JPS61292303A - Magnetizing method for permanent magnet - Google Patents
Magnetizing method for permanent magnetInfo
- Publication number
- JPS61292303A JPS61292303A JP60132927A JP13292785A JPS61292303A JP S61292303 A JPS61292303 A JP S61292303A JP 60132927 A JP60132927 A JP 60132927A JP 13292785 A JP13292785 A JP 13292785A JP S61292303 A JPS61292303 A JP S61292303A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnetic field
- block
- magnetized
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、永久磁石の着磁方法に関し、さらに詳しくは
、複数個のFe −B −R系永久磁石単体を相互に接
着したブロックをきわめて均一に着磁する方法に関する
。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method of magnetizing a permanent magnet, and more specifically, to a method for magnetizing a permanent magnet, and more specifically, a block in which a plurality of individual Fe-B-R permanent magnets are bonded to each other. It relates to a method of uniformly magnetizing.
この着磁方法で着磁されたブロックで構成された磁気回
路は、核磁気共鳴映像(NMR−CT)装置の均一磁界
発生装置として最適である。A magnetic circuit constituted by blocks magnetized by this magnetization method is optimal as a uniform magnetic field generating device for a nuclear magnetic resonance imaging (NMR-CT) device.
(従来の技術)
Fe −B −R系磁石は保磁力(’ac ) h残留
磁束密度(Br ) 、最大エネルギー積C(BE)m
ax ]が著しく高く、優れた磁気特性を有している。(Prior art) Fe-B-R magnets have coercive force ('ac) h residual magnetic flux density (Br), maximum energy product C (BE) m
ax ] and has excellent magnetic properties.
このため、NMR−CT装置の磁界発生装置用の永久磁
石として最適である。NMR−CT装置の磁界発生装置
には、相当大きな形状の磁石が必要であるが、現在Fi
農作上の理由から、大きな形状のFe −B−凡系永久
磁石単体は得られていない。そこで、一般に小さな永久
磁石単体を着磁して、相互に接着し、大きな形状のブロ
ックに組立てるという方法が採られている。また、一般
に、比較的小さな形状のFe −B −R系永久磁石単
体の着磁に#i、常電導コイルに瞬時大電流を流して磁
界を発生させるパルス着磁器を用いてhる。Therefore, it is most suitable as a permanent magnet for a magnetic field generator of an NMR-CT apparatus. The magnetic field generator for NMR-CT equipment requires a fairly large magnet, but currently Fi
For agricultural reasons, large-sized Fe-B-common permanent magnets have not been obtained. Therefore, a method generally used is to magnetize small permanent magnets, adhere them to each other, and assemble them into a large block. Generally, a single Fe-B-R permanent magnet having a relatively small shape is magnetized using a pulse magnetizer that generates a magnetic field by instantaneously passing a large current through a normally conducting coil.
(発明が解決しようとする問題点)
NMR−CT装置の磁界発生装置に対する要求はきわめ
て厳しく、高磁界の発生と広い全問内での著しく高い磁
界均一性(例えば、画像形成空間内の磁界が3000G
で磁界均一性が50−以下)を達成しなければならない
のである。これを達成するためKFi、磁石ブロックの
デザインによるが。(Problems to be Solved by the Invention) The requirements for the magnetic field generator of the NMR-CT apparatus are extremely strict, and the requirements are extremely strict for the generation of a high magnetic field and extremely high magnetic field uniformity within a wide area (for example, the magnetic field within the image forming space must be 3000G
The magnetic field uniformity must be 50 or less. To achieve this, KFi depends on the design of the magnetic block.
一般に1磁石ブロックの有する残留磁束密度(Br)が
均一であること、ブロックの形状寸法も設計どおりの高
込精度を有することが必要となる。寸法n度を出すため
に#i、着磁後のブロックの加工が困難なため、組立時
の精度に依存してしまう。Generally, it is necessary that the residual magnetic flux density (Br) of one magnet block is uniform, and that the shape and dimensions of the block have high precision as designed. In order to obtain the dimension #i, it is difficult to process the block after magnetization, so it depends on the accuracy during assembly.
