JPS61292521A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPS61292521A
JPS61292521A JP60134895A JP13489585A JPS61292521A JP S61292521 A JPS61292521 A JP S61292521A JP 60134895 A JP60134895 A JP 60134895A JP 13489585 A JP13489585 A JP 13489585A JP S61292521 A JPS61292521 A JP S61292521A
Authority
JP
Japan
Prior art keywords
flow rate
vortex
pair
piping
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60134895A
Other languages
Japanese (ja)
Other versions
JPH0578773B2 (en
Inventor
Tetsuo Iwamoto
岩本 哲夫
Hiroyuki Amemori
宏之 雨森
Shigeru Nishiyama
繁 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP60134895A priority Critical patent/JPS61292521A/en
Priority to US06/774,804 priority patent/US4694702A/en
Priority to GB08522632A priority patent/GB2164445B/en
Priority to CN 86104243 priority patent/CN1016275B/en
Publication of JPS61292521A publication Critical patent/JPS61292521A/en
Publication of JPH0578773B2 publication Critical patent/JPH0578773B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To sensitively measure a low flow rate and enlarge a flow rate measuring range by arranging a pair of sensors in the longitudinal direction of a piping. CONSTITUTION:A differential pressure due to a Karman's vortex generated on the downstream side of a vortex generator 3 in accordance with the flow rate of a fluid to be measured flowing in a passage 2 is introduced from the eddy differential pressure introducing openings 4a and 4b of the vortex generator 3 into lead chambers 7a and 7b through the introducing openings 7c and 7d of a lead member 7. Thus, metallic diaphragms 9a and 9b are differentially displaced, accompanying the movement of a sealed liquid 13. The displacement of the diaphragms 9a and 9b is detected as a change in the electrostatic capacity of electrode plates 11a and 11b and a flow rate measurement signal is produced from a flow rate detector 5. Since a pair of sensor portions 6a and 6b are arranged in a longitudinal direction, even when an oscillation is generated in a piping 1 and in a horizontal direction perpendicular to the longitudinal one direction, the sealed fluid 13 is prevented from moving between the sensor portions 6a and 6b due to the oscillation and the diaphragms 9a and 9b are prevented from the displacement due to the oscillatory motion of the sealed fluid 13, enabling the output of a false signal due to the oscillation to be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は渦流量計に係り、特に流体を給送する配管に設
けられ流体の流量を品l測する渦流組品1に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vortex flow meter, and more particularly to a vortex flow assembly 1 installed in a pipe for feeding fluid and measuring the flow rate of a fluid.

従来の技術 一般に渦流量計は配管流路内に渦発生柱を設け、この渦
発生柱の下流側に交番的に発生するカルマン渦による圧
り変化を、渦発生柱の両側面より圧力導入孔を介して1
ffi検出部に導いて配管流路内の流量を計測している
。また、カルマン渦の発生に伴う渦差圧により流母計測
信号を出力する流量検出部を配管外周に直接固定する構
成とされていた。
Conventional technology In general, a vortex flow meter has a vortex generation column installed in a piping flow path, and pressure changes due to Karman vortices that are generated alternately downstream of this vortex generation column are detected through pressure introduction holes from both sides of the vortex generation column. 1 through
The flow rate in the piping flow path is measured by leading to the ffi detection section. In addition, the flow rate detection unit that outputs a flow rate measurement signal based on the vortex differential pressure caused by the generation of Karman vortices was configured to be directly fixed to the outer circumference of the pipe.

このように配管に取付けられて使用される場合、静電容
置式の渦流は計では、流量検出部が渦発生柱の両側面の
差圧により変位する一対の金属ダイヤフラムと、金属ダ
イヤフラムに絶縁材を介して対向する電極板とよりなる
一対のセンサ部とを有している。また、金属ダイヤフラ
ムと電極板とを設けた一対の金属ダイヤフラム室間は連
通路を介して連通されると共に渦発生に伴う差圧を差I
JJ的に検出し、また配管内の流体の圧力に耐えるため
に封入液を封入する構成とされていた。
When installed in piping and used in this way, in an electrostatic capacitive vortex flow meter, the flow rate detection part consists of a pair of metal diaphragms that are displaced by the differential pressure on both sides of the vortex generation column, and an insulating material is attached to the metal diaphragm. It has a pair of sensor portions consisting of electrode plates facing each other with the electrode plates interposed therebetween. In addition, the pair of metal diaphragm chambers provided with the metal diaphragm and the electrode plate are communicated via a communication path, and the differential pressure caused by the generation of the vortex is reduced by the difference I.
It was designed to perform JJ-like detection and to seal in a liquid to withstand the pressure of the fluid in the piping.

