JPS61290714A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS61290714A
JPS61290714A JP13185585A JP13185585A JPS61290714A JP S61290714 A JPS61290714 A JP S61290714A JP 13185585 A JP13185585 A JP 13185585A JP 13185585 A JP13185585 A JP 13185585A JP S61290714 A JPS61290714 A JP S61290714A
Authority
JP
Japan
Prior art keywords
substrate
film
compound semiconductor
covering film
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13185585A
Other languages
Japanese (ja)
Inventor
Toshiaki Kitahara
北原 敏昭
Tomihisa Yukimoto
行本 富久
Keizo Inaba
稲庭 桂造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13185585A priority Critical patent/JPS61290714A/en
Publication of JPS61290714A publication Critical patent/JPS61290714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the thermal strain produced in a semiconductor substrate due to a difference in thermal expansion coefficient between the substrate and a covering film provided for preventing the scattering of an impurity and to improve the yield of the product, by performing a heat treatment after forming the covering film on the substrate and removing a part of the covering film. CONSTITUTION:Ions of a donor impurity Si 6 are selectively implanted in one principal surface of a GaAs substrate 1. A covering film 7 of phosphorus or silicon oxide glass is then formed for preventing the scattering of the As. The portions of the film 7 not included in the regions where elements are to be formed (the film portions for separating the substrate) are removed both in the vertical and transverse directions, so that groves 9 are provided in those directions. The substrate 1 is thereafter heated and annealed to diffuse the Si, whereby N-type active layers 2 and N<+> type diffused layers 3 for source and drain regions are formed. Consequently, any thermal strain caused by a difference in thermal expansion coefficient between the substrate 1 and the covering film 7 is absorbed by the grooves 9. Therefore, no strain is produced during the heat treatment and the yield of the products can be improved.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は化合物半導体装置、特にGaAs(ガリウム・
砒素)FET(@界効果トランジスタ)の製造技術に関
する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to compound semiconductor devices, particularly GaAs (gallium
Arsenic) FET (@field effect transistor) manufacturing technology.

〔背景技術〕[Background technology]

GaAsICを構成する基本素子であるPETにおいて
は、MESFET(ショットキ11壁形FET)が主流
となって開発が進められている。
Regarding PET, which is a basic element constituting a GaAs IC, MESFET (Schottky 11-wall FET) has become the mainstream and development is progressing.