ところで、前述の小さな永久磁石単体を着磁後。By the way, after magnetizing the small permanent magnet mentioned above.
その磁石の引力、斥力の影響下で組立てる方法では1寸
法槽区を高くすることは困難であシ、特にFe −B
−R永久磁石のようKきわめて強力な磁石を組立てるの
はよル困難である。さらKは1着磁後の永久磁石単体を
接着するときく生じる反磁界の影響により、接着の方法
によっては部分減磁によシ磁気特性を損ない、ブロック
での均一な残留磁束密度分布が達成できない。したがっ
て、このような方法で組立てられた磁気回路を用いた磁
界発生装置では、均一磁界を得るのははなはだ困難であ
った。It is difficult to increase the height of the one-dimensional tank area using the method of assembly under the influence of the attractive and repulsive forces of magnets, especially for Fe-B.
-It is very difficult to assemble extremely strong magnets, such as permanent magnets. Moreover, due to the influence of the demagnetizing field that often occurs when a single permanent magnet is bonded after magnetization, depending on the bonding method, the magnetic properties may be damaged due to partial demagnetization, making it impossible to achieve a uniform residual magnetic flux density distribution in the block. . Therefore, it is extremely difficult to obtain a uniform magnetic field in a magnetic field generating device using a magnetic circuit assembled in this manner.
そこで、未着磁の状態の永久磁石単体を相互に接着し、
比較的大きなブロックKまで組立てた後に着磁を行なう
とい・う方法が考えられる。このためには、大きな空芯
コイルを用意し、瞬間的に大電流を流して強い磁界を発
生させ着磁する必要がある。ところが、銅やアルミニウ
ムを用いた空芯コイルに大電流を流す°と、発熱が大き
く、着磁空間に大きな温度ムラが発生する。一方%Fe
−B −R系磁石KFi着磁温度による磁気特性の変
化が著しいという問題も起こる。これらが原因となりて
、ブロックの均一な着磁が困難であることが判明した。Therefore, single unmagnetized permanent magnets were glued together,
A possible method is to perform magnetization after assembling a relatively large block K. To do this, it is necessary to prepare a large air-core coil and instantaneously apply a large current to generate a strong magnetic field and magnetize it. However, when a large current is passed through an air-core coil made of copper or aluminum, a large amount of heat is generated and large temperature irregularities occur in the magnetized space. On the other hand, %Fe
-B -R system magnet KFi There is also the problem that the magnetic properties change significantly depending on the magnetization temperature. It was found that these factors made it difficult to uniformly magnetize the block.
この現象は、ブロックを次々に着磁する場合、熱の蓄積
によ)ひどくなることも判明した。It has also been found that this phenomenon is exacerbated when blocks are magnetized one after another (due to heat build-up).
以上のことから、Fe−B−R系永久磁石の大きなブロ
ックを常電導コイルで着磁するのは困難であり九。From the above, it is difficult to magnetize a large block of Fe-B-R permanent magnets with a normally conducting coil.
本発明は、複数個のFe −B −R系永久磁石単体を
相互に接着してなる比較的大きなブロックt−5きわめ
て均一に着磁する方法を提供し、NMR−CT装置の磁
界発生装置の磁気回路を構成するために最適な均一に着
磁され九永久磁石ブロックを提供することを目的とする
。The present invention provides a method for extremely uniformly magnetizing a relatively large block t-5 made by bonding a plurality of individual Fe-B-R permanent magnets to each other, and the method provides a method for extremely uniformly magnetizing a relatively large block t-5 made by bonding a plurality of individual Fe-B-R permanent magnets to each other. The purpose is to provide nine permanent magnet blocks that are uniformly magnetized and are optimal for constructing a magnetic circuit.