考案が解決しようとする問題点 しかしながら、配管には配管流路内の流体の移送に伴う
振動が生じており、配管に直接固定された流m検出部に
も配管からの振動が伝達されてしまい、流m検出部は配
管からの振動を受けながら流ffi fit測を行って
いた。
Problems that the invention aims to solve However, vibrations occur in the piping due to the transfer of fluid in the piping flow path, and the vibrations from the piping are also transmitted to the flow detection unit that is directly fixed to the piping. , the flow detection section performed flow ffi fit measurements while receiving vibrations from the piping.

一般に、渦発生による差圧を検出する一対のヒン勺部は
配管長手方向に対して直交する水平方向に設けられてい
た。ところが、配管を伝わる振動として配管長手方向の
振動は起りにクク、発生しても比較的小さくて済むが、
配管長手方向と直交する水平方向及び垂直方向の振動成
分は比較的大である。このため、従来の渦流量計では、
一対のセンサ部が配管長手方向と直交する水平方向に設
けであるので、配管に水平方向の振動が生じると、一対
のセンサ部のダイヤフラム室及び連通路に充填された封
入液が水平方向に謡動する。したがって、従来の渦流量
計では配管の水平方向の振動が生じることにより封入液
が一対のセンサ部間において加速度を受け、この封入液
の慣性により金属ダイヤフラムが変位してしまうといっ
た欠点があった。また、このような配管振動による金属
ダイヤフラムの変位により静電容量の変化が検知されテ
信号が出力されてしまうといった欠点があった。
Generally, a pair of hinge portions for detecting the differential pressure caused by vortex generation are provided in a horizontal direction perpendicular to the longitudinal direction of the pipe. However, as vibrations transmitted through the pipes, vibrations in the longitudinal direction of the pipes tend to occur, and even if they occur, they are relatively small;
The vibration components in the horizontal and vertical directions perpendicular to the longitudinal direction of the pipe are relatively large. For this reason, traditional vortex flowmeters
Since the pair of sensor parts are installed in the horizontal direction perpendicular to the longitudinal direction of the pipe, when horizontal vibration occurs in the pipe, the sealed liquid filled in the diaphragm chamber and communication passage of the pair of sensor parts moves horizontally. move. Therefore, in conventional vortex flowmeters, the horizontal vibration of the piping causes the sealed liquid to be accelerated between the pair of sensor parts, and the inertia of the sealed liquid causes the metal diaphragm to be displaced. Furthermore, there is a drawback that a change in capacitance is detected due to the displacement of the metal diaphragm due to such piping vibration, and a Te signal is output.

また、金属ダイヤフラムの変位が小さい微小流量を計t
miるとぎ、カルマン渦による差圧で金属ダイヤフラム
が変位したのか、配管振動により金属ダイヤフラムが変
位したものなのか判別できない。
In addition, it is possible to measure minute flow rates with small displacement of the metal diaphragm.
However, it is not possible to determine whether the metal diaphragm was displaced due to the differential pressure caused by the Karman vortex or whether the metal diaphragm was displaced due to piping vibration.

したがって、低流量の測定時には配管振動に伴う金属ダ
イヤフラムの変位による静電容量の変化を検出しない程
度に電気回路の増幅感度を低下させる必要がある。この
ため、カルマン渦の発生に伴う金属ダイヤフラムの変位
が小さい微小流mを計測できず、流量目測範囲が狭くな
るといった欠点があった。
Therefore, when measuring a low flow rate, it is necessary to reduce the amplification sensitivity of the electric circuit to such an extent that changes in capacitance due to displacement of the metal diaphragm due to pipe vibration are not detected. For this reason, it is not possible to measure the microflow m in which the displacement of the metal diaphragm is small due to the generation of the Karman vortex, resulting in a disadvantage that the range of visual flow rate measurement becomes narrow.

そこで、本発明は上記欠点を除去した渦流部品1を提供
することを目的とする。
Therefore, an object of the present invention is to provide a vortex component 1 that eliminates the above-mentioned drawbacks.