このMBSFETを製造するKあたっては、第7図で示
すMBSFETの完成断面図を参照して説明すれば、半
絶縁性GaAs基板1の一主面の一部忙ソース・ドレイ
ンコンタクトのためのn+型型数散層3形成し、この間
にn型活性層2を形成し、とのn++層3に対してオー
ミック接続する金属(たとえば、AuQe )よりなる
ソース・ドレイン電極4を設け、これら電極4に挾まれ
たn型活性層2上にショットキ障壁をつくる金属(たと
えばん0からなるゲート金属5を設ける。とのようなM
E 8 F ETは3端子素子であり、ドレイン・ソー
ス間に電圧vdSを印加した状態でゲート電圧Vgを変
化させることでゲート電極下の空乏層を制御し、ソース
・ドレイン電流のオン・オフ動作の切換えを可能とする
。(工業調査会発行、[電子材料J 1984年8月号
P34−P40 )本出願人において、GaAs基板に
n型活性層を形成するKは、第8図に示すようにウェハ
状のGaAs基板1の一主表面に対して、Si、3eな
どのドナ不純物のイオン打込みをした後、このイオン打
込不純物6を有する基板主面上にリン・シリコン酸化系
ガラスたとえば、リンシリケートガラス(以下PSGと
称す)又はシリコン窒化物たとえば、シリコンナイトラ
イド(以下S輸N、と称す)からなる被膜7を付着した
状態で活性化アニール(700〜800℃、20分)を
行う方法が検討されている。このような被膜7を設ける
理由は、アニール時にGaAs基板1中のGaAsのう
ちのAsが逸散することによシ基板のGa成分の割合が
増加し、半導体中での電子易動度の低下することを防止
するためである。
The steps for manufacturing this MBSFET will be explained with reference to the completed cross-sectional view of the MBSFET shown in FIG. A type scattering layer 3 is formed, an n-type active layer 2 is formed therebetween, and source/drain electrodes 4 made of metal (for example, AuQe) are provided for ohmic connection to the n++ layer 3. A gate metal 5 made of a metal (for example, 0) that forms a Schottky barrier is provided on the n-type active layer 2 sandwiched between
E 8 FET is a three-terminal device, and by changing the gate voltage Vg with voltage VdS applied between the drain and source, the depletion layer under the gate electrode is controlled, and the on/off operation of the source-drain current is controlled. It is possible to switch between (Published by Kogyo Kenkyukai, [Electronic Materials J, August 1984 issue, P34-P40) In the present applicant, K for forming an n-type active layer on a GaAs substrate is a wafer-shaped GaAs substrate 1 as shown in FIG. After implanting ions of donor impurities such as Si and 3e into one main surface, a phosphorus-silicon oxide glass such as phosphorus silicate glass (hereinafter referred to as PSG) is deposited on the main surface of the substrate having the ion-implanted impurities 6. A method of performing activation annealing (700 to 800° C., 20 minutes) with a coating 7 made of silicon nitride (hereinafter referred to as S) or silicon nitride (hereinafter referred to as S) is being considered. The reason for providing such a coating 7 is that during annealing, As in the GaAs in the GaAs substrate 1 is dissipated, the proportion of Ga component in the substrate increases, and the electron mobility in the semiconductor decreases. This is to prevent this from happening.

しかしながら、基板であるQ a A Sに対し被覆さ
れるPSGあるいは8i3N、の熱膨張係数が太きく異
なるために歪みの生じることが本発明者の研究によシあ
きらかKされた。すなわち、PSGやst、N、等の被
膜の付けられたGaAs基板面は、アニール時に熱膨張
が一方側に規制されて第8図の矢印で示すように湾曲し
、ウェハに歪みが生じる結果、イオン打込みされた不純
物が歪み部分にトラップされ活性化が不完全となシ、部
分的に電子品動特性が低下することになり、このウェハ
から製造された半導体装置の特性のばらつきを来すこと
忙なることがわかった。
However, research by the present inventors has clearly shown that distortion occurs due to a large difference in the thermal expansion coefficient of the PSG or 8i3N coated with respect to the QaS substrate. That is, the surface of a GaAs substrate coated with a film such as PSG, st, N, etc., has its thermal expansion restricted to one side during annealing and is curved as shown by the arrow in FIG. 8, resulting in distortion of the wafer. Ion-implanted impurities are trapped in strained areas and activation is incomplete, resulting in partial deterioration of electronic performance characteristics, resulting in variations in the characteristics of semiconductor devices manufactured from this wafer. I know you'll be busy.

〔発明の目的〕[Purpose of the invention]

本発明は上記した問題を克服するためになされたもので
ある。
The present invention has been made to overcome the above-mentioned problems.

本発明の目的はGaAs基板の活性化処理の際の熱歪み
の発生を防止し、半導体製品の歩留を向上させるととK
ある。
The purpose of the present invention is to prevent the occurrence of thermal distortion during activation processing of GaAs substrates and to improve the yield of semiconductor products.
be.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、GaAs半導体装置の製造にあたって、ウェ
ハ状のGaAs基板の一主面に活性層形成のための不純
物イオン打込みを行った後、上記主面上に上記不純物の
逸散を阻止するためのPSG等の被膜を形成し、縦横方
向のスクライプライン上の前記被膜を除去した後、不純
物イオン打込層の活性化のための熱処理を行うものであ
って、これによシ、上記被膜との熱膨張係数の差による
基板の熱歪の発生をなくし、製品の歩留を向上させるも
のである。
That is, in manufacturing a GaAs semiconductor device, after impurity ions are implanted into one main surface of a wafer-shaped GaAs substrate to form an active layer, PSG or the like is implanted onto the main surface to prevent the impurities from escaping. After forming a film and removing the film on the vertical and horizontal scribe lines, a heat treatment is performed to activate the impurity ion implantation layer, which reduces thermal expansion with the film. This eliminates thermal distortion of the substrate due to coefficient differences and improves product yield.