(問題を解決するための手段)
本発明者らは、永久磁石を用いたNMR−CT装置の磁
界発生装置の研究を続けてきた。NMR−CT装置の磁
界発生装置に対して要求されている高磁界の発生と、広
い空間内での著しく高り均一性を達成するためKは、高
保磁力のFe −B −R系永久磁石の大きなブロック
を均一に着磁することが必要であシ、本発明者らは、着
磁方法について鋭意研究を続けてきた。その結果、Fe
−B −R系永久磁石を起電導コイルが発生する磁界
中で着磁すると、相当に大きなブロックでもきわめて均
一に着磁されることを見い出し、本発明を完成するに至
った。(Means for Solving the Problem) The present inventors have continued research on a magnetic field generator for an NMR-CT apparatus using a permanent magnet. In order to generate the high magnetic field required for the magnetic field generator of the NMR-CT apparatus and to achieve extremely high uniformity in a wide space, K is a high-coercivity Fe-B-R permanent magnet. It is necessary to uniformly magnetize a large block, and the inventors of the present invention have continued to conduct intensive research on magnetization methods. As a result, Fe
The present inventors have discovered that when a -B-R permanent magnet is magnetized in a magnetic field generated by an electromotive conducting coil, even a fairly large block can be magnetized extremely uniformly, leading to the completion of the present invention.
すなわち、本発明は%R(但し、RはYf:含む希土類
元素のうち少なくとも1り8原子%〜50原子%、B2
原子%〜28原子%、Fe42原子%〜90原子チを主
成分とし、主相が正方晶からなる複数個の永久磁石単体
を相互に接着してなるブロックを超電導コイルが発生す
る磁界中で着磁することtW徴とする永久磁石の着磁方
法である。That is, the present invention is characterized in that %R (wherein R is Yf: 8 to 50 at% of at least one of the rare earth elements it contains, B2
A block made by bonding together a plurality of permanent magnets whose main components are atomic% to 28 atomic%, Fe42 atomic% to 90 atomic%, and whose main phase is tetragonal is attached in a magnetic field generated by a superconducting coil. This is a method of magnetizing a permanent magnet in which magnetization has a tW characteristic.
以下、本発明をさらに詳しく説明する。The present invention will be explained in more detail below.
本発明の着磁対象磁石であるFe −B −R系永久磁
石は、R(Yを含む希土類元素のうち少なくとも1種)
8原子慢〜30原子%、B2原子%〜28原子係、Fe
42原子−〜90原子%を主成分として主相が正方晶
からなる永久磁石である。The Fe-B-R permanent magnet, which is the magnet to be magnetized according to the present invention, contains R (at least one rare earth element including Y).
8 atoms to 30 atoms%, B2 atoms to 28 atoms, Fe
It is a permanent magnet whose main phase is tetragonal, with the main component being 42 to 90 atom %.
Rは、上記永久磁石にシいて必須元素であ)、8原子俤
未満では、結晶構造がα−Feと同一構造の立方晶組織
が多量に形成されるため高磁気特性、特に高い保磁力(
fHc )が得られず、30原子優を越えると、Rがリ
ッチな非磁性相が多くな)、残留磁束密KCBr)が低
下してしまう。し九がって、Rは8原子%〜30原子チ
の範囲とする。Bは、上記永久磁石において必須元素で
あって、2原子−未満では、菱面体組織となり、高い保
磁力(iHc、)は得られず、2,8原子俤を越えると
、Bがリッチな非°磁性相が多くな)%残留磁束密度(
Br )が低下するため、優れたか久磁石が得られない
。したがって、Bは2原子−〜28原子チの範囲とする
。Feは、上記永久磁石Kかいて必須元素であシ、42
原子−未満では、残留磁束密度(Br )が低下し、9
0原子−を越えると、高い保磁力(iHc )が得られ
ないので、Feは42原子−〜90原子−の範囲とする
。R is an essential element for the above-mentioned permanent magnet), and if it is less than 8 atoms, a large amount of cubic crystal structure with the same crystal structure as α-Fe is formed, resulting in high magnetic properties, especially high coercive force (
fHc) cannot be obtained, and if it exceeds 30 atoms, the R-rich nonmagnetic phase will be large) and the residual magnetic flux density KCBr) will decrease. Therefore, R is in the range of 8 atomic % to 30 atomic %. B is an essential element in the above-mentioned permanent magnet, and if it is less than 2 atoms, it will form a rhombohedral structure and a high coercive force (iHc) will not be obtained, and if it exceeds 2.8 atoms, it will become a B-rich non-magnet. ° There are many magnetic phases) % residual magnetic flux density (
Br ) decreases, making it impossible to obtain an excellent durable magnet. Therefore, B is in the range of 2 atoms to 28 atoms. Fe is an essential element in the permanent magnet K, 42
At less than atomic, the residual magnetic flux density (Br) decreases, and 9
If it exceeds 0 atoms, a high coercive force (iHc) cannot be obtained, so Fe is set in the range of 42 atoms to 90 atoms.
