JPS5941556Y2 - Light receiving circuit - Google Patents
Light receiving circuitInfo
- Publication number
- JPS5941556Y2 JPS5941556Y2 JP11277476U JP11277476U JPS5941556Y2 JP S5941556 Y2 JPS5941556 Y2 JP S5941556Y2 JP 11277476 U JP11277476 U JP 11277476U JP 11277476 U JP11277476 U JP 11277476U JP S5941556 Y2 JPS5941556 Y2 JP S5941556Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- frequency
- negative feedback
- phototransistor
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Switches Operated By Changes In Physical Conditions (AREA)
- Electronic Switches (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
【考案の詳細な説明】
本考案は、高い変調周波数の投光器を使用する光電スイ
ッチの受光器に最適な受光回路に関する高感度を要求さ
れ、しかも外乱光や電気ノイズなどの影響を極端に受け
るおそれのある光電スイッチたとえば長距離用の赤外線
防犯警報装置にお・いでは、投光器の変調周波数を従来
より1桁以上高くして要求を満足させようとする場合が
ある。[Detailed description of the invention] This invention requires high sensitivity for a light receiving circuit that is ideal for the receiver of a photoelectric switch that uses a light emitter with a high modulation frequency, and is also at risk of being extremely affected by ambient light, electrical noise, etc. In some photoelectric switches, such as long-distance infrared security alarm systems, the modulation frequency of the projector may be increased by an order of magnitude or more to meet the requirements.
即ちこの種光源スイッチにおいて、従来変調周波数は数
KHzであったがこれを数10KHzで変調したり、あ
るいは数10KHzの変調周波数を更に数100 H
zの低い周波数で2重変調する方式が実用化されつつあ
る。In other words, in this type of light source switch, the conventional modulation frequency was several KHz, but this can be modulated to several tens of KHz, or the modulation frequency of several tens of KHz can be further increased to several hundred HHz.
A method of double modulation at a low frequency of z is being put into practical use.
その場合投光器に使用する発光素子は、発光ダイオード
やレーザーなど応答性の良いものがあって十分に高い変
調周波数に追従して行くが、受光器の受光素子について
は追従できず性能を十分に発揮できない場合が多い。In that case, the light-emitting element used in the emitter has good response, such as a light-emitting diode or laser, and can follow a sufficiently high modulation frequency, but the light-receiving element in the receiver cannot follow it and does not exhibit its full performance. In many cases, this is not possible.
即ち現在受光素子として汎用されているホトトランジス
タ、ホトダイオード、シリコン太陽電池などは、数KH
z程度までの変調光に対しては第1図Aに示すように応
答できるが、数10KHzの変調光になれば応答性が悪
く、第1図Bに示すように、変調度100%即ち断続光
が与えられても光電変換されたあとの電気信号は受光素
子の立上り遅れ立下り遅れのため、目的とする交流成分
Cが減少し感度がかなり低下する。In other words, phototransistors, photodiodes, silicon solar cells, etc. that are currently widely used as light-receiving elements are several KH.
It is possible to respond to modulated light of up to about 100 kHz, as shown in Figure 1A, but when it comes to modulated light of several 10 KHz, the response is poor, and as shown in Figure 1B, the modulation degree is 100%, that is, intermittent. Even if light is applied, the electrical signal after photoelectric conversion has a rise delay and a fall delay of the light receiving element, so the desired alternating current component C is reduced and the sensitivity is considerably lowered.
その上低い変調周波数に対しては感度が高いため、低い
周波数の外乱光や電気ノイズの影響を余計受けることに
なり、所期の目的を達成するに至っていなかった。Moreover, since it is highly sensitive to low modulation frequencies, it is subject to additional effects from low-frequency disturbance light and electrical noise, making it impossible to achieve the intended purpose.
本考案は、上述の点に鑑み、通常の受光素子を使用して
、応答周波数が高く外乱光や電気ノイズの影響を受けに
くい受光回路を提供することを目的としている。In view of the above-mentioned points, an object of the present invention is to provide a light-receiving circuit that uses a normal light-receiving element and has a high response frequency and is less susceptible to disturbance light and electrical noise.
以下図面により説明する。This will be explained below with reference to the drawings.