C実施例〕 第1図乃至第5図は本発明の一実施例を示すものであっ
て、GaAs半導体装置のn型活性層形成を主とするプ
ロセスの工程断面図である。第6図は第3図に示す工程
に対応するウェハ全体の平面図である。以下、各工程に
そって説明する。
Embodiment C] FIGS. 1 to 5 show an embodiment of the present invention, and are cross-sectional views of a process mainly for forming an n-type active layer of a GaAs semiconductor device. FIG. 6 is a plan view of the entire wafer corresponding to the process shown in FIG. 3. Each step will be explained below.

(1)半絶縁性GaAs基板(ウェハ)1を用意し、そ
の−主面に対して、ホトレジストマスクaを利用して部
分的にドナ不純物Siを所定量イオン打込みして素子形
成領域すなわち、電極のオーミックコンタクト層や活性
層のためのSiイオン打込層6をつくる。(第1図・) (2)次に、上記基板1の上記Siイオン打込み層6と
なる面に気相化学析出技術(CVD技術)等によるPS
G(リン・シリコン酸化物系ガラス)被膜7を形成する
。このPEGにかえてSi、N。
(1) A semi-insulating GaAs substrate (wafer) 1 is prepared, and a predetermined amount of donor impurity Si is ion-implanted into the main surface of the substrate using a photoresist mask a to form an element formation region, that is, an electrode. A Si ion implantation layer 6 for an ohmic contact layer and an active layer is formed. (Fig. 1) (2) Next, PS is applied to the surface of the substrate 1 that will become the Si ion implantation layer 6 by vapor phase chemical deposition technology (CVD technology) or the like.
A G (phosphorus/silicon oxide glass) coating 7 is formed. Si, N instead of this PEG.

又は、AltO3(アルミニウム酸化物)を析出しても
よい。(第2図) (3)上記被膜7に対し、ホトレジストマスクを利用し
てフッ化水素系エッチ液によるウェットエッチ又は7フ
化炭素系ガスを用いたドライエッチを行うことによシ、
第6図に示されるような溝(縦横方向の溝)9をあける
。この場合、基板面はエッチされないようにし溝はスク
ラブライン上すなわち基板分割領域に設ける。(第3図
)(4)上記溝9をあけた被膜で覆った状態で基板1を
500℃〜1,000℃で約20分加熱するアニールを
行い、上記のイオン打込されたSiを拡散させて基板の
主面に所定の深さのn型活性層2とソース・ドレイン電
極のオーシックコンタクト用n+拡散層3を形成する。
Alternatively, AltO3 (aluminum oxide) may be precipitated. (Fig. 2) (3) By performing wet etching with a hydrogen fluoride-based etchant or dry etching using a heptafluoride-based gas on the coating 7 using a photoresist mask,
A groove (vertical and horizontal groove) 9 as shown in FIG. 6 is made. In this case, the substrate surface is not etched and the grooves are provided on the scrub line, that is, in the substrate dividing area. (Figure 3) (4) Annealing is performed by heating the substrate 1 at 500°C to 1,000°C for about 20 minutes with the groove 9 covered with the film to diffuse the ion-implanted Si. Then, an n-type active layer 2 of a predetermined depth and an n+ diffusion layer 3 for osmic contact of source/drain electrodes are formed on the main surface of the substrate.