問題点を解決するための手段及び作用 本発明は上記構成になる渦流量計において、一対のセン
サ部は配管の艮手力向沿って配設されていることにより
、一対のセンサ部が配管の振動の影響に耐えうる向きに
設けられた構造にして低流けを感度良く計測すると共に
流量目測範囲を拡げるものである。
Means and Function for Solving the Problems The present invention provides a vortex flowmeter having the above-mentioned structure, in which the pair of sensor sections are disposed along the direction of force applied to the piping. The structure is oriented to withstand the effects of vibration, allowing for sensitive measurement of low flows and expanding the range of visual flow measurements.

実施例 第1図及び第2図に本考案になる渦流量計の一実施例を
示す。第1図中、配管1中の流路2には渦流量計の渦発
生体3が設けられている。渦発生体3は両側にり流路2
と連通ずる渦差圧導入孔4a、4bを有している。
Embodiment FIGS. 1 and 2 show an embodiment of the vortex flowmeter according to the present invention. In FIG. 1, a flow path 2 in a pipe 1 is provided with a vortex generator 3 of a vortex flowmeter. The vortex generator 3 has a flow path 2 on both sides.
It has vortex differential pressure introduction holes 4a and 4b that communicate with.

5は渦流量計の流m検出部で静電容量式のセンサ部6a
、6bを有しており、配管1の上面1aに固定された導
圧部材7上に設けられている。にた、一対のセンサ部6
a、6bは配管1の長手方向に沿う向きに配設されてい
る。導圧部材7は上面に配管1の長手方向に沿う方向に
離間する導圧室7a、7bと、導圧室7a、7bと渦差
圧導入孔4a、4bとを連通する導圧孔7c、7dとを
有している。
5 is a flow m detection part of a vortex flowmeter, and a capacitance type sensor part 6a
, 6b, and is provided on a pressure guiding member 7 fixed to the upper surface 1a of the pipe 1. A pair of sensor parts 6
a and 6b are arranged along the longitudinal direction of the pipe 1. The pressure guiding member 7 has pressure guiding chambers 7a, 7b spaced apart in the longitudinal direction of the piping 1 on the upper surface, and a pressure guiding hole 7c communicating the pressure chambers 7a, 7b with the vortex differential pressure introduction holes 4a, 4b. 7d.

センナ部6aはダイヤフラム室8aの下側に設けられた
金属ダイヤフラム9aと、ダイレフラム室8bの上側の
絶縁体10aに設けられた電極板11aとよりなる。ま
た、センサ部6bはセンサ部6aと同様な構成であり、
金属ダイヤフラム9bと、電極板11bとよりなる。金
属ダイヤフラム9a及び9bは導圧部材7の導圧室7a
The senna section 6a consists of a metal diaphragm 9a provided below the diaphragm chamber 8a, and an electrode plate 11a provided on the insulator 10a above the diaphragm chamber 8b. Further, the sensor section 6b has the same configuration as the sensor section 6a,
It consists of a metal diaphragm 9b and an electrode plate 11b. The metal diaphragms 9a and 9b are the pressure guiding chambers 7a of the pressure guiding member 7.
.

7bに対向している。このため、金属ダイヤフラム9a
、9bは導圧孔7c、7dを介して導圧室7a、7bに
導入された渦差圧に応じて変位する。
It faces 7b. Therefore, the metal diaphragm 9a
, 9b are displaced in accordance with the vortex differential pressure introduced into the pressure guiding chambers 7a, 7b via the pressure guiding holes 7c, 7d.

12は渦差圧を差動的に検出するだめの連通路で、配管
長手方向に沿う方向に離間する一対のダイヤフラム室8
a、 8b間を連通ずるよう設けられている。この連通
路12及び一対のダイヤフラム室3a、8bには非圧縮
性の封入液13として例えばシリコンオイル等が充填さ
れ封入されている。
Reference numeral 12 denotes a communication path for differentially detecting the vortex differential pressure, which includes a pair of diaphragm chambers 8 separated from each other in the longitudinal direction of the pipe.
It is provided to communicate between a and 8b. The communication passage 12 and the pair of diaphragm chambers 3a, 8b are filled with an incompressible liquid 13 such as silicone oil.

