JPS61289628A - Photoelectron image transfer - Google Patents

Photoelectron image transfer

Info

Publication number
JPS61289628A
JPS61289628A JP13250885A JP13250885A JPS61289628A JP S61289628 A JPS61289628 A JP S61289628A JP 13250885 A JP13250885 A JP 13250885A JP 13250885 A JP13250885 A JP 13250885A JP S61289628 A JPS61289628 A JP S61289628A
Authority
JP
Japan
Prior art keywords
mask
wafer
semiconductor layer
photoelectron
irradiation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13250885A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
洋 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13250885A priority Critical patent/JPS61289628A/en
Publication of JPS61289628A publication Critical patent/JPS61289628A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70375Multiphoton lithography or multiphoton photopolymerization; Imaging systems comprising means for converting one type of radiation into another type of radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To contrive to improve the resolution of a transferred image by a method wherein light is projected from the front part of the mask on the substrate side using the mask in a constitution, wherein parts of the thin film surface are formed as the photoelectron emission surfaces, and photoelectrons to be emitted from the photoelectron emission surfaces are projected. CONSTITUTION:A wafer 1 on a stage 3 is ready-arranged in opposition to a mask 2a in a vacuum and irradiation light 4 is irradiated on the mask 2a from the back surface of the mask 2a. Photoelectrons 6 to be emitted from the photoelectron emission surfaces, which are parts of the front of the mask, due to the action of the irradiation light 4 to reach the front part of the mask 2a are converged on the surface of the wafer 1 due to the action of the electric field between the mask 2a and the wafer 1 and the action of the uniform magnetic field, which is formed by Helmholtz coils 9, and the surface is exposed. The mask 2a is made in a constitution, wherein a semiconductor layer having an photoelectron effect, such as a GaAs semiconductor layer 11b, is formed on a material, which allows the irradiation light 4 to transmit, such as a gallium-phosphorus light-transmitting substrate 11a, the semiconductor layer 11b is made to correspond to the semiconductor substrate 11a, and a metal layer 12, which is patterned and has windows 12a, and alkali metal thin films 13 or the thin films 13 of a compound of the alkali metal are laminated on the semiconductor layer 11b.

Description

【発明の詳細な説明】 〔概要〕 光が照射されたマスクから放出される光電子を投影する
光電子像転写方法において、 透光性を有する基板上に光電効果を有する半導体層とパ
ターン化された金属層とアルカリ金属またはその化合物
の薄膜とが順次層構成をなすマスクを使用して、該マス
クの基板側から光を照射することにより、 光電子の投影距離を短縮させ、転写像の解像度を向上さ
せたものである。
[Detailed Description of the Invention] [Summary] In a photoelectronic image transfer method in which photoelectrons emitted from a mask irradiated with light are projected, a semiconductor layer having a photoelectric effect and a patterned metal are placed on a transparent substrate. By using a mask in which a layer and a thin film of an alkali metal or its compound form a sequential layer structure and irradiating light from the substrate side of the mask, the projection distance of photoelectrons can be shortened and the resolution of the transferred image can be improved. It is something that

〔産業上の利用分野〕[Industrial application field]

本発明は、超LSIに用いられるウェーハなどに微細パ
ターンを露光する光電子像転写方法の改良に関す。
The present invention relates to an improvement in a photoelectronic image transfer method for exposing a fine pattern to a wafer used in a VLSI.

超LSIの製造では、微細加工プロセスが重要であり、
その微細加工技術(リソグラフィ技術)の一つとしてウ
ェーハなどに微細パターンを露光する技術がある。
Microfabrication processes are important in the manufacturing of VLSIs,
One of the microfabrication technologies (lithography technologies) is a technology that exposes micropatterns onto wafers and the like.

従来この種の露光技術には、紫外線露光法、電子ビーム
露光法、X線露光法、イオンビーム露光法、などが知ら
れているが、それぞれ次のような問題がある。
Conventionally, known exposure techniques of this type include ultraviolet exposure, electron beam exposure, X-ray exposure, and ion beam exposure, but each of them has the following problems.

即ち、紫外線露光法は、マスクのパターンを転写する方
式で処理能力(スループット)が大きく量産に通するが
、使用する波長から解像度が不足になる。
That is, the ultraviolet exposure method is a method of transferring a mask pattern and has a high throughput and is suitable for mass production, but the resolution is insufficient due to the wavelength used.