Fe、B、Hの主成分のほか、工業的製造上不可避な不
純物の存在を許容できるが、さらに、reの一部t−C
Oで置換することにより、キューリ一点を上昇させるこ
とができ、また、Bの一部をc、p。In addition to the main components of Fe, B, and H, the presence of unavoidable impurities in industrial production can be tolerated;
By replacing with O, one point of curie can be raised, and a part of B can be replaced with c, p.
S、Cu%Si等により置換することも可能であり、製
造性改善、低価格化が可能となる。It is also possible to replace it with S, Cu%Si, etc., which makes it possible to improve manufacturability and reduce costs.
さらに、三元系基本組成Fe−B−RKAtbTihV
、 Cr %Ni 、Mn %Zr 、Nb 、Mo
、Ta 、W、8n 、Bi 。Furthermore, the ternary basic composition Fe-B-RKAtbTihV
, Cr%Ni, Mn%Zr, Nb, Mo
, Ta, W, 8n, Bi.
8b 、 Ge 、 Hfの1種以上を添加することに
より、高保磁力化が可能となる。結晶相は主相が正方晶
であることが、優れた磁気特性を有するために不可欠で
ある。By adding one or more of 8b, Ge, and Hf, it is possible to increase the coercive force. It is essential that the main crystal phase be tetragonal in order to have excellent magnetic properties.
本発明の着磁方法は、Fe−B−R系泳入磁石以外の高
保磁力磁石、例えは、8mHCog系磁石や13m、C
o、y系磁石など希土類−コバルト系磁石またはこれら
の類似物にも適用できる。The magnetization method of the present invention can be applied to high coercive force magnets other than Fe-BR-based magnets, such as 8mHCog-based magnets, 13m, C.
It can also be applied to rare earth-cobalt based magnets such as o and y based magnets or their analogs.
本発明で用いられる磁石単体としては、−辺数譚の立方
体、直方体、円板、円柱、多角柱が用いられる。接着は
エポキシ系、シアノアクリレート系の有機系接着剤や、
低融点金属によシ行なうことができる。これらの永久磁
石単体を未着磁の状態であらかじめ加工し、接着剤を用
いて相互に接着し、所定の形状に精度よく組立て、ブロ
ックとする。このブロックを超電導コイルの磁界発生空
間に設置する。そして、超電導コイルに通電し、着磁す
る永久磁石の保磁力(iHc )の2倍〜3倍の磁界を
発生させ、〔例えば、保磁力(iHc )12.5 K
OeのFe −B −R系永久磁石では25.0KG以
上の磁界が必要〕着磁を行なう。超電導コイルの電源は
、パルス型が特に好まし匹。As a single magnet used in the present invention, a cube, a rectangular parallelepiped, a disk, a cylinder, and a polygonal prism with several sides are used. For adhesion, use epoxy-based, cyanoacrylate-based organic adhesives,
This can be done with low melting point metals. These individual permanent magnets are processed in advance in an unmagnetized state, adhered to each other using an adhesive, and assembled into a predetermined shape with high precision to form a block. This block is installed in the magnetic field generation space of the superconducting coil. Then, the superconducting coil is energized to generate a magnetic field that is two to three times the coercive force (iHc) of the permanent magnet to be magnetized [for example, the coercive force (iHc) is 12.5 K]
For Oe Fe-B-R permanent magnets, a magnetic field of 25.0 KG or more is required for magnetization. A pulse type power source is especially preferred for superconducting coils.