第2図に示す如く、渦発生体3の両側に設けられた渦差
圧導入孔4a、4bは垂直方向に折曲されており、垂直
方向に穿設された配管1のn通孔lb、1cに連通して
いる。貫通孔1b、1cは導圧部材7の導圧孔7c、7
dを介して金属ダイヤフラム9a、9bを右するダイヤ
フラムff8a。
As shown in FIG. 2, the vortex differential pressure introduction holes 4a and 4b provided on both sides of the vortex generator 3 are bent in the vertical direction, and the n through hole lb of the pipe 1 bored in the vertical direction, It is connected to 1c. The through holes 1b and 1c are pressure guiding holes 7c and 7 of the pressure guiding member 7.
Diaphragm ff8a that connects metal diaphragms 9a, 9b via d.

8bに連通されている。8b.

したがって、流路2内を流れる被測流体の流量に応じて
渦発生体3の下流側に発生するカルマン渦による差圧が
、渦発生体3の渦差圧導入孔4a。
Therefore, the differential pressure due to the Karman vortex generated on the downstream side of the vortex generator 3 in accordance with the flow rate of the fluid to be measured flowing in the flow path 2 is transferred to the vortex differential pressure introduction hole 4a of the vortex generator 3.

4bより導圧部材7の導入孔7c、7dを介して導圧室
7a、7bに導入される。これにより、封入液13の移
動を伴って金属ダイヤフラム9a。
4b is introduced into the pressure guiding chambers 7a, 7b via the introduction holes 7c, 7d of the pressure guiding member 7. This causes the metal diaphragm 9a to move as the sealed liquid 13 moves.

9bが差動的に変位する。金属ダイヤフラム9a。9b is differentially displaced. Metal diaphragm 9a.

9bの変位は電極板11a、11bの静電容量の変化と
して検出され流量検出部5より流量計測信号が出力され
る。
The displacement of 9b is detected as a change in the capacitance of electrode plates 11a and 11b, and the flow rate detection section 5 outputs a flow rate measurement signal.

ここで、配管1に振動が生じ、配管1の振動が導圧部材
7を介して流量検出部5に伝達された場合につき説明す
る。配管1には長手方向に直交する水平方向の振動が比
較内生じや1い。この水平方向の振動が流量検出部5に
伝達された場合、ダイヤフラム室8a、 8b及び連通
路12内の封入液13は一対のダイヤフラム室8aと8
bと結ぶ方向より直交する水平方向に加速度を受ける。
Here, a case will be described in which vibration occurs in the pipe 1 and the vibration of the pipe 1 is transmitted to the flow rate detection section 5 via the pressure guiding member 7. In comparison, vibrations in the horizontal direction perpendicular to the longitudinal direction are likely to occur in the pipe 1. When this horizontal vibration is transmitted to the flow rate detection unit 5, the sealed liquid 13 in the diaphragm chambers 8a, 8b and the communication passage 12 is divided into the pair of diaphragm chambers 8a and 8.
It receives acceleration in the horizontal direction perpendicular to the direction connected to b.

このため、水平方向の振動により封入液13が連通路1
2を介して一対のダイヤフラム室8a、8b問を移動し
て金属ダイヤフラム室ム、9bが変位することは無い。
Therefore, the horizontal vibration causes the filled liquid 13 to flow into the communication path 1.
The metal diaphragm chambers 9b are not displaced by moving between the pair of diaphragm chambers 8a and 8b via the metal diaphragm chambers 8a and 8b.

また、配管1の長手方向に直交する垂直方向の振動が流
量検出部5に伝達された場合、一対のダイヤフラム室8
a、8b内の封入液13は上、下方向に加速度を受ける
が、ダイヤフラム室8a。
Furthermore, when vibration in the vertical direction orthogonal to the longitudinal direction of the pipe 1 is transmitted to the flow rate detection unit 5, the pair of diaphragm chambers 8
The sealed liquid 13 in the diaphragm chamber 8a and 8b receives acceleration upward and downward.

8b間を移動することが無い。There is no need to move between 8b.

このように、流Φ検出部5は比較的発生しやすい配管1
の長手方向と直交する方向の振動の影費により、金属ダ
イヤフラム9a、9bが変位して信号を出力することを
防止される。
In this way, the flow Φ detection unit 5 detects the flow in the piping 1 where the flow is relatively likely to occur.
Due to the effects of vibration in a direction perpendicular to the longitudinal direction of the metal diaphragms 9a and 9b, the metal diaphragms 9a and 9b are prevented from being displaced and outputting a signal.