電子ビーム露光法は、ビームスポットで描画する方式で
処理能力が小さい。
The electron beam exposure method uses a beam spot to draw images and has low throughput.

X線露光法は、転写方式であるが量産使用には種々の問
題解決を要する。特に光源にSOR(シンクロトロン放
射光)を使用すると設備があまりにも大損りになる懸念
がある。
Although the X-ray exposure method is a transfer method, various problems must be solved for mass production use. In particular, if SOR (synchrotron radiation) is used as a light source, there is a concern that the equipment will be severely damaged.

イオンビーム露光法は、ビームスポットで描画転写方式
によるもので、量産に応え得る処理能力、優れた解像度
、過大にならない設備、が期待されるものであり、転写
性能の一層の改善が望まれている。
The ion beam exposure method uses a beam spot drawing transfer method, and is expected to have processing capacity that can meet mass production, excellent resolution, and equipment that does not become too large, and further improvements in transfer performance are desired. There is.

〔従来の技術〕[Conventional technology]

第3図は従来の光電子像転写方法の説明図である。 FIG. 3 is an explanatory diagram of a conventional photoelectronic image transfer method.

同図に示す方法は、処理能力などを改善するものとして
、本願の発明者が特願昭59−243343号および特
願昭59−252151号などにて開示した光電子像転
写方法である。
The method shown in the figure is a photoelectronic image transfer method disclosed by the inventor of the present invention in Japanese Patent Application No. 59-243343 and Japanese Patent Application No. 59-252151 as a method for improving processing performance.

即ち、真空中において、ステージ3上のウェーハlをマ
スク2に対向配置させておき、照射光4がウェーハ1と
マスク2との間に配置されている反射板5で反射してマ
スク2前面の光電子放出面を照射し、該面から放出され
る光電子6が、マスク2とウェーハ1との間の電界と、
磁石のN極7およびS極8が形成する均一磁界との作用
により、ウェーハ1の表面に集束して露光する方法であ
る。
That is, in a vacuum, the wafer l on the stage 3 is placed facing the mask 2, and the irradiation light 4 is reflected by the reflection plate 5 placed between the wafer 1 and the mask 2, and the wafer 1 is reflected from the front surface of the mask 2. The photoelectrons 6 emitted from the photoelectron emitting surface illuminate the electric field between the mask 2 and the wafer 1, and
This is a method in which the surface of the wafer 1 is focused and exposed by the action of a uniform magnetic field formed by the north pole 7 and the south pole 8 of the magnet.

マスク2は、第4図の側断面図に示す如く、光電効果を
有する半導体の基板11上にパターン化されて窓12a
を有する金属層12と光電子放出面を形成するアルカリ
金属またはその化合物の薄II!13とが積層されてな
っている。
As shown in the side sectional view of FIG. 4, the mask 2 is patterned on a semiconductor substrate 11 having a photoelectric effect and has windows 12a.
A thin film of an alkali metal or its compound forming a photoelectron emitting surface and a metal layer 12 having a thickness II! 13 are laminated.

基板11の半導体としては、ガリウム砒素(GaAs)
 *インジウム砒素(InAs)などの■−v族、硫化
カドミウム(CdS)などのII−Vl族およびシリコ
ン(St)などが、金属層12の金属としては、白金(
Pt)、金(Au) 、銀(Ag)などが、また薄II
!13のアルカリ金属としてはセシウム(Cs)、その
化合物としてはセシウムテルル(Csz Te)、セシ
ウムアンチモン(C33Sbz )などが用いられる。
The semiconductor of the substrate 11 is gallium arsenide (GaAs).
* As the metal of the metal layer 12, platinum (
Pt), gold (Au), silver (Ag), etc.
! Cesium (Cs) is used as the alkali metal of No. 13, and cesium tellurium (Csz Te), cesium antimony (C33Sbz), etc. are used as compounds thereof.

そして薄II!13の被着は真空中で行い、大気中に取
り出すことなしに露光に使用される。
And Thin II! The deposition of No. 13 is carried out in a vacuum and used for exposure without being taken out into the atmosphere.

露光に際して、前述したように照射光4が照射されると
、光電子放出面となる薄11113表面から前方に向か
って光電子6を放出するが、基板11の表面層、金属層
12、薄膜13の組み合わせにより、金属層12の窓1
2a領域からの放出強度が窓12a以外の領域に比べて
極端に強く、金属層12のパターンがウェーハl上に転
写される。
During exposure, when the irradiation light 4 is irradiated as described above, photoelectrons 6 are emitted forward from the surface of the thin film 11113 serving as the photoelectron emitting surface, but the combination of the surface layer of the substrate 11, the metal layer 12, and the thin film 13 Accordingly, window 1 of metal layer 12
The emission intensity from the region 2a is extremely strong compared to the regions other than the window 12a, and the pattern of the metal layer 12 is transferred onto the wafer l.