第2図にお・いて、1はホトトランジスタ、2は増幅器
、3は負帰還回路であって、ホトトランジスタ1のエミ
ッタと増幅器2の入力端とが接続されホトトランジスタ
1により光電変換された電気信号は増幅器2で増幅され
、増幅器2の出力端とホトトランジスタ1のベースとの
間に負帰還回路3を介在させることにより増幅器の出力
の1部を負帰還回路3を経てホトトランジスタ1のベー
スに負帰還するよう構成されでいる。In FIG. 2, 1 is a phototransistor, 2 is an amplifier, and 3 is a negative feedback circuit, in which the emitter of phototransistor 1 and the input terminal of amplifier 2 are connected, and the electricity photoelectrically converted by phototransistor 1 is connected. The signal is amplified by an amplifier 2, and by interposing a negative feedback circuit 3 between the output terminal of the amplifier 2 and the base of the phototransistor 1, a part of the output of the amplifier is sent through the negative feedback circuit 3 to the base of the phototransistor 1. It is configured to allow negative feedback.
この横取における周波数特性は、ホトトランジスタ1へ
の人力光の強度と増幅器2の出力電圧との比を利得とし
て縦軸に、人力光の変調周波数を横軸にとった場合、第
3図のようになる。The frequency characteristics in this interception are as shown in Figure 3, when the vertical axis is the gain and the modulation frequency of the human-powered light is taken as the gain, and the ratio between the intensity of the human-powered light to the phototransistor 1 and the output voltage of the amplifier 2 is taken as the gain. It becomes like this.
この第3図においで2曲線は負帰還回路3がない場合の
特性であって、変調周波数がOからflまではほぼ一定
で、それ以上の範囲では変調周波数の」1昇にともなっ
て利得が直線的に低下する。In Fig. 3, the second curve is the characteristic when there is no negative feedback circuit 3, and the modulation frequency is almost constant from O to fl, and beyond that, the gain increases as the modulation frequency increases by 1. Decrease linearly.
0曲線は負帰還回路3に周波数選択性のないものを使用
した場合の特性であって、最大利得は2曲線のそれより
低下するが、利得が低下しはじめる周波数f3は2曲線
におけるそれ(fl)より高くなりOからその周波数f
3までの間の利得がほぼ一定となる。The 0 curve is a characteristic when a negative feedback circuit 3 without frequency selectivity is used, and the maximum gain is lower than that of the 2 curves, but the frequency f3 at which the gain begins to decrease is equal to that of the 2 curves (fl ) becomes higher from O to its frequency f
The gain up to 3 is almost constant.
R曲線は負帰還回路3にローパスフィルタの働きをもつ
ものを使用した場合の特性であって、利得はある変調周
波数で最大となる。The R curve is a characteristic when a negative feedback circuit 3 having the function of a low-pass filter is used, and the gain is maximum at a certain modulation frequency.
全投光器の変調周波数をflとf3の間のf2に設定し
た場合、負帰還回路のない2曲線においては利得がHl
からH2に低下し感度が低下するとともにf2以下の変
調周波数については相変らず利得が高いため、この範囲
の変調周波数の外乱光や電気ノイズが混入すると目的と
する周波数f2よりこれらノイズに対する感度が高くそ
の影響を強く受けることになる。When the modulation frequency of all emitters is set to f2 between fl and f3, the gain is Hl in the two curves without negative feedback circuit.
to H2, and the sensitivity decreases, and the gain remains high for modulation frequencies below f2, so if disturbance light or electrical noise with a modulation frequency in this range is mixed, the sensitivity to these noises will be lower than the target frequency f2. It will be highly influenced by it.
負帰還回路3に周波数選択性のない0曲線においては、
全体の利得は低下するが使用周波数f2に対する利得と
、これより低い変調周波数に対する利得とが同程度にな
り、外乱光や電気ノイズの影響を受けることが少なくな
る。In the zero curve where the negative feedback circuit 3 has no frequency selectivity,
Although the overall gain decreases, the gain for the used frequency f2 and the gain for the modulation frequency lower than this become comparable, and are less affected by disturbance light and electrical noise.
