勿論モータのみに限定される
ものではない。
In the above description, an example of a motor as a subject to be servo controlled has been described, but the present invention is of course not limited to only motors.

〔発明の効果〕〔Effect of the invention〕

本発明によればサーボ系部分をホストプロセッサから切
り離して、専用のDSPを使用して高速でサーボ制御の
演算を実行するためサンプリング時間を短かくすること
ができ、外乱に強い頑儂なディジタルサーボ制御装置を
構築できる。さらにフィードバック係数の乗算などをソ
フトで実行するため、ロボットなどのように移動中に特
性が変化するような制御対象にも柔軟に対応することが
できる。
According to the present invention, since the servo system part is separated from the host processor and a dedicated DSP is used to execute servo control calculations at high speed, sampling time can be shortened, and a robust digital servo system that is resistant to external disturbances can be realized. You can build a control device. Furthermore, since the multiplication of feedback coefficients is performed using software, it is possible to flexibly handle controlled objects whose characteristics change during movement, such as robots.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例構成図、第2図はそのブロッ
ク図、第3図は本発明の詳細な説明するフローチャート
、第4図は従来のサーボ制御装置である。 図中、1はホストプロセッサ、10はディジタル・シグ
ナル・プロセッサ、11はD/Aコンバータ、12はパ
ワーアンプ、13はモータ、14はエンコーダを示す。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a block diagram thereof, FIG. 3 is a flow chart explaining the present invention in detail, and FIG. 4 is a conventional servo control device. In the figure, 1 is a host processor, 10 is a digital signal processor, 11 is a D/A converter, 12 is a power amplifier, 13 is a motor, and 14 is an encoder.

Claims (1)

【特許請求の範囲】[Claims] 目標値を出力する目標値出力手段と、この目標値に達す
るように制御される被制御体と、該被制御体の状態を出
力する被制御体の状態出力手段と、前記目標値と被制御
体の状態を比較してその差に応じて被制御体を制御する
ディジタルサーボ制御装置において、オブザーバ機能と
積分機能を有するディジタル・シグナル・プロセッサを
備え、サーボ系の部分をホストプロセッサより切り離し
てサーボ演算をこのディジタル・シグナル・プロセッサ
により行うようにしたことを特徴とするディジタル制御
装置。
A target value output means for outputting a target value, a controlled object to be controlled so as to reach the target value, a state output means for the controlled object for outputting the state of the controlled object, and a means for outputting the state of the controlled object and the target value and the controlled object. A digital servo control device that compares the state of the body and controls the controlled body according to the difference, is equipped with a digital signal processor that has an observer function and an integral function, and the servo system part is separated from the host processor to control the servo system. A digital control device characterized in that calculations are performed by this digital signal processor.
JP23545684A 1984-11-08 1984-11-08 Digital controller Pending JPS61114304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23545684A JPS61114304A (en) 1984-11-08 1984-11-08 Digital controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23545684A JPS61114304A (en) 1984-11-08 1984-11-08 Digital controller

Publications (1)

Publication Number Publication Date
JPS61114304A true JPS61114304A (en) 1986-06-02

Family

ID=16986368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23545684A Pending JPS61114304A (en) 1984-11-08 1984-11-08 Digital controller

Country Status (1)

Country Link
JP (1) JPS61114304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200004A (en) * 1989-01-30 1990-08-08 Mazda Motor Corp Input signal processor for microcomputer
EP0649217A1 (en) * 1993-10-12 1995-04-19 SMITH & NEPHEW DYONICS INC Brushless motor
US5563481A (en) * 1992-04-13 1996-10-08 Smith & Nephew Endoscopy, Inc. Brushless motor
US5672945A (en) * 1992-04-13 1997-09-30 Smith & Nephew Endoscopy, Inc. Motor controlled surgical system and method having self clearing motor control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200004A (en) * 1989-01-30 1990-08-08 Mazda Motor Corp Input signal processor for microcomputer
US5563481A (en) * 1992-04-13 1996-10-08 Smith & Nephew Endoscopy, Inc. Brushless motor
US5672945A (en) * 1992-04-13 1997-09-30 Smith & Nephew Endoscopy, Inc. Motor controlled surgical system and method having self clearing motor control
EP0649217A1 (en) * 1993-10-12 1995-04-19 SMITH & NEPHEW DYONICS INC Brushless motor

Similar Documents

Publication Publication Date Title
Lorenz et al. High-resolution velocity estimation for all-digital, ac servo drives
Torfs et al. Comparison of two feedforward design methods aiming at accurate trajectory tracking of the end point of a flexible robot arm
Su et al. Hybrid adaptive/robust motion control of rigid-link electrically-driven robot manipulators
JP2005085074A (en) Position controller
US5532565A (en) Controller
JPS61114304A (en) Digital controller
JPH05329784A (en) Control system for master slave robot
Ciliz et al. Modeling and compensation of frictional uncertainties in motion control: A neural network based approach
JPH0424701A (en) Observer control system
Zhang et al. Precision motion control methodology for complex contours
JPH0695294B2 (en) Trajectory interpolation method for industrial robot
JP3971959B2 (en) POSITION CONTROL DEVICE AND CONTROLLER DESIGN METHOD
EP0605909B1 (en) Controller
JPH0454888A (en) Motor control device and external disturbance load torque estimating device
Tarn et al. Nonlinear feedback method of robot control: A preliminary experimental study
JP3234308B2 (en) Control device for composite control system and control method for composite control system
Suzumura et al. Three-degree-of-freedom control and its application to motion control systems
JPS5913044B2 (en) High frequency positioning control device
JP3355614B2 (en) Master / slave robot controller
Moallem et al. Experimental results for nonlinear decoupling control of flexible multi-link manipulators
Tourassis Computer control of robotic manipulators using predictors
JPH01281884A (en) Power control device
JPH04314110A (en) Force controller
JPS6279509A (en) Digital servo amplifier
JPH0550005B2 (en)