(作用)
本発明において、超電導コイルにより発生する磁界中で
の着磁によj)、Fe−B−R系永久磁石がきわめて均
一に着磁される作用機構は、次のように考えられる。(Function) In the present invention, the mechanism by which the Fe-BR permanent magnet is extremely uniformly magnetized by magnetization in the magnetic field generated by the superconducting coil is considered to be as follows.
超電導コイルでは、コイルの導線の抵抗がなく、極低温
で作動しているため、コイルの発熱は考える必要がない
。このため、着磁空間における温度は、空温以下に安定
させることができる。さらに、温分布の均一化も容易と
なる。With superconducting coils, there is no resistance in the conductor wires of the coils, and they operate at extremely low temperatures, so there is no need to consider the heat generation of the coils. Therefore, the temperature in the magnetized space can be stabilized below the air temperature. Furthermore, it becomes easier to make the temperature distribution uniform.
(実施例)
常温で残留磁束密度nr=1z、5(xc)、保磁力i
Hc = 10.0 (KOe )%最大エネルギー積
(BH)max = 55.0 (MGOe )で、形
状200厘層×20011X200111(20,、l
lX20雪鳳の磁石単体1000個をエポキシ系接着剤
によシ接着したもの)のNd、、Fe、、B、系永久磁
石ブロックを、超電導コイルにより発生する磁界中で着
磁した。着磁空間の中心磁界は30 KGであシ、磁石
の端の部分でも25 KG以上であった。その結果、得
られた着磁磁石は、優れた磁気特性を示し、きわめて均
一に着磁されていた。上記ブロックを100個次々に(
1個/分)着磁したが、いずれも着磁後の均一性は同一
であった。(Example) Residual magnetic flux density nr = 1z, 5(xc), coercive force i at room temperature
Hc = 10.0 (KOe)% maximum energy product (BH) max = 55.0 (MGOe), shape 200 layers x 20011 x 200111 (20,, l
A Nd, Fe, B permanent magnet block (1,000 individual 1X20 Seiho magnets bonded together using epoxy adhesive) was magnetized in a magnetic field generated by a superconducting coil. The central magnetic field in the magnetized space was 30 KG, and the field at the ends of the magnet was also over 25 KG. As a result, the obtained magnetized magnet exhibited excellent magnetic properties and was extremely uniformly magnetized. 100 of the above blocks one after another (
1 piece/min), but the uniformity after magnetization was the same in all cases.
比較例として、上記と同一材料からなシ、磁気特性が同
一で形状80111X8011X8G1重(20麿層x
20mmx20關の磁石t−64個接着した)のブロッ
クを従来法にしたがい、常電導空芯コイルを用い九空冷
式パルス着磁器で25 KGで着磁した。その結果、磁
気特性の均一性は比較的良好であった。しかし、さらに
実施例と同一の速度で、上記ブロックを連続的に着磁し
たが、着磁空間の温度上昇が認められ、かつ温度ムラも
発生し、均一性は徐々に悪くなった。As a comparative example, a specimen made of the same material as above, with the same magnetic properties and a shape of 80111x8011x8G1 (20 layers x
A block of 20 mm x 20 square magnets (T-64 magnets adhered to each other) was magnetized at 25 KG using a normal conductive air-core coil using a nine air-cooled pulse magnetizer according to the conventional method. As a result, the uniformity of magnetic properties was relatively good. However, even though the blocks were continuously magnetized at the same speed as in the example, an increase in the temperature of the magnetized space was observed, temperature unevenness also occurred, and the uniformity gradually deteriorated.
(発明の効果)
以上の説明よ!ll明らかなように1本発明の着磁方法
によれば、高保磁力かつ大形状のre −B −R系磁
石ブロックを、熱の影響を避け、きわめて均一に着磁す
ることができる。また、着磁前にブロックの加工ができ
るため1寸法精度も高められ、さらに1着磁後のブロッ
クの接着回数が激減できるので、組立精度も高くなる。(Effect of the invention) That's the explanation! As is clear, according to the magnetization method of the present invention, a large-sized re-B-R magnet block with high coercive force can be magnetized extremely uniformly while avoiding the influence of heat. Furthermore, since the blocks can be processed before magnetization, the accuracy of one dimension is improved, and the number of times the blocks are bonded after one magnetization can be drastically reduced, so the assembly accuracy is also improved.