更に負帰還回路3にローパスフィルタの働きをもつもの
を用いたR曲線においては、使用周波数f2付近で利得
が最大でこれからずれる周波数範囲のノイズに対しては
利得が低くなり、ノイズ等の影響を非常に受けにくくな
る。Furthermore, in the R curve where the negative feedback circuit 3 has the function of a low-pass filter, the gain is maximum near the operating frequency f2, and the gain becomes low for noise in a frequency range that deviates from this, reducing the influence of noise etc. becomes very difficult to receive.
つまり、負帰還回路3にローパスフィルタの働きをもつ
ものを使用するということは、言いかえればf2以下の
変調周波数において、負帰還量が増大するような回路を
使用するということである。In other words, using a negative feedback circuit 3 that functions as a low-pass filter means using a circuit that increases the amount of negative feedback at modulation frequencies below f2.
このような負帰還回路を使用することによりf2より低
い変調周波数については、低い周波数領域はど負帰還量
が増加すなわち利得が低下し、この帯域のノイズ等の影
響が少なくなるのである。By using such a negative feedback circuit, for modulation frequencies lower than f2, the amount of negative feedback increases in the low frequency region, that is, the gain decreases, and the influence of noise in this band is reduced.
尚、第3図においてQ及びR曲線の周波数の高い方が2
曲線より高い方に平行移動しているのは、ホトトランジ
スタ
が、負帰還回路がない場合よりある場合の方が低くなる
ためである。In addition, in Figure 3, the higher frequency of the Q and R curves is 2.
The parallel shift higher than the curve is because the phototransistor is lower with the negative feedback circuit than without it.
これは第5図に示ずホトトランジスタの等価回路に示す
ように、帰還回路を通じて流れる電流11すなわち第2
図のホトトランジスタ1のベースを通じて負帰還回路に
流れる電流と等価回路中のトランジスタ1に流れる電流
とが存在することによって、生じる現象である。As shown in the equivalent circuit of the phototransistor (not shown in FIG. 5), this is caused by the current 11 flowing through the feedback circuit, that is, the second
This phenomenon is caused by the existence of a current flowing into the negative feedback circuit through the base of the phototransistor 1 shown in the figure and a current flowing through the transistor 1 in the equivalent circuit.
ホトトランジスタの応答特性はその負荷によって変化し
、負荷が小さい程高周−波領域の特性が良くなるという
性質を有する。The response characteristics of a phototransistor vary depending on the load, and the smaller the load, the better the characteristics in the high frequency range.
このため、本考案によればホトトランジスタからみたイ
ンピーダンスが小さくなる分だけ、高域の特性が改善さ
れ、第3図に示すような特性となるのである。Therefore, according to the present invention, the high-frequency characteristics are improved to the extent that the impedance seen from the phototransistor is reduced, resulting in the characteristics shown in FIG. 3.
これは、本考案の目的に照らせば更に優利な作用効果で
ある。This is a more advantageous effect in light of the purpose of the present invention.
上側ではホトトランジスタの出力はエミッタから取り出
しているが、これはコレクタから取り出しても位相が変
化する点を注意すれば本考案を適用できることは明らか
である二また−1−述の実施例では、受光素子としてホ
トトランジスタ1を使用したものについて説明したが、
これを他の受光素子に代えても本考案を実施できる。On the upper side, the output of the phototransistor is taken out from the emitter, but it is clear that the present invention can be applied as long as it is noted that the phase changes even when taken out from the collector. Although we have explained the case where the phototransistor 1 is used as a light receiving element,
The present invention can be practiced even if this light receiving element is replaced with another light receiving element.
即ち第4図はシリコン太陽電池5とトランジスタ6とを
組合せた受光素子7を使用した実施例であって、負帰還
回路3から負帰還をシリコン太陽電池5とトランジスタ
6との接続点に掛けたものである。That is, FIG. 4 shows an embodiment using a light receiving element 7 which is a combination of a silicon solar cell 5 and a transistor 6, and negative feedback is applied from a negative feedback circuit 3 to the connection point between the silicon solar cell 5 and the transistor 6. It is something.
この場合の動作も上側と全く同様となることは言うまで
もない。It goes without saying that the operation in this case is exactly the same as that in the upper case.