なお、配管1の長手方向に沿う向きの振動が流量検出部
5に伝達された場合には封入液13が連通路12を介し
て一対のダイヤフラム室3a。
Note that when vibrations along the longitudinal direction of the pipe 1 are transmitted to the flow rate detection unit 5, the sealed liquid 13 is transmitted to the pair of diaphragm chambers 3a via the communication path 12.

8b間を移動するおそれがあるが、配管1の長手方向の
振動はほとんど発生しないため無視しうる。
Although there is a possibility that the pipe 1 may move between the pipes 8b and 8b, vibration in the longitudinal direction of the pipe 1 hardly occurs and can be ignored.

したがって、流量検出部5は配管振動にかかわりなく精
度良く流量を検出しうる。特に、微小流量を計測する際
に流量検出部5が、配管振動が原因で生じる誤信号を出
力せずに済み、低流量域の流量計測を正確に行いうる。
Therefore, the flow rate detection unit 5 can accurately detect the flow rate regardless of pipe vibration. In particular, when measuring a minute flow rate, the flow rate detection section 5 does not have to output an erroneous signal caused by pipe vibration, and the flow rate measurement in a low flow rate region can be performed accurately.

即ち、電気回路(7) 11’1幅感度を低下させずに
済み、低流ω域まr広範囲に流量計測を行うことができ
る。
That is, there is no need to reduce the width sensitivity of the electric circuit (7) 11'1, and flow rate measurement can be performed in the low flow ω region or in a wide range.

なお上記説明では流量検出部5を導圧部材7を介して配
管1に設けたが、導圧部材7を無くして、b良い。例え
ば第3図に示す如く、渦発生柱14の渦差圧導入孔14
a、14bを傾斜させ、渦差圧導入孔14a、14bに
連通する垂直方向の導入孔14C,14dを流量検出部
5の金属ダイヤフラム9a、9bに対向しつる位置に設
け、導入孔14c、14dに連通し金属ダイヤフラム9
a。
In the above description, the flow rate detection section 5 is provided in the pipe 1 via the pressure guiding member 7, but the pressure guiding member 7 may be omitted. For example, as shown in FIG. 3, the vortex differential pressure introduction hole 14 of the vortex generating column 14
a, 14b are inclined, and vertical introduction holes 14C, 14d communicating with the vortex differential pressure introduction holes 14a, 14b are provided in hanging positions facing the metal diaphragms 9a, 9b of the flow rate detection section 5, and the introduction holes 14c, 14d Metal diaphragm 9 communicates with
a.

9bに対向する導圧室を配管1の上面1aに設ければ良
い。
A pressure guiding chamber facing 9b may be provided on the upper surface 1a of the pipe 1.

