JPS61290806A - Photodetection circuit for optical communication - Google Patents

Photodetection circuit for optical communication

Info

Publication number
JPS61290806A
JPS61290806A JP60131814A JP13181485A JPS61290806A JP S61290806 A JPS61290806 A JP S61290806A JP 60131814 A JP60131814 A JP 60131814A JP 13181485 A JP13181485 A JP 13181485A JP S61290806 A JPS61290806 A JP S61290806A
Authority
JP
Japan
Prior art keywords
impedance
light
current
photodiode
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60131814A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsuda
博之 松田
Morihiko Hayashi
守彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information Technology Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Communication Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Communication Systems Inc filed Critical Hitachi Ltd
Priority to JP60131814A priority Critical patent/JPS61290806A/en
Publication of JPS61290806A publication Critical patent/JPS61290806A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To receive stably an optical signal from a minute input to a large input even under communication environment of external light by connecting a load impedance circuit where a photodetector element and an active element whose impedance is increased at a modulation frequency region are connected in series to a prescribed potential point. CONSTITUTION:In making signal light subjected to intensity modulation including external disturbing light due to space propagation incident in a photodiode 1 and a photoconductive element 2, with respect to a high frequency component of the photo current subjected to photoelectric conversion by the photodiode (photodetector) 1, that is, the current of the modulation frequency component of the signal light, since the impedance of capacitors 4, 5 is sufficiently low, the current flows to the capacitor 5 almost through the photoconductive element (impedance element)2, the capacitor 4 and a resistor 3. On the other hand, the low frequency component of the light current subjected to photoelectric conversion by the diode 1, that is, the current of noise component of the external disturbing light becomes partly a base current of a transistor 6 via a resistor 3, because the impedance of the capacitors 4, 5 is sufficiently high conversely for the high frequency component current.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光通信用の光受信機に係り、特に空間伝播によ
る強度変調された光信号を受信するに好適な光通信用受
光回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical receiver for optical communication, and particularly to a light receiving circuit for optical communication suitable for receiving an optical signal whose intensity is modulated by spatial propagation.

〔発明の背景〕[Background of the invention]

従来から空間伝播による近距離光空間通信は一般家庭ま
たは工場等での各種機器制御等に多く利用されている。
2. Description of the Related Art Short-distance optical space communications using spatial propagation have been widely used for controlling various types of equipment in homes, factories, and the like.

これらの光空間通信では一般に送信機と受信機の距離が
一定しないうえに、太陽光や照明光等の外乱光の影響が
大きいため、   “その受光回路は微小入力から大入
力までの光信号を安定に受光するとともに、外乱光を除
去して必要な光信号成分のみを抽出する必要がある。
In these types of optical space communications, the distance between the transmitter and receiver is generally not constant, and the influence of disturbance light such as sunlight and illumination light is large. In addition to stably receiving light, it is necessary to remove disturbance light and extract only necessary optical signal components.

従来このような受光回路としては、例えば実公昭59−
10835号公報に示されるよう罠、受光素子の負荷抵
抗として光電素子を利用したものが知られている。この
受光回路は、受光素子の負荷抵抗である光導電素子が光
入力レベルの強度に比例して抵抗値を変化させるため、
信号光または外乱光の光入力レベルが高い場合には負荷
抵抗の値を低くして受光素子の感度を低下させること罠
より、受光素子が飽和することなく光信号を受信可能に
するものである。
Conventionally, as such a light receiving circuit, for example,
As shown in Japanese Patent No. 10835, a trap using a photoelectric element as a load resistance of a light receiving element is known. In this light receiving circuit, the photoconductive element, which is the load resistance of the light receiving element, changes its resistance value in proportion to the intensity of the optical input level.
When the optical input level of signal light or disturbance light is high, the value of the load resistance is lowered to reduce the sensitivity of the light receiving element, which allows the light receiving element to receive optical signals without becoming saturated. .