以」−説明したように本考案によれば、増幅器2の出力
の一部を負帰還回路3を介して受光素子に負帰還するこ
とにより、高い変調周波数まで使用でき、外乱光や電気
ノイズの影響を受は難い受光回路が得られる。- As explained above, according to the present invention, by feeding a part of the output of the amplifier 2 back to the light receiving element through the negative feedback circuit 3, it is possible to use up to a high modulation frequency, and it is possible to reduce disturbance light and electrical noise. A light-receiving circuit that is hardly affected can be obtained.
第1図は受光素子の応答性の説明図、第2図は本考案に
よる受光回路の一例、第3図は第2図に示す受光回路の
変調周波数−利得特性図、第4図は本考案の他の実施例
である。
第5図はホトトランジスタ1の等価回路である。
1・・・・・・ホトI・ランジスタ、2・・・・・・増
幅器、3・・・・・・負帰還回路、4・・・・・・ホト
トランジスタ1の負荷抵抗、5・・・・・・シリコン太
陽電池。Fig. 1 is an explanatory diagram of the response of the light receiving element, Fig. 2 is an example of the light receiving circuit according to the present invention, Fig. 3 is a modulation frequency-gain characteristic diagram of the light receiving circuit shown in Fig. 2, and Fig. 4 is the present invention. This is another example. FIG. 5 shows an equivalent circuit of the phototransistor 1. 1...Photo I transistor, 2...Amplifier, 3...Negative feedback circuit, 4...Load resistance of phototransistor 1, 5... ...Silicon solar cell.
Claims (1)
る受光器において、増幅器2の出力端とホトトランジス
タ って帰還係数が変化する負帰還回路3を接続したことを
特徴とする受光回路。[Claim for Utility Model Registration] In a light receiver used opposite to a projector that outputs high-frequency modulated light, the output terminal of an amplifier 2 is connected to a negative feedback circuit 3 whose feedback coefficient changes using a phototransistor. A light receiving circuit characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11277476U JPS5941556Y2 (en) | 1976-08-23 | 1976-08-23 | Light receiving circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11277476U JPS5941556Y2 (en) | 1976-08-23 | 1976-08-23 | Light receiving circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5330173U JPS5330173U (en) | 1978-03-15 |
JPS5941556Y2 true JPS5941556Y2 (en) | 1984-11-30 |
Family
ID=28722490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11277476U Expired JPS5941556Y2 (en) | 1976-08-23 | 1976-08-23 | Light receiving circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5941556Y2 (en) |
-
1976
- 1976-08-23 JP JP11277476U patent/JPS5941556Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5330173U (en) | 1978-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5941556Y2 (en) | Light receiving circuit | |
US4642453A (en) | Apparatus for increasing the dynamic range in an integrating optoelectric receiver | |
JPS5873251A (en) | Optical reception circuit | |
JPH06500667A (en) | Photon induced variable capacitance effect element | |
JPH03171908A (en) | Light receiving circuit | |
GB2202624A (en) | Optimum biasing system for electronic devices | |
JPS634961B2 (en) | ||
JPS6420418A (en) | Photodetecting device | |
US4793000A (en) | Light signal receiver | |
CN214583654U (en) | Device for improving dynamic range of photodiode | |
JPH09260960A (en) | Optical receiving amplifier | |
JPH10173449A (en) | Optical receiver circuit | |
JPS61177832A (en) | Automatic gain controlling system of optical receiver | |
JPH0326331B2 (en) | ||
US4027268A (en) | Demodulator for PM or FM signals | |
JPS6224439A (en) | Light signal detecting circuit | |
JPS6295036A (en) | Optical signal receiver | |
JPS63250230A (en) | Light receiving circuit | |
JPS61290806A (en) | Photodetection circuit for optical communication | |
JPS6224438A (en) | Photodetecting circuit | |
JPH02164112A (en) | Optical receiver | |
JPS6313534A (en) | Bias voltage control circuit | |
JPH09246878A (en) | Current voltage conversion amplifier circuit | |
JPH01101012A (en) | Light receiving circuit | |
JPS60259917A (en) | Light-receiving circuit |