JPH0456246B2 - - Google Patents

Info

Publication number
JPH0456246B2
JPH0456246B2 JP58123718A JP12371883A JPH0456246B2 JP H0456246 B2 JPH0456246 B2 JP H0456246B2 JP 58123718 A JP58123718 A JP 58123718A JP 12371883 A JP12371883 A JP 12371883A JP H0456246 B2 JPH0456246 B2 JP H0456246B2
Authority
JP
Japan
Prior art keywords
vortex
fluid
chamber
vortex generator
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58123718A
Other languages
Japanese (ja)
Other versions
JPS6015518A (en
Inventor
Akinori Yokota
Mitsumori Hayashida
Katsuo Misumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBARA KIKI KOGYO KK
Original Assignee
OBARA KIKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OBARA KIKI KOGYO KK filed Critical OBARA KIKI KOGYO KK
Priority to JP58123718A priority Critical patent/JPS6015518A/en
Publication of JPS6015518A publication Critical patent/JPS6015518A/en
Publication of JPH0456246B2 publication Critical patent/JPH0456246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3282Means for detecting quantities used as proxy variables for swirl for detecting variations in infrasonic, sonic or ultrasonic waves, due to modulation by passing through the swirling fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 本発明は渦流量計における渦検出の新規な方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method of vortex detection in a vortex flowmeter.

従来、渦流量計の渦検出方式の一つとして渦発
生体の両側面を貫通する流通孔を渦による変動差
圧に基づいて流通する流体変位として検出する方
法が提案されている。
BACKGROUND ART Conventionally, as one of the vortex detection methods for a vortex flowmeter, a method has been proposed in which a flow hole passing through both sides of a vortex generator is detected as a displacement of a flowing fluid based on a fluctuating differential pressure caused by a vortex.

しかし、この方法においては渦発生体の両側面
を流通孔が貫通しているため、渦強さが弱くな
り、その結果ストローハル数が変化するという問
題点があつた。即ち流通孔の大きさにより流量計
の器差特性が変化し、しかも精度低下をもたらし
た。
However, in this method, since the flow holes penetrate both sides of the vortex generator, the vortex strength becomes weaker, and as a result, the Strouhal number changes. In other words, the instrumental error characteristics of the flowmeter change depending on the size of the flow hole, and furthermore, this results in a decrease in accuracy.

本願発明は叙上の点に鑑みなされたもので、本
願発明の目的は渦流量計において、渦強さを高め
ることにあり、渦発生体内に空室を設けて、この
空室に対して渦発生体の1側面にのみ流体と連通
する導通口を穿孔し、この空室に渦変動差圧によ
り流入、流出する圧縮性流体の流体変動を検出す
ることにより、渦発生体を貫通することのない、
安定した渦信号を検出することを目的としたもの
である。
The present invention has been made in view of the above points, and the purpose of the present invention is to increase the vortex strength in a vortex flow meter. By drilling a through hole that communicates with the fluid only on one side of the generator and detecting the fluid fluctuation of the compressible fluid flowing into and out of this cavity by the vortex fluctuation differential pressure, it is possible to detect the flow through the vortex generator. do not have,
The purpose is to detect stable eddy signals.

以下、図によつて説明する。 This will be explained below using figures.

第1図は本発明の基本的な技術に関する概念を
しめすもので○イは平面図で、1は流管、2は渦発
生体、3は渦発生体の軸に平行して穿孔された空
室であり、渦発生体を貫通している。4は渦発生
体の1端近傍の側面から渦発生体を貫通し空室3
に連通する導通孔である。5及び6はそれぞれ超
音波の送波器及び受波器で、渦発生体端部に空室
3を介して対向して配設されており、図示してい
ない超音波駆動装置および超音波受信装置に結合
されている。第1図○ロにおいては導通孔4は渦発
生体の1端近傍側面に開口しているが、1端近傍
に限定する必要はなく、空室3に対しどの位置で
もよい。以上図により動作を説明すると流体流れ
の中に配設された渦発生体により発生する交番う
ずは渦発生体側面に渦発生に対応する交番差圧を
発生する。渦発生体より生ずる渦は渦発生体に添
つて発生する。従つて第1図の正面図○ロにおいて
渦発生体2の左右側面において差圧が存在する。
Figure 1 shows the concept of the basic technology of the present invention. ○A is a plan view, 1 is a flow tube, 2 is a vortex generator, and 3 is a hole bored parallel to the axis of the vortex generator. chamber, which penetrates the vortex generator. 4 penetrates the vortex generator from the side near one end of the vortex generator to form the empty chamber 3
This is a conduction hole that communicates with the Reference numerals 5 and 6 denote an ultrasonic transmitter and an ultrasonic receiver, which are disposed at the end of the vortex generator to face each other with a cavity 3 interposed therebetween. coupled to the device. Although the through hole 4 is opened in the side surface near one end of the vortex generating body in FIG. To explain the operation with reference to the figures above, the alternating vortices generated by the vortex generator disposed in the fluid flow generate an alternating differential pressure corresponding to the vortex generation on the side surface of the vortex generator. The vortex generated by the vortex generator is generated along with the vortex generator. Therefore, there is a pressure difference between the left and right sides of the vortex generating body 2 in the front view ◯◯ of FIG.