(第4図) (5)次に上記PSG等の被膜を堰夛除き、新たKCV
D=PSG又はCvD−8iO1等からなる表面保護絶
縁膜を設け、ホトレジスト技術によりコンタクト部分を
窓開し、この後、ホトレジストマスクを利用した「リフ
トオフ」法により、ソースドレイン電極4を形成する一
方、ゲート部にはショットキ金属たとえばAlよシなる
ゲート電極5を形成することによりGaAs FETを
完成する。
(Fig. 4) (5) Next, remove the coating such as the above PSG and create a new KCV.
A surface protection insulating film made of D = PSG or CvD-8iO1 is provided, the contact portion is opened using photoresist technology, and then source-drain electrodes 4 are formed using a "lift-off" method using a photoresist mask. A GaAs FET is completed by forming a gate electrode 5 made of Schottky metal such as Al in the gate portion.

(第5図) 尚、上記ではスクラブライン上の被膜を除去する場合に
ついて説明したがそれに限定されるものではない。
(FIG. 5) Although the case where the film on the scrub line is removed has been described above, the present invention is not limited thereto.

すなわち、上記被膜は、素子形成領域上に存在すれば良
い。
That is, the above-mentioned film only needs to be present on the element formation region.

〔発明の効果〕〔Effect of the invention〕

以上実施例で述べた本発明によれば下記のように効果が
得られる。
According to the present invention described in the embodiments above, the following effects can be obtained.

GaAs基板の一主面KPSGなどの被膜を設けてこの
被膜に溝をあけておき、この被膜で覆ったGaAs基板
の活性化アニールを行うことによシ、上記溝をあけない
場合にアニール時に発生する基板と被膜との、熱膨張係
数の差による熱歪を防止できる。すなわち、溝によって
熱応力が溝部分に吸収されて熱歪が発生しない。それに
よって基板中でキャリアが歪み層にトラップされること
がな(、Siイオン打込み層の活性歩留りが向上する。
By providing a film such as KPSG on one principal surface of the GaAs substrate and making a groove in this film, and performing activation annealing on the GaAs substrate covered with this film, it is possible to eliminate the problems that would occur during annealing if the groove was not made. Thermal strain due to the difference in thermal expansion coefficient between the substrate and the coating can be prevented. That is, thermal stress is absorbed by the grooves and no thermal strain occurs. This prevents carriers from being trapped in the strained layer in the substrate (and improves the active yield of the Si ion implanted layer).

上記ではスクラブライン上の被膜を除去した場合につい
て説明。
The above describes the case where the film on the scrub line is removed.

〔利用分野〕[Application field]

本発明はGaAsFET及びGaAs I C等を含む
化合物半導体のイオン打込み層のアニール処理に適用し
てもつとも効果がある。
The present invention is also effective when applied to annealing of ion-implanted layers of compound semiconductors including GaAsFETs and GaAs ICs.

本発明は上記以外に化合物半導体光デバイスにも応用す
ることができる。
In addition to the above, the present invention can also be applied to compound semiconductor optical devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明の一実施例を、示、すGaA
3半導体の製造プロセスにおける一部工程断面図である
。 第6図は第4図に示す工程におけるクエハの平面図であ
る。 第7図はGaAsMESFETの一例を示す断面図であ
る。 第8図はGaAs基板のアニール処理の装態様を示す断
面図である。 1・・・GaAs基板、2・・・n型活性層、3・・・
n 型拡散層、4・・・ソース・ドレイン電極、5・・
・ゲート電極、6・・・イオン打込不純物、7・・・被
膜、8・・・絶縁膜、9・・・スクライブ溝。 第  1  図 第  2  図 第  3  図 第  4  図 第  5  図 第  6rIA 第  7  図 第  8  図 ?
1 to 5 show an embodiment of the present invention.
FIG. 3 is a partial step cross-sectional view in the manufacturing process of 3 semiconductors. FIG. 6 is a plan view of the quefer in the process shown in FIG. 4. FIG. 7 is a sectional view showing an example of a GaAs MESFET. FIG. 8 is a sectional view showing a mode of annealing a GaAs substrate. 1... GaAs substrate, 2... n-type active layer, 3...
n-type diffusion layer, 4... source/drain electrode, 5...
- Gate electrode, 6... Ion implantation impurity, 7... Film, 8... Insulating film, 9... Scribe groove. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6rIA Figure 7 Figure 8?