しかしこの受光回路では、負荷抵抗値が本来の信号光だ
けでなく外光乱に対しても同一レベルで変化するため、
外光乱の強度に対して信号光の受信感度が変化して、外
乱光の強い通信環境では通信可能距離が短くなるという
問題があった。また一般に近距離光空間通信における外
乱光の雑音成分はそのほとんどが商用周波数付近の直流
を含む低周波帯域であることが知られていて、このため
光信号の変調周波数は8/N向上のためできるだけ高い
周波数を用いているが、この受光回路では光入力レベル
に比例して受信感度が変化しても、光電変換の周波数特
性が受光素子に依存して低周波成分の雑音を除くフィル
タ機能を有しない。このため不要な低周波の雑音を除去
して高周波の信号成分を取り出すには、後段の増幅回路
でフィルタ回路が必要となるので、光受信機の回路構成
が複雑で高価になる等の問題もあった。
However, in this light receiving circuit, the load resistance value changes at the same level not only due to the original signal light but also due to external light disturbance.
There is a problem in that the reception sensitivity of signal light changes with the intensity of external light disturbance, and the communicable distance becomes short in a communication environment with strong external light disturbance. In addition, it is generally known that most of the noise components of disturbance light in short-distance optical space communications are in the low frequency band including direct current near the commercial frequency, and therefore the modulation frequency of the optical signal is improved by 8/N. Although a frequency as high as possible is used, in this photodetector circuit, even if the receiving sensitivity changes in proportion to the optical input level, the frequency characteristics of photoelectric conversion depend on the photodetector, and the filter function that removes low frequency component noise cannot be performed. I don't have it. Therefore, in order to remove unnecessary low-frequency noise and extract high-frequency signal components, a filter circuit is required in the subsequent amplifier circuit, which causes problems such as making the optical receiver's circuit configuration complicated and expensive. there were.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記した従来技術の問題点を解決し、簡
単で安価な回路構成で受光素子の負荷回路にフィルタ機
能およびAGC機能の両方を実現して、外乱光の強い通
信環境下でも微小入力から大入力までの光信号を安定に
受信できる光通信用受光回路を提供するにある。
The purpose of the present invention is to solve the problems of the prior art described above, to realize both a filter function and an AGC function in the load circuit of a light receiving element with a simple and inexpensive circuit configuration, and to achieve micro An object of the present invention is to provide a light receiving circuit for optical communication that can stably receive optical signals from input to large input.

〔発明の概要〕[Summary of the invention]

本発明は光通信とくに光空間通信用の受光回路において
、受光素子の負荷インピーダンス回路を通信に必要な光
入力信号のレベルの増加に比例してインピーダンスが低
くなるインピーダンス素子(光導電素子等)と、光入力
信号の変調周波数領域でインピーダンスが高くなる能動
素子回路とを直列に接続して構成することKより、上記
受光素子と負荷インピーダンス回路の接続点から光入力
信号の変調周波数領域のみに反応し、かつ光入力信号の
レベルに応じた電気信号を得るような高周波フィルタ機
能とAGO機能の両方を簡単で安価な回路構成で実現し
た光通信用受光回路である。
The present invention provides a light receiving circuit for optical communication, particularly optical space communication, in which the load impedance circuit of the light receiving element is replaced with an impedance element (such as a photoconductive element) whose impedance decreases in proportion to an increase in the level of an optical input signal necessary for communication. By connecting in series an active element circuit whose impedance is high in the modulation frequency region of the optical input signal, the connection point between the light receiving element and the load impedance circuit responds only to the modulation frequency region of the optical input signal. The present invention is a light-receiving circuit for optical communication that realizes both a high-frequency filter function and an AGO function for obtaining an electric signal according to the level of an optical input signal with a simple and inexpensive circuit configuration.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例を図により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図は本発明による光通信用受信回路の一実施例を示す回
路図である。図において、1は信号受光用のホトダイオ
ード(受光素子)、2は入射光の強度の増加に伴って抵
抗(インピーダンス)が低くなる光導電素子(インピー
ダンス素子)、3は抵抗、4および5は各コンデンサ、
6はトランジスタ(能動素子)、7は交流バイパス用の
コンデンサ、8は信号増幅器、9は直流電源、10は出
力端子である。このホトダイオード1のカソード側は直
流電源9の陽極に接続され、同じくアノード側は光導電
素子2と抵抗3とコンデンサ7の各一端とトランジスタ
6のコレクタとに接続され、かつ光導電素子2の他端は
コンデンサ4の一端に接続される。またトランジスタ6
0ペースはコンデン9−4と抵抗3の各他端とコンデン
サ5の一端とに接続され、トランジスタ6のエミッタと
コンデンサ5の他端と直流1源9の陰櫃とは共通に接地
され、さらにコンデンサ7の他端は信号増幅器8を介し
て出力端子10へ接続される。
The figure is a circuit diagram showing an embodiment of an optical communication receiving circuit according to the present invention. In the figure, 1 is a photodiode (light receiving element) for signal reception, 2 is a photoconductive element (impedance element) whose resistance (impedance) decreases as the intensity of incident light increases, 3 is a resistor, and 4 and 5 are each capacitor,
6 is a transistor (active element), 7 is an AC bypass capacitor, 8 is a signal amplifier, 9 is a DC power supply, and 10 is an output terminal. The cathode side of this photodiode 1 is connected to the anode of a DC power supply 9, and the anode side is also connected to one end of each of the photoconductive element 2, the resistor 3, the capacitor 7, and the collector of the transistor 6. The end is connected to one end of the capacitor 4. Also transistor 6
The 0 pace is connected to the capacitor 9-4, each other end of the resistor 3, and one end of the capacitor 5, and the emitter of the transistor 6, the other end of the capacitor 5, and the shade of the DC 1 source 9 are commonly grounded. The other end of the capacitor 7 is connected to an output terminal 10 via a signal amplifier 8.