そして、ウェーハ1上に転写される転写像の解像度は、
光電子6の投影距離即ちマスク2とウェーハ1との間隔
寸法aに反比例し、マスク2とウェーハ1との間の電界
強度に比例する。
The resolution of the transferred image transferred onto the wafer 1 is
It is inversely proportional to the projection distance of the photoelectrons 6, that is, the distance dimension a between the mask 2 and the wafer 1, and is proportional to the electric field strength between the mask 2 and the wafer 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って上記解像度を向上させるためには間隔寸法aを小
さくすることが望ましい。
Therefore, in order to improve the above-mentioned resolution, it is desirable to reduce the interval dimension a.

然るに上記転写方法は、マスク2に対し薄膜13側から
照射光4を照射するため間隔寸法aが大きくならざるを
得す、それに伴う解像度低下の問題を有する。
However, the above-mentioned transfer method has the problem that since the mask 2 is irradiated with the irradiation light 4 from the thin film 13 side, the interval dimension a has to be increased, resulting in a decrease in resolution.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による光電子像転写方法実施例の説明図
である。
FIG. 1 is an explanatory diagram of an embodiment of the photoelectronic image transfer method according to the present invention.

上記問題点は、第1図に示される如く、透光性を有する
基板上に光電効果を有する半導体層とパターン化された
金属層とアルカリ金属またはその化合物の薄膜とが順次
層構成をなし、咳ll膜表面を光電子放出面としたマス
ク2aを使用して、該マスク2aの基板側から光4を照
射し該光電子放出面から放出される光電子6を投影する
本発明の光電子像転写方法によって解決される。
The above problem is solved by forming a layer structure in which a semiconductor layer having a photoelectric effect, a patterned metal layer, and a thin film of an alkali metal or its compound are sequentially formed on a transparent substrate, as shown in FIG. By the photoelectron image transfer method of the present invention, using a mask 2a having a photoelectron emitting surface on the surface of the cough membrane, irradiating light 4 from the substrate side of the mask 2a and projecting photoelectrons 6 emitted from the photoelectron emitting surface. resolved.

〔作用〕[Effect]

本方法では、照射光4をマスク2aの基板側から照射す
るため、先に説明した間隔寸法aを従来例より大幅に短
縮させることが可能で、この短縮により転写像の解像度
を大幅に向上させることが出来る。
In this method, since the irradiation light 4 is irradiated from the substrate side of the mask 2a, it is possible to significantly shorten the interval dimension a described above compared to the conventional example, and this shortening greatly improves the resolution of the transferred image. I can do it.

然も、マスク2aの上記半導体層、上記金属層、上記薄
膜が従来例のマスク2と同様に機能して、従来例の処理
能力を失うことがない。
However, the semiconductor layer, the metal layer, and the thin film of the mask 2a function in the same manner as the conventional mask 2, and the throughput of the conventional mask is not lost.

〔実施例〕〔Example〕

以下、第1図、その実施例に使用するマスク例を示す第
2図の側断面図、を用い、実施例について説明する。
Hereinafter, an example will be described using FIG. 1 and a side sectional view of FIG. 2 showing an example of a mask used in the example.

第1図に示す方法は、真空中において、ステージ3上の
ウェーハ1をマスク2aに対向配置させておき、照射光
4がマスク2aをその背面側から照射し、マスク2aの
前面部に達した照射光4の作用により該前面なる光電子
放出面から放出される光電子6が、マスク2とウェーハ
1との間の電界と、ヘルムホルツコイル9が形成する従
来例と同様な均一磁界との作用により、ウェーハ1の表
面に集束して露光する方法である。
In the method shown in FIG. 1, a wafer 1 on a stage 3 is placed facing a mask 2a in a vacuum, and irradiation light 4 irradiates the mask 2a from the back side and reaches the front side of the mask 2a. Photoelectrons 6 emitted from the front photoelectron emission surface by the action of the irradiation light 4 are caused by the action of the electric field between the mask 2 and the wafer 1 and the uniform magnetic field similar to the conventional example formed by the Helmholtz coil 9. This is a method in which the surface of the wafer 1 is focused and exposed.