しかも、超電導コイルでは大きな着磁空間も容易にとれ
ることから、ブロックの大きさをさらに大きくすること
もできる。Moreover, since a large magnetization space can be easily obtained in a superconducting coil, the size of the block can be further increased.
これらのことから、本発明にしたがい%Fe −B−R
系永久磁石を用いて、NMR−CT装置の磁界発生装置
の磁気回路を作成するならば、容易に均一磁界を得るこ
とができる。From these facts, according to the present invention, %Fe -B-R
If the magnetic circuit of the magnetic field generator of the NMR-CT apparatus is created using permanent magnets, a uniform magnetic field can be easily obtained.
Claims (1)
1種)8原子%〜30原子%、B2原子%〜28原子%
、Fe42原子%〜90原子%を主成分とし、主相が正
方晶からなる複数個の永久磁石単体を相互に接着してな
るブロックを超電導コイルが発生する磁界中で着磁する
ことを特徴とする永久磁石の着磁方法。R (wherein R is at least one rare earth element including Y) 8 at% to 30 at%, B2 at% to 28 at%
, a block consisting of a plurality of permanent magnets whose main component is Fe42 to 90 atom% and whose main phase is tetragonal is magnetized in a magnetic field generated by a superconducting coil. How to magnetize permanent magnets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60132927A JPS61292303A (en) | 1985-06-20 | 1985-06-20 | Magnetizing method for permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60132927A JPS61292303A (en) | 1985-06-20 | 1985-06-20 | Magnetizing method for permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61292303A true JPS61292303A (en) | 1986-12-23 |
Family
ID=15092754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60132927A Pending JPS61292303A (en) | 1985-06-20 | 1985-06-20 | Magnetizing method for permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61292303A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH077110U (en) * | 1993-06-22 | 1995-01-31 | 信越化学工業株式会社 | Magnetizer |
-
1985
- 1985-06-20 JP JP60132927A patent/JPS61292303A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH077110U (en) * | 1993-06-22 | 1995-01-31 | 信越化学工業株式会社 | Magnetizer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0645641B1 (en) | Improvements in or relating to MRI magnets | |
Strnat | Modern permanent magnets for applications in electro-technology | |
Herbst et al. | Neodymium-iron-boron permanent magnets | |
US5631616A (en) | Magnetic field generating device for use in MRI | |
US5621324A (en) | Magnetic field generator for MRI | |
US7345560B2 (en) | Method and apparatus for magnetizing a permanent magnet | |
US6348275B1 (en) | Bulk amorphous metal magnetic component | |
JP2011139075A (en) | High performance bulk metal magnetic component | |
US4920326A (en) | Method of magnetizing high energy rare earth alloy magnets | |
JPH05182821A (en) | Magnetic field generator for mri | |
JPS6076110A (en) | Assembling and magnetizing method for magnetic circuit | |
JPS61292303A (en) | Magnetizing method for permanent magnet | |
GB2282451A (en) | Yoke MRI magnet with radially laminated pole-plates | |
Gould | Permanent magnets | |
JP2649436B2 (en) | Magnetic field generator for MRI | |
Harris et al. | Magnetic materials | |
Yoneyama et al. | High performance RFeCoZrB bonded magnets having low Nd content | |
JP3073933B2 (en) | Magnetic field generator for MRI | |
JP3445303B2 (en) | Magnetic field generator for MRI | |
JPH0320045B2 (en) | ||
JPH09131025A (en) | Method of magnetizing permanent magnet | |
JPH02140908A (en) | Magnetization method | |
JP3113438B2 (en) | Magnetic field generator for MRI | |
JP3073934B2 (en) | Magnetic field generator for MRI | |
JPH05144628A (en) | Magnetic field generator |