なお図の光導電素子2と、抵抗3と、コンデンサ4,5
と、トランジスタ6とはホトダイオード1の負荷インピ
ーダンス回路を構成する。
Note that the photoconductive element 2, resistor 3, and capacitors 4 and 5 shown in the figure
and transistor 6 constitute a load impedance circuit for photodiode 1.

ここでコンデンサ4,5の容量値は光信号成分の高周波
領域では十分に低いインビーダンとなる一方、外乱光の
主な雑音成分とされる低周波領域では十分に高いインピ
ーダンスとなるような値に選び、抵抗3の抵抗値は光導
電素子2に入力する信号光が微弱なさいに抵抗3と光導
電素子2およびコンデンサ4との並列インピーダンスが
ホトダイオード1の内部接合容量と信号光の変調周波数
とのかね合いで可能な限り高インピーダンスとなるよう
に選定する。
Here, the capacitance values of the capacitors 4 and 5 are selected so that the impedance is sufficiently low in the high frequency region of the optical signal component, and the impedance is sufficiently high in the low frequency region, which is the main noise component of the disturbance light. Since the signal light input to the photoconductive element 2 is weak, the resistance value of the resistor 3 is determined by the parallel impedance of the resistor 3, the photoconductive element 2, and the capacitor 4, which is a combination of the internal junction capacitance of the photodiode 1 and the modulation frequency of the signal light. The impedance should be selected to have as high an impedance as possible.

つぎに上記の構成および選定値においてホトダイ万一ド
1および光導電素子2へ空間伝播等による外乱光を含む
強度変調された信号光が入射したさいの動作をホトダイ
オード1の負荷インピーダンス回路のイン、ビーダンス
の変化を中心に詳しく説明する。まずホトダイオード(
受光素子)1で光電変換された光電流の高周波成分すな
わち信号光の変調周波数成分の電流(電気信号)につい
ては、コンデンサ4,5のインビーダンスが十分に低い
ため、はとんど光導電素子(インピーダンス素子)2お
よびコンデンサ4と抵抗3とを通ってコンデンf5¥C
流れる。
Next, with the above configuration and selected values, the operation when intensity-modulated signal light including disturbance light due to spatial propagation etc. is incident on the photodiode 1 and the photoconductive element 2 is explained as follows: A detailed explanation will be given focusing on the changes in beadance. First, the photodiode (
Regarding the high-frequency component of the photocurrent photoelectrically converted by the photodetector (light receiving element) 1, that is, the current (electrical signal) of the modulation frequency component of the signal light, the impedance of the capacitors 4 and 5 is sufficiently low, so it is mostly photoconductive. Capacitor f5¥C passes through element (impedance element) 2, capacitor 4 and resistor 3
flows.