空室3内の圧力は流れがない場合は流体の静圧
であるが、流動状態では上記渦変動差圧が導通孔
4を介して加算される。流体が気体の場合はこの
変動差圧により圧縮・膨張するので空室3内では
流体変位が生ずると共に密度変化をもたらす。超
音波送波器5より送波された超音波は流体変位と
密度変化とにより伝播速度の影響を受ける。即ち
位相変化を生ずる。
The pressure within the chamber 3 is the static pressure of the fluid when there is no flow, but the eddy fluctuation differential pressure is added via the through hole 4 when the fluid is flowing. When the fluid is a gas, it is compressed and expanded due to this fluctuating pressure difference, causing fluid displacement within the cavity 3 and a change in density. The ultrasonic wave transmitted from the ultrasonic wave transmitter 5 is affected by the propagation speed due to fluid displacement and density change. That is, a phase change occurs.

もし導通孔4が渦発生体の中央に位置した場合
は超音波送波器5に対して流体変位は打消し合う
が密度の変化は生ずるので位相変化は生ずる。ま
た、導通孔4が超音波送波器5の反対側、即ち図
○ロにおいて超音波受波器6側にある場合でも流体
変位に基づく超音波の位相変化と密度変化による
それとでは位相変化の影響が異るので位相変化は
生ずる。
If the conduction hole 4 is located at the center of the vortex generator, the fluid displacements will cancel each other out with respect to the ultrasonic wave transmitter 5, but a change in density will occur, resulting in a phase change. Furthermore, even if the conduction hole 4 is located on the opposite side of the ultrasonic transmitter 5, that is, on the side of the ultrasonic receiver 6 in Fig. Phase changes occur because the influences are different.

このように超音波伝播速度の密度変化に基づく
変調をみると導通孔4は1個でなく複数個を渦発
生体一方側面に開口させてもよいことは明らかで
ある。
Looking at the modulation of the ultrasonic propagation velocity based on density changes as described above, it is clear that not only one but a plurality of through holes 4 may be opened on one side of the vortex generator.

第2図はこの考え方を拡張した場合で、導通孔
4を連続して複数個開口させると同一の効果を得
るために、導通孔4を空室3に通じるスリツトと
したものである。この方法によれば導通口4を介
して空室3に流入するダスト、ミストによつて導
通口を閉塞するというような問題点を取除くこと
ができる。以上渦検出を流体変位とこれによる密
度変化として超音波伝播速度変化に基づく位相変
化として検出することを述べたが、これらの状態
量変化を検出できるものであればよい。
FIG. 2 shows a case where this idea is expanded, and in order to obtain the same effect by opening a plurality of through holes 4 in succession, the through holes 4 are made into slits communicating with the empty chamber 3. According to this method, it is possible to eliminate the problem that the communication port is blocked by dust or mist flowing into the empty chamber 3 through the communication port 4. Although it has been described above that the vortex is detected as a phase change based on a change in ultrasonic propagation velocity as a fluid displacement and a density change due to the fluid displacement, any method that can detect these state quantity changes may be used.

叙上の如く本発明によれば安定した渦流れが得
られ、従つて精度の高い測定ができるという作用
効果がある。また、渦発生体の1側面から渦発生
体内に導入れる流体変位とか密度変化のような流
体変動として検出するので検出要素が渦発生体と
一体的に構成でき、且つ流体変動を検出するので
配管の振動のような外部振動の影響を受けず、更
に渦発生体1側面の1部のみが開口しているだけ
であるから、両側面を導通するようなバイパス流
がないため、バイパス流の変化による流量計の精
度低下もおこらず安価軽量で高精度の渦流量計を
提供できる。
As described above, according to the present invention, a stable vortex flow can be obtained, and therefore highly accurate measurement can be performed. In addition, since it detects fluid fluctuations such as fluid displacement and density changes introduced into the vortex generator from one side of the vortex generator, the detection element can be configured integrally with the vortex generator, and since fluid fluctuations are detected, piping It is not affected by external vibrations such as the vibrations of Therefore, it is possible to provide an inexpensive, lightweight, and highly accurate vortex flowmeter without reducing the accuracy of the flowmeter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図で、○イは矢標方向
の流れに対しての平面図であり、○ロは○イ図のAA
断面図である。第2図は本発明の他の実施例で、
○イは平面図、○ロは○イ図のBB断面図である。尚、
共通番号は第1図、2図とも同じものをしめす。 1……流管、2……渦発生体、3……空室、4
……導通孔、5,6……超音波送受波器、7……
スリツト。
Figure 1 is a diagram explaining the principle of the present invention, where ○A is a plan view of the flow in the direction of the arrow, and ○B is the AA of diagram ○A.
FIG. FIG. 2 shows another embodiment of the invention,
○A is a plan view, and ○B is a BB sectional view of Figure ○A. still,
Common numbers indicate the same numbers in both Figures 1 and 2. 1...flow tube, 2...vortex generator, 3...empty chamber, 4
...Conduction hole, 5, 6...Ultrasonic transducer, 7...
Slits.