Claims (1)

【特許請求の範囲】 1、ウェハ状の化合物半導体基板の一主面の素子形成領
域に選択的に不純物イオン打込層を形成する工程と、上
記主面上に上記不純物の逸散を阻止する物質の被膜を形
成する工程と少なくとも素子形成領域を覆う部分以外の
前記被膜を選択的に除去する工程と、熱処理を行う工程
とを具備することを特徴とする化合物半導体装置の製造
方法。 2、上記被膜を選択的に除去する部分は、化合物半導体
基板の分割領域であり、格子状に前記被膜が除去されて
いることを特徴とする特許請求の範囲第1項に記載の化
合物半導体装置。 3、上記化合半導体はGaAsであり、上記不純物逸散
を阻止するための被膜はリン・シリコン酸化物系ガラス
である特許請求の範囲第1項に記載の化合物半導体装置
の製造方法。
[Claims] 1. A step of selectively forming an impurity ion implantation layer in an element formation region on one main surface of a wafer-shaped compound semiconductor substrate, and preventing the impurities from escaping onto the main surface. A method for manufacturing a compound semiconductor device, comprising the steps of forming a film of a substance, selectively removing at least a portion of the film other than a portion covering an element formation region, and performing heat treatment. 2. The compound semiconductor device according to claim 1, wherein the portions from which the film is selectively removed are divided regions of the compound semiconductor substrate, and the film is removed in a grid pattern. . 3. The method of manufacturing a compound semiconductor device according to claim 1, wherein the compound semiconductor is GaAs, and the coating for preventing impurity dissipation is a phosphorus-silicon oxide glass.
JP13185585A 1985-06-19 1985-06-19 Manufacture of compound semiconductor device Pending JPS61290714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13185585A JPS61290714A (en) 1985-06-19 1985-06-19 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13185585A JPS61290714A (en) 1985-06-19 1985-06-19 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS61290714A true JPS61290714A (en) 1986-12-20

Family

ID=15067697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13185585A Pending JPS61290714A (en) 1985-06-19 1985-06-19 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61290714A (en)

Similar Documents

Publication Publication Date Title
JP4173629B2 (en) Self-aligned power field effect transistor on silicon carbide.
US4258465A (en) Method for fabrication of offset gate MIS device
EP0160255B1 (en) Field effect transistor device and method of making same
US5106770A (en) Method of manufacturing semiconductor devices
JPH0571174B2 (en)
US5576230A (en) Method of fabrication of a semiconductor device having a tapered implanted region
US6040219A (en) Method of fabricating power semiconductor device using semi-insulating polycrystalline silicon (SIPOS) film
GB2074374A (en) Method of making field effect transistors
JPS61290714A (en) Manufacture of compound semiconductor device
US5192699A (en) Method of fabricating field effect transistors
JPS63227059A (en) Semiconductor device and manufacture thereof
JP2541230B2 (en) Method for manufacturing field effect transistor
JPS6169176A (en) Manufacture of semiconductor device
JP2835398B2 (en) Manufacturing method of field effect transistor
JPS61269311A (en) Manufacture of compound semiconductor device
JPH0620080B2 (en) Method for manufacturing semiconductor device
KR0170513B1 (en) Mos transistor and its fabrication
JP3176835B2 (en) Method of forming compound semiconductor device
JPH028454B2 (en)
JP3042004B2 (en) Method for manufacturing semiconductor device
JP2652657B2 (en) Gate electrode formation method
JPH01161873A (en) Manufacture of semiconductor device
JPH0439773B2 (en)
JPS6342177A (en) Manufacture of semiconductor element
JPH0428246A (en) Semiconductor device and manufacture thereof