このためトランジスタ(能動素子)60ベース電流はほ
とんど流れず、実質上トランジスタ6のコレクタ・エミ
ッタ間はカットオフの状態となり、このときホトダイオ
ード1の負荷インピーダンスはほぼ光導電素子2と抵抗
3との並列インピーダンスとなる。ここで光導電素子2
は信号光の強度の増加量に比例して抵抗値が低くなるの
で、ホトダイオード1の負荷インピーダンスも同様に信
号光の強度の増加に比例して低下する。このことは信号
光の強度の増加によるホトダイオード1の電流の増加に
対して、その負荷インピーダンス回路の負荷インピーダ
ンスを低下させることにより、ホトダイオード1のアノ
ード端子からの出力電圧を一定化するいわゆる信号光の
AGO機能として動作することを示す。
Therefore, almost no base current flows through the transistor (active element) 60, and the collector-emitter of the transistor 6 is substantially in a cut-off state. It becomes impedance. Here, photoconductive element 2
Since the resistance value of the photodiode 1 decreases in proportion to the increase in the intensity of the signal light, the load impedance of the photodiode 1 similarly decreases in proportion to the increase in the intensity of the signal light. This means that when the current of the photodiode 1 increases due to an increase in the intensity of the signal light, the output voltage from the anode terminal of the photodiode 1 is kept constant by lowering the load impedance of the load impedance circuit. Indicates that it operates as an AGO function.

一方でホトダイオード1で光電変換された光電流の低周
波成分つまり外乱光の雑音成分の電流については、高周
波成分の電流とは逆にコンデンサ4,5のインピーダン
スが十分に高いため、その一部が抵抗3を介してトラン
ジスタ6のペース電流となる。このときトランジスタ6
のコレクタにはペース電流を電流増幅率h F !+倍
した電流が流れる。ここでトランジスタ6の電流増幅率
hyzは一般に数100以上のものが容易に入手可能で
あることから、このトランジスタ6のコレクタ・エミッ
タ間はほに導通状態とみなすことができ、このときホト
ダイオード1の負荷インピーダンスは高周波成分に対す
るインピーダンスに比較して十分に低くなる。このこと
は低周波領域を主な雑音成分とする外乱光に対しては、
高周波領域の信号光に対するよりも負荷インピーダンス
を十分に低下させることにより、ホトダイオード1のア
ノード端子に電圧として出力されず、受光回路が反応し
ないことを示す。すなわちホトダイオード1の負荷イン
ピーダンス回路はその接続点から出力端子10への低周
波領域の外乱光の電流を除去して、高周波領域の信号光
の電流のみを通過させるいわゆる入射光の高周波フィル
タ4!!!能として動作することを示す。また信号光の
AGC機能に対する外乱光の影響については、低周波領
域の雑音成分九対してコンデンサ4は十分く高いインピ
ーダンスとなるので、光導電素子2.に外乱光が入射し
て光導電素子2の抵抗値が変化しても、高周波領域の信
号光成分く対するホトダイオード1の負荷インピーダン
スは実質上変化せず、したがって外乱光は信号光のAG
C機能に影響を与えない。
On the other hand, regarding the low frequency component of the photocurrent photoelectrically converted by the photodiode 1, that is, the current of the noise component of the disturbance light, a part of it is This becomes a pace current for the transistor 6 via the resistor 3. At this time, transistor 6
The pace current is applied to the collector of the current amplification factor h F ! + times the current flows. Here, since the current amplification factor hyz of the transistor 6 is generally easily available with a value of several hundred or more, the collector-emitter of the transistor 6 can be considered to be in a very conductive state, and at this time, the current amplification factor hyz of the photodiode 1 The load impedance is sufficiently low compared to the impedance for high frequency components. This means that for disturbance light whose main noise component is in the low frequency region,
By sufficiently lowering the load impedance compared to the signal light in the high frequency region, no voltage is output to the anode terminal of the photodiode 1, and the light receiving circuit does not react. That is, the load impedance circuit of the photodiode 1 removes the current of the disturbance light in the low frequency range from the connection point to the output terminal 10, and passes only the current of the signal light in the high frequency range. ! ! This indicates that it operates as a function. Regarding the influence of disturbance light on the AGC function of the signal light, since the capacitor 4 has a sufficiently high impedance with respect to the noise component 9 in the low frequency region, the photoconductive element 2. Even if the resistance value of the photoconductive element 2 changes due to disturbance light being incident on the photoconductive element 2, the load impedance of the photodiode 1 for the signal light component in the high frequency region does not substantially change.
Does not affect C functions.

ついで入射光の周波説領域によるホトダイオード1の負
荷インピーダンスの変化を具体的な数式で求めて示す。
Next, the change in the load impedance of the photodiode 1 due to the frequency range of the incident light will be determined and shown using a specific mathematical formula.