マスク2aは、第2図に示す如く、照射光4を透過させ
る材料例えばガリウム燐(GaP)の透光基板11a上
に光電効果を有する半導体例えばGaAsの半導体層1
1b(厚さ約し口)を形成したものを第4図図示従来例
の半導体基板11に対応させ、その上に従来例と同様に
パターン化されて窓12aを有する金属層12と光電子
放出面を形成するアルカリ金属またはその化合物の薄1
1113とが積層されてなっている。
As shown in FIG. 2, the mask 2a consists of a semiconductor layer 1 made of a semiconductor having a photoelectric effect, such as GaAs, on a transparent substrate 11a made of a material such as gallium phosphide (GaP) that transmits the irradiation light 4.
1b (thickness approximation) is made to correspond to the semiconductor substrate 11 of the conventional example shown in FIG. A thin layer of alkali metal or its compound forming 1
1113 are laminated.

露光に際して、照射光4がマスク2aに透光基板11a
側から照射されると、照射光4は半導体層11bに達し
上述したように光電子放出面となる薄膜13表面から前
方に向かって光電子6を放出するが、半導体層11b、
金属層121.薄IIl!13の組み合わせが従来例マ
スク2の基板11表面層、金属層12、薄膜13の組み
合わせと同等になり、金属層12の窓12a領域からの
放出強度が窓12a以外の領域に比べて極端に強く、従
来例と同様に金属層12のパターンがウェーハ1上に転
写される。
During exposure, the irradiation light 4 is applied to the mask 2a on the transparent substrate 11a.
When irradiated from the side, the irradiated light 4 reaches the semiconductor layer 11b and emits photoelectrons 6 forward from the surface of the thin film 13 which becomes the photoelectron emitting surface as described above.
Metal layer 121. Thin IIl! 13 is equivalent to the combination of the surface layer of the substrate 11, the metal layer 12, and the thin film 13 of the conventional mask 2, and the emission intensity from the window 12a region of the metal layer 12 is extremely strong compared to the region other than the window 12a. , the pattern of the metal layer 12 is transferred onto the wafer 1 as in the conventional example.

そして転写像の解像度は先に述べたようにマスク2aと
ウェーハ1との間隔寸法aに反比例するが、この転写方
法は、第3図図示従来例の場合に照射光4を通すためマ
スク2とウェーハ1との間に設ける必要があった空間が
不要となるため、例えば従来例でマスク2の寸法が約5
3角の場合に約5備の間隔寸法aを必要としたのに対し
て、本方法では同一寸法のマスク2aの場合間隔寸法a
を約1(2)にすることが出来て、解像度は実に従来例
の約5倍に向上した。
As mentioned above, the resolution of the transferred image is inversely proportional to the distance a between the mask 2a and the wafer 1, but in the case of the conventional example shown in FIG. Since the space that was required to be provided between the wafer 1 and the wafer 1 is no longer required, for example, in the conventional example, the size of the mask 2 is approximately 5.
Whereas in the case of a triangular mask, a spacing dimension a of about 5 is required, in this method, for masks 2a of the same size, a spacing dimension a of about 5 mm is required.
can be reduced to approximately 1 (2), and the resolution has actually been improved to approximately 5 times that of the conventional example.