Claims (1)

【特許請求の範囲】 1 流管内に流れに対向して配設された渦発生体
から発生する渦周波数が流量に比例することを利
用した渦流量計において、上記渦発生体内に、こ
の渦発生体の軸に平行した空室を穿設し、渦発生
体の1側面にのみ導通孔を設け、この導通孔と前
記空室とを連通し、被測定流体の渦発生に伴う周
期的圧力変動により前記空室内に流入流出する流
体変動を検出することを特徴とする渦流量計。 2 前記導通孔を渦発生体軸とに平行に複数個設
けたことを特徴とする特許請求の範囲第1項記載
の渦流量計。 3 前記導通孔は渦発生体軸に平行なスリツト孔
であることを特徴とする特許請求の範囲第1項記
載の渦流量計。 4 前記空室内に流入流出する被測定流体の流体
変動を密度変化として検出することを特徴とする
特許請求の範囲第1〜第3項いずれかに記載の渦
流量計。 5 前記空室内に流入流出する被測定流体の密度
変化を前記空室内を伝播する超音波の伝播速度の
変調信号として検出することを特徴とする特許請
求の範囲第4項記載の渦流量計。
[Claims] 1. In a vortex flow meter that utilizes the fact that the vortex frequency generated from a vortex generator disposed in a flow tube opposite to the flow is proportional to the flow rate, the vortex generator A cavity parallel to the axis of the body is bored, a conduction hole is provided only on one side of the vortex generating body, and the conduction hole and the cavity are communicated with each other to detect periodic pressure fluctuations due to the generation of vortices in the fluid to be measured. A vortex flow meter characterized by detecting fluctuations in fluid flowing into and out of the chamber. 2. The vortex flowmeter according to claim 1, wherein a plurality of said through holes are provided in parallel to the axis of the vortex generator. 3. The vortex flowmeter according to claim 1, wherein the through hole is a slit hole parallel to the axis of the vortex generator. 4. The vortex flowmeter according to any one of claims 1 to 3, wherein fluid fluctuations in the fluid to be measured flowing in and out of the chamber are detected as changes in density. 5. The vortex flowmeter according to claim 4, wherein a change in the density of the fluid to be measured flowing into and out of the chamber is detected as a modulation signal of the propagation velocity of an ultrasonic wave propagating within the chamber.
JP58123718A 1983-07-07 1983-07-07 Vortex flowmeter Granted JPS6015518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123718A JPS6015518A (en) 1983-07-07 1983-07-07 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123718A JPS6015518A (en) 1983-07-07 1983-07-07 Vortex flowmeter

Publications (2)

Publication Number Publication Date
JPS6015518A JPS6015518A (en) 1985-01-26
JPH0456246B2 true JPH0456246B2 (en) 1992-09-07

Family

ID=14867638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123718A Granted JPS6015518A (en) 1983-07-07 1983-07-07 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS6015518A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610814B2 (en) * 1985-08-09 1997-05-14 三信工業 株式会社 Ship propulsion unit control device
JP2611913B2 (en) * 1993-04-22 1997-05-21 三信工業株式会社 Ship propulsion unit control device
DE10033845A1 (en) 2000-07-12 2002-01-24 Aloys Wobben Pre-stressed concrete tower
KR100991870B1 (en) 2010-02-09 2010-11-04 추태헌 Spacer for strand of prestressed concrete girder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535647A (en) * 1978-09-04 1980-03-12 Sunaga Kaihatsu Kk Automatic ball kind set pitching machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535647A (en) * 1978-09-04 1980-03-12 Sunaga Kaihatsu Kk Automatic ball kind set pitching machine

Also Published As

Publication number Publication date
JPS6015518A (en) 1985-01-26

Similar Documents

Publication Publication Date Title
US3732731A (en) Bluff body flowmeter with internal sensor
US4862750A (en) Vortex shedding fluid velocity meter
EP0152451B1 (en) Planar-measuring vortex-shedding mass flowmeter
EP0547577B1 (en) Double wing vortex flowmeter
US4472022A (en) Vortex flowmeter
US3886794A (en) Flowmeter apparatus and method
US3420102A (en) Acoustic fluid metering device
JPH0456246B2 (en)
JPH0454888B2 (en)
GB1598581A (en) Flowmeters
JPS59187222A (en) Vortex flow-meter
JPS6040914A (en) Vortex flowmeter
CA1139421A (en) Method and apparatus for determining fluid density and mass flow
RU2162206C2 (en) Vortex register of fluid medium
JPH0324607B2 (en)
JPS59180435A (en) Karman vortex flowmeter
GB1533845A (en) Measurement of fluid flow
JPS5880525A (en) Karman vortex flowmeter
JPS6143205Y2 (en)
JPS6033372Y2 (en) mass flow meter
JP2927295B2 (en) Vortex flow meter
KR900006407B1 (en) Spriral flow meter
JPH037780Y2 (en)
JPH081455Y2 (en) Vortex flowmeter
KR0133625Y1 (en) Vibration type flow meter