いまホトダイオード1の負荷インピーダンス回路の負荷
インピーダンスを21光導電素子2およびコンダンf4
と抵抗3との並列インピーダンスをR21コンデンサ5
のインピーダンスをル、トランジスタ6のベース抵゛抗
をrB、同じく電流増幅率をhFKとすると、ホトダイ
オード1の負荷インピーダンス回路のインピーダンス2
は近似的に次式で与えられる。
Now, the load impedance of the load impedance circuit of photodiode 1 is determined by 21 photoconductive element 2 and conductor f4.
The parallel impedance of R21 and resistor 3 is R21 capacitor 5
If the impedance of the photodiode 1 is R, the base resistance of the transistor 6 is rB, and the current amplification factor is hFK, then the impedance 2 of the load impedance circuit of the photodiode 1 is
is approximately given by the following equation.

そこで信号光の高周波領域の負荷インピーダンス2をz
(H)とし、外乱光の主な雑音成分の低周波領域の負荷
インピーダンスZをZ(L)として(1)式により求め
る。ここでコンデンサのインピーダンスRIcは高周波
領域でRc(IK)=0、低周波領域でR1’(t、)
=■となるように選定しているので近似的に次式が得ら
れる。
Therefore, the load impedance 2 in the high frequency region of the signal light is z
(H) and the load impedance Z in the low frequency region of the main noise component of the disturbance light is determined by equation (1) as Z(L). Here, the impedance RIc of the capacitor is Rc (IK) = 0 in the high frequency region and R1' (t,) in the low frequency region.
Since the selection is made so that = ■, the following equation can be approximately obtained.

Z(+1)吟 几z(2) (2) 、 +3)式より高周波領域の負荷インピーダ
ンスZ(i)と低周波領域の負荷インピーダンスZ(L
)の比を求めると次式となる。
From equations (2) and +3), the load impedance Z(i) in the high frequency region and the load impedance Z(L
) is calculated as follows.

(4)式において通常のトランジスタ6のhν鳶は数1
00以上であり、ペース抵抗rBは並列インビ−ダンス
Rzと同じオーダの値であることから、ホトダイオード
1の高周波領域と低周波領域の負荷インピーダンス比Z
(1/Z(b)は一般に100(40dB)以上の値を
示す。よってホトダイオード1のアノード端子より外乱
光を含む信号光の電流を取り出すのに、ホトダイオード
1の負荷インピーダンス回路は外乱光の主な雑音成分の
低周波領域の電流を除去して信号光の高周波領域の電流
のみを通過させる高周波フィルタ機能として働くことを
示す。
In equation (4), hν of the normal transistor 6 is expressed by the formula 1
00 or more, and since the pace resistance rB has a value of the same order as the parallel impedance Rz, the load impedance ratio Z of the high frequency region and the low frequency region of the photodiode 1 is
(1/Z(b) generally has a value of 100 (40 dB) or more. Therefore, in order to extract the current of the signal light including the disturbance light from the anode terminal of the photodiode 1, the load impedance circuit of the photodiode 1 is the main source of the disturbance light. This shows that the filter functions as a high-frequency filter that removes the current in the low-frequency region of the noise component and passes only the current in the high-frequency region of the signal light.

また(2)式により信号光の高周波領域の負荷インピー
ダンスZ(1)は光導電素子2およびコンデンサ4と抵
抗3との並列インピーダンスR,z ICはぼ等しいこ
とが分るが、この信号光の強度に対する並列インピーダ
ンスRzの変化を具体的な数式で求めると次のようにな
る。すなわち、いま光導電素子2の抵抗値をrP、コン
タクf4のインピーダンスをrc、抵抗3の抵抗値をr
Rlとすると、並列インピーダンスRzは次式で与えら
れる。
Also, from equation (2), it can be seen that the load impedance Z(1) in the high frequency region of the signal light is approximately equal to the parallel impedance R,z IC of the photoconductive element 2, the capacitor 4, and the resistor 3. The change in parallel impedance Rz with respect to intensity is determined using a specific formula as follows. That is, now the resistance value of photoconductive element 2 is rP, the impedance of contact f4 is rc, and the resistance value of resistor 3 is rP.
If Rl is Rl, the parallel impedance Rz is given by the following equation.