発明の効果 上述の如く、本発明になる渦流闇討によれば、一対のセ
ンサ部が配管の長手方向に沿って配設されているため、
長手方向と直交する水平方向の振動が発生しても、振動
により封入液が一対のセンサ部間を移動することを防止
でき、封入液の謡動に伴う金属ダイヤフラムの変位を防
止して振動により誤信号が出力されることを防止出来る
。また、このような耐振構造とすることにより流量計測
の信頼性の向上を図ることが出来、しかも低流吊計測時
流量計測信号が渦発生により出力されたものなのか配管
振動によるものなのか判別出来ないといった不都合を無
くし低流量域での流量計測を正確に行うことが出来、微
小流量まで広範囲に口って流量計測を行うことができる
等の特長を有する。
Effects of the Invention As described above, according to the eddy current darkness detection according to the present invention, since the pair of sensor sections are arranged along the longitudinal direction of the pipe,
Even if vibration occurs in the horizontal direction perpendicular to the longitudinal direction, it is possible to prevent the filled liquid from moving between the pair of sensor parts due to the vibration, and to prevent displacement of the metal diaphragm due to the movement of the filled liquid. It is possible to prevent erroneous signals from being output. In addition, by adopting such a vibration-resistant structure, it is possible to improve the reliability of flow rate measurement, and it is also possible to distinguish whether the flow rate measurement signal is output due to vortex generation or pipe vibration during low flow suspension measurement. It has features such as being able to accurately measure the flow rate in a low flow rate range without the inconvenience of not being able to do so, and being able to measure the flow rate over a wide range, even down to minute flow rates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる渦流量計の一実施例を説明するた
めの縦断面図、第2図は第1図に示す渦流量計及び配管
を配管の長手方向よりみた断面図、第3図は本発明の変
形例の渦発生体の平面図である。 1・・・配管、3.14・・・渦発生柱、5・・・流量
検出部、6a、6b・・・センサ部、7・・・導圧部材
、8a。 8b・・・ダイヤフラム室、9a、9b・・・金属ダイ
ヤフラム、12・・・連通路、13・・・封入液。 第1図 第2図 第3図
FIG. 1 is a longitudinal cross-sectional view for explaining one embodiment of the vortex flowmeter according to the present invention, FIG. 2 is a cross-sectional view of the vortex flowmeter and piping shown in FIG. 1 as viewed from the longitudinal direction of the piping, and FIG. The figure is a plan view of a vortex generator according to a modified example of the present invention. DESCRIPTION OF SYMBOLS 1... Piping, 3.14... Vortex generating column, 5... Flow rate detection part, 6a, 6b... Sensor part, 7... Pressure guiding member, 8a. 8b...Diaphragm chamber, 9a, 9b...Metal diaphragm, 12...Communication path, 13...Sealed liquid. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 配管の流路内に設けられ渦発生による差圧を導入する一
対の導入孔を有する渦発生体と、夫々該一対の差圧導入
孔からの差圧に応じて変位するダイヤフラム部と該ダイ
ヤフラム部の変位を検出する検出部とよりなる一対のセ
ンサ部と、該一対のセンサのダイヤフラム室間を連通し
封入液を充填された連通路とを設けてなる渦流量計にお
いて、該一対のセンサ部は該配管の長手方向に沿って配
設されていることを特徴とする渦流量計。
A vortex generator having a pair of introduction holes provided in a flow path of piping and introducing a pressure difference due to vortex generation, a diaphragm part that is displaced according to the pressure difference from the pair of pressure difference introduction holes, and the diaphragm part. A vortex flowmeter comprising a pair of sensor sections comprising a detection section for detecting displacement of the sensor section, and a communication passage filled with a sealed liquid that communicates between the diaphragm chambers of the pair of sensors. A vortex flowmeter characterized in that the vortex flowmeter is arranged along the longitudinal direction of the piping.
JP60134895A 1984-09-12 1985-06-20 Vortex flowmeter Granted JPS61292521A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60134895A JPS61292521A (en) 1985-06-20 1985-06-20 Vortex flowmeter
US06/774,804 US4694702A (en) 1984-09-12 1985-09-11 Vortex shedding flowmeter
GB08522632A GB2164445B (en) 1984-09-12 1985-09-12 Vortex shedding flowmeter
CN 86104243 CN1016275B (en) 1985-06-20 1986-06-20 Swirl flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134895A JPS61292521A (en) 1985-06-20 1985-06-20 Vortex flowmeter

Publications (2)

Publication Number Publication Date
JPS61292521A true JPS61292521A (en) 1986-12-23
JPH0578773B2 JPH0578773B2 (en) 1993-10-29

Family

ID=15139029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134895A Granted JPS61292521A (en) 1984-09-12 1985-06-20 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS61292521A (en)

Also Published As

Publication number Publication date
JPH0578773B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JP5394506B2 (en) Vortex flowmeter with vortex vibration sensor plate
EP0666467B1 (en) Flow measuring apparatus
US5447073A (en) Multimeasurement replaceable vortex sensor
US3927566A (en) Flowmeters
CN100414260C (en) Vortex flow sensor
JPS6331041B2 (en)
US4694702A (en) Vortex shedding flowmeter
JPS61292521A (en) Vortex flowmeter
JPS635687B2 (en)
RU2765608C1 (en) Non-invasive sensor for vortex flow meter
JPS58160813A (en) Vortex flow meter
US20040107778A1 (en) Vortex-frequency flowmeter
JPS6221018A (en) Vortex flowmeter
JPH0469734B2 (en)
KR900006407B1 (en) Spriral flow meter
RU21239U1 (en) VORTEX FLOW METER CONVERTER
JP3712341B2 (en) Vortex flow meter
JPH0456246B2 (en)
CN1016275B (en) Swirl flowmeter
JPS62119412A (en) Vortex flowmeter
JPH01136023A (en) Vortex flowmeter
JPH01136022A (en) Vortex flowmeter
JPS5928342Y2 (en) force detector
JPS6143205Y2 (en)
JP3500516B2 (en) Vortex flow meter