なお、上記実施例ではマスク2aの透光基板11aと半
導体層11bにGaPとGaAsを用いたが、例えばサ
ファイヤ(A1203)とStを用いるなど、他の材料
を用いても良い。
In the above embodiment, GaP and GaAs were used for the transparent substrate 11a and the semiconductor layer 11b of the mask 2a, but other materials may be used, such as sapphire (A1203) and St.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、光が照射
されたマスクから放出される光電子を投影する光電子像
転写方法において、処理能力を保持しながらマスクとウ
ェーハとの間隔寸法短縮による転写像の解像度向上が出
来て、転写性能の一層の改善を可能にさせる効果がある
As explained above, according to the configuration of the present invention, in a photoelectronic image transfer method in which photoelectrons emitted from a mask irradiated with light are projected, transfer is achieved by reducing the distance between the mask and the wafer while maintaining processing capacity. This has the effect of improving image resolution and further improving transfer performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光電子像転写方法実施例の説明図
、 第2図はその実施例に使用するマスク例の側断面図、 第3図は従来の光電子像転写方法の説明図、第4図はそ
の従来方法に使用するマスク例の側断面図、 である。 図において、 1はウェーハ、       2.2aはマスク、3は
ステージ、       4は照射光、5は反射板、 
       6は光電子、7は磁石のN極、    
  8は磁石のS極、9はへルムホルツコイル、11は
半導体基板、11aは透光基板、     llbは半
導体層、12は金属層、       12aは意、1
3は薄膜、         aは間隔寸法、である。 本NEI可失指社イタリQ脆Ql 茶1 図 茅2閣
FIG. 1 is an explanatory diagram of an embodiment of the photoelectronic image transfer method according to the present invention, FIG. 2 is a side sectional view of an example of a mask used in the embodiment, FIG. 3 is an explanatory diagram of a conventional photoelectronic image transfer method, and FIG. The figure is a side sectional view of an example of a mask used in the conventional method. In the figure, 1 is a wafer, 2.2a is a mask, 3 is a stage, 4 is an irradiation light, 5 is a reflector,
6 is the photoelectron, 7 is the N pole of the magnet,
8 is the S pole of the magnet, 9 is the Helmholtz coil, 11 is the semiconductor substrate, 11a is the transparent substrate, llb is the semiconductor layer, 12 is the metal layer, 12a is the ion, 1
3 is a thin film, and a is an interval dimension. Hon NEI Kafusashisha Itari Q fragile Ql Tea 1 Diagram 2 Pavilion

Claims (1)

【特許請求の範囲】[Claims] 透光性を有する基板上に光電効果を有する半導体層とパ
ターン化された金属層とアルカリ金属またはその化合物
の薄膜とが順次層構成をなし、該薄膜表面を光電子放出
面としたマスク(2a)を使用して、該マスクの基板側
から光(4)を照射し該光電子放出面から放出される光
電子(6)を投影することを特徴とする光電子像転写方
法。
A mask (2a) in which a semiconductor layer having a photoelectric effect, a patterned metal layer, and a thin film of an alkali metal or its compound are sequentially layered on a transparent substrate, and the surface of the thin film is a photoelectron emitting surface. A photoelectron image transfer method characterized in that light (4) is irradiated from the substrate side of the mask and photoelectrons (6) emitted from the photoelectron emitting surface are projected using the photoelectron image transfer method.
JP13250885A 1985-06-18 1985-06-18 Photoelectron image transfer Pending JPS61289628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13250885A JPS61289628A (en) 1985-06-18 1985-06-18 Photoelectron image transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13250885A JPS61289628A (en) 1985-06-18 1985-06-18 Photoelectron image transfer

Publications (1)

Publication Number Publication Date
JPS61289628A true JPS61289628A (en) 1986-12-19

Family

ID=15082991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13250885A Pending JPS61289628A (en) 1985-06-18 1985-06-18 Photoelectron image transfer

Country Status (1)

Country Link
JP (1) JPS61289628A (en)

Similar Documents

Publication Publication Date Title
KR920005634B1 (en) Photo electron mask and photo cathode image projection method using the same
EP0182665B1 (en) Method of projecting a photoelectron image
EP0257528B1 (en) Photo cathodes for electron image projection
GB2142158A (en) Electron lithography masks
JPS61289628A (en) Photoelectron image transfer
JPH0666251B2 (en) X-ray mask and method of manufacturing the same
JPS6222262B2 (en)
JPS6373623A (en) Mask for photoelectron replication
JPS6066429A (en) Photoelectron image reduced projection type electron beam exposure method
JPH01168024A (en) Photoelectron transfer mask and manufacture thereof
JPS63156319A (en) Photoelectron transferring mask and manufacture thereof
JPS62150720A (en) Surface treatment equipment applying radiation light
JPS635561A (en) Photoelectron beam transfer
JPS61185925A (en) Mask for transfer of electron image
JPS61289627A (en) Photoelectron image transfer
JPS62212656A (en) Photoelectronic image transferring method
JPS63100729A (en) Mask for photoelectron transfer and manufacture thereof
JPS61114528A (en) Transfer and exposure by electron beam
JPS60106131A (en) Exposing method by electron beam
JPS62211654A (en) Mask for photoelectron transfer and its production
JPH01289246A (en) Photoelectronic replication apparatus
JPS62272530A (en) Mask for transferring photoelectron
JPS62205625A (en) Image transferring method utilizing photo electron
JPS6292436A (en) Transferring method for photoelectron image
JPS61154032A (en) X-ray exposuring method