ここでコンタク+4のインピーダンスr、は高周波領域
で7”a(11):Oとなるように選定しているので、
高周波領域の並列インピーダンスRzをRg(ir)と
すると、(5)式から次の近似式が得られ(6)弐にお
いて抵抗3の抵抗値7”Rは一定であり、光導電素子2
の抵抗値rアは信号光の強度の増加に伴い減少するので
、並列インピーダンスR2(H)も同様に抵抗値J”p
の変化に比例して減少することが分る。すなわち信号光
の強度に対してホトダイオード1の負荷インピーダンス
回路の負荷インピーダンスZ(i)つまり並列インピー
ダンスFLz (!I )が変化することKより、信号
光のAGC機能として働くことを示す。一方の低周波領
域の外乱光による並列インピーダンスRzへの影響につ
いては、(5)式においてコンタクf4のインピーダン
スrcは低周波領域で7”c(L) =ωとなるよう忙
選定しているので、低周波領域の並列インピーダンスR
rzをRZ(I、)とすると、(5)式から次の近似式
が得られる。
Here, the impedance r of the contact +4 is selected to be 7"a(11):O in the high frequency region, so
If the parallel impedance Rz in the high frequency region is Rg(ir), the following approximate expression is obtained from equation (5).
Since the resistance value ra decreases as the intensity of the signal light increases, the parallel impedance R2(H) similarly decreases the resistance value J''p.
It can be seen that it decreases in proportion to the change in . That is, the fact that the load impedance Z(i), that is, the parallel impedance FLz (!I) of the load impedance circuit of the photodiode 1 changes with respect to the intensity of the signal light, indicates that it functions as an AGC function of the signal light. Regarding the influence of disturbance light in the low frequency region on the parallel impedance Rz, in equation (5), the impedance rc of the contact f4 is selected so that 7''c(L) = ω in the low frequency region. , parallel impedance R in the low frequency region
When rz is RZ(I,), the following approximate expression is obtained from equation (5).

Rz(b)、rR(7) すなわち低周波領域の並列インピーダンス&(1,)は
抵抗値?”Hによって決まり、光導電素子2の抵抗値r
pの影響を受けない。よって外乱光の低周波領域の主な
雑音成分は信号光の強度に対する負荷インピーダンス回
路の負荷インピーダンスZ(H>の変化つまり信号光の
AGC機能に全く影響を与えないことを示す。
Rz(b), rR(7) In other words, is the parallel impedance in the low frequency region &(1,) the resistance value? ”H, and the resistance value r of the photoconductive element 2
Not affected by p. This shows that the main noise component in the low frequency region of the disturbance light has no effect on the change in the load impedance Z (H>) of the load impedance circuit with respect to the intensity of the signal light, that is, on the AGC function of the signal light.

以上のように本実施例の光通信用受光回路において、ホ
トダイオード(受光素子)1の負荷インピーダンス回路
を光導電素子(インピーダンス素子)2と、抵抗3およ
びコンタクf4゜5およびトランジスタ(lfI動素子
)6を含む能動素子回路とを直列に接続して構成するこ
とにより、ホトダイオード1と負荷インピーダンス回路
の接続点から光入力信号の変調周波数領域のみに反応し
かつ光入力信号のレベルに応じた電気信号を得るような
高周波フィルタ機能とAGCfll能の両方を簡単で安
価な回路構成で実現できる。
As described above, in the light receiving circuit for optical communication of this embodiment, the load impedance circuit of the photodiode (light receiving element) 1 is composed of the photoconductive element (impedance element) 2, the resistor 3, the contact f4゜5, and the transistor (lfI dynamic element). By connecting the photodiode 1 and the active element circuit including 6 in series, an electrical signal that responds only to the modulation frequency region of the optical input signal and that corresponds to the level of the optical input signal is generated from the connection point between the photodiode 1 and the load impedance circuit. Both the high frequency filter function and the AGC full function can be realized with a simple and inexpensive circuit configuration.

〔発明の効果〕〔Effect of the invention〕

以上の説明のように本発明によれば、簡単で安価な回路
構成で光通信用受光回路に外乱光による雑音の影響を除
去するフィルタ機能と、光信号の入力レベルに応じて微
小入力から大入力までを安定に受光するAGC機能を実
現でよるので、外来雑音光の多い通信環境下においても
従来回路に比較して一般に20dB以上のSN比の向上
が可能で、通信可能距離を拡大できる効果がある。特に
不特定多数の受光回路を設ける拡散方式による空間光空
間通信に使用した場合にはその効果は著しいものがある
As described above, according to the present invention, a light receiving circuit for optical communication has a filter function that removes the influence of noise caused by disturbance light with a simple and inexpensive circuit configuration, and a filter function that can be applied to a light receiving circuit for optical communication using a simple and inexpensive circuit configuration. Because it realizes the AGC function that stably receives light up to the input, it is generally possible to improve the S/N ratio by 20 dB or more compared to conventional circuits, even in communication environments with a lot of external noise light, and the effect of expanding the communication distance. There is. In particular, the effect is remarkable when used in spatial optical communication using a diffusion method in which an unspecified number of light receiving circuits are provided.

【図面の簡単な説明】[Brief explanation of drawings]

11図は本発明による光通信用受光回路の一実施例を示
す回路図である。 1・・・受光素子、2・・・光導電素子(インピーダン
ス素子)、3・・・抵抗、4,5・・・コンデンサ、6
・・・トランジスタ(能動素子)、7・・・交流バイパ
ス用コンデノナ、8・・・信号増幅器、9・・・直流電
流、10・・・出力端子。
FIG. 11 is a circuit diagram showing an embodiment of a light receiving circuit for optical communication according to the present invention. 1... Light receiving element, 2... Photoconductive element (impedance element), 3... Resistor, 4, 5... Capacitor, 6
. . . Transistor (active element), 7. AC bypass conductor, 8. Signal amplifier, 9. Direct current, 10. Output terminal.

Claims (1)

【特許請求の範囲】[Claims] 変調された光信号を受光する受光素子と、光入力信号の
レベルの増加に伴ってインピーダンスが低くなるインピ
ーダンス素子および光入力信号の変調周波数領域でイン
ピーダンスが高くなる能動素子回路を直列に接続した負
荷インピーダンス回路とを、所定の電位点の間に直列に
接続して、上記受光素子と負荷インピーダンス回路の接
続点から光入力信号の変調周波数領域のみに反応しかつ
光入力信号のレベルに応じた電気信号を得るようにした
光通信用受光回路。
A load in which a photodetector that receives a modulated optical signal, an impedance element whose impedance decreases as the level of the optical input signal increases, and an active element circuit whose impedance increases in the modulation frequency region of the optical input signal are connected in series. An impedance circuit is connected in series between a predetermined potential point, and an electric current that responds only to the modulation frequency region of the optical input signal and responds to the level of the optical input signal from the connection point of the light receiving element and the load impedance circuit is connected in series between predetermined potential points. A light receiving circuit for optical communication that obtains signals.
JP60131814A 1985-06-19 1985-06-19 Photodetection circuit for optical communication Pending JPS61290806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131814A JPS61290806A (en) 1985-06-19 1985-06-19 Photodetection circuit for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131814A JPS61290806A (en) 1985-06-19 1985-06-19 Photodetection circuit for optical communication

Publications (1)

Publication Number Publication Date
JPS61290806A true JPS61290806A (en) 1986-12-20

Family

ID=15066727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131814A Pending JPS61290806A (en) 1985-06-19 1985-06-19 Photodetection circuit for optical communication

Country Status (1)

Country Link
JP (1) JPS61290806A (en)

Similar Documents

Publication Publication Date Title
KR100279546B1 (en) Receiving light amplifying device
US4642453A (en) Apparatus for increasing the dynamic range in an integrating optoelectric receiver
EP0367184B1 (en) First stage circuit for an optical receiver
CN112969111B (en) OAM demodulation circuit for optical module and optical module
JPS61290806A (en) Photodetection circuit for optical communication
JPH05227104A (en) Light receiver
JPS5923642A (en) Front end circuit for infrared ray receiver
GB2202624A (en) Optimum biasing system for electronic devices
US4793000A (en) Light signal receiver
JPH09260960A (en) Optical receiving amplifier
JPH10173449A (en) Optical receiver circuit
JPS5941556Y2 (en) Light receiving circuit
JPS6295036A (en) Optical signal receiver
JPS60117930A (en) Photo-electric conversion circuit
JPS61147611A (en) Agc circuit
JPH021634A (en) Light-receiving circuit
JPS6125335A (en) Reception circuit of optical signal
AU752142B2 (en) Dual sensing opto-electronic receiver
JPH04326023A (en) Photoelectric conversion device
JPH07135488A (en) Light receiving circuit for av optical space transmission
JPH0214605A (en) Optical reception circuit
JPH02164112A (en) Optical receiver
JPH01101012A (en) Light receiving circuit
JPS61200708A (en) Circuit for receiving and amplifying light
JPS62123811A (en) Optical reception circuit