JPS61288731A - Reactive power compensation system - Google Patents

Reactive power compensation system

Info

Publication number
JPS61288731A
JPS61288731A JP60126235A JP12623585A JPS61288731A JP S61288731 A JPS61288731 A JP S61288731A JP 60126235 A JP60126235 A JP 60126235A JP 12623585 A JP12623585 A JP 12623585A JP S61288731 A JPS61288731 A JP S61288731A
Authority
JP
Japan
Prior art keywords
reactive power
capacitor
voltage
load
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60126235A
Other languages
Japanese (ja)
Other versions
JPH061948B2 (en
Inventor
勉 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60126235A priority Critical patent/JPH061948B2/en
Publication of JPS61288731A publication Critical patent/JPS61288731A/en
Publication of JPH061948B2 publication Critical patent/JPH061948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、降圧変圧器の2次側にコンデンサとりアク
ドルとを並列接続し、負荷側にて発生する無効電力を吸
収する無効電力補償システムに関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a reactive power compensation system that absorbs reactive power generated on the load side by connecting a capacitor and an accelerator in parallel to the secondary side of a step-down transformer. Regarding.

〔従来の技術〕[Conventional technology]

第2図はかかるシステムにおける無効電力補償動作を説
明するだめの動作原理図である。
FIG. 2 is an operational principle diagram for explaining the reactive power compensation operation in such a system.

すなわち、負荷の無効電力QF (一般に、遅相無効電
力と考える。)の時間的変化が同図(イ)の如く示され
るものとすると、可変リアクトルのとる無効電力QL 
(遅相)は同図(ロ)の如く、QFが増大するときはQ
Lを減少させ、QFが減少するときはQLを増大させる
ようにする。つまり、同図(ハ)の如く、負荷の無効電
力の如何にか匁わらず、 QF +QLニ一定 となるようにQbを制御することにより、系統の無効電
力Qsを同図(ホ)の如く、 Qs = QF +QL −Qa ’::一定となるよ
うにするものである。なお、Qoは固定コンデンサのと
る無効電力(進相)であり、同図(ニ)に示す如く一定
である。このとき、系統の電圧変動Δ■は系統リアクタ
ンスをXsとし単位量で表わすと、 ΔV二Qs−Xsニ一定 となって、電圧変動(いわゆるフリッカ現象)が抑制さ
れる。
In other words, assuming that the temporal change in reactive power QF of the load (generally considered as delayed phase reactive power) is shown as shown in the same figure (A), the reactive power QL taken by the variable reactor is
(Long phase) is as shown in the same figure (B), when QF increases, Q
L is decreased, and when QF is decreased, QL is increased. In other words, by controlling Qb so that QF + QL remains constant, regardless of the reactive power of the load, the reactive power Qs of the system can be reduced as shown in (e) of the same figure, as shown in (c) of the same figure. , Qs = QF + QL - Qa':: It is made to be constant. Note that Qo is the reactive power (phase advance) taken by the fixed capacitor, and is constant as shown in FIG. At this time, when the system voltage fluctuation Δ■ is expressed as a unit quantity with the system reactance being Xs, it becomes constant ΔV2Qs−Xs, and voltage fluctuation (so-called flicker phenomenon) is suppressed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記の如きシステムにおいては、負荷の無効
電力またはその変動が零の場合は、Q?=0、または(
b−一定 となって、(b、は最大となる。このとき、一般には、 Qr、 −Qa となってリアクトルの電流は最大となり、これによって
損失(電圧の2乗に比例する)も最大となる。すなわち
、負荷が製鋼アーク炉の如く、1回の溶解が終る毎に溶
鋼を取り出し、炉を補修した後人の原料スクラップを投
入すべく、20〜30分程成の停止期間が1〜2時間毎
に生ずるような負荷において、この停止期間中に無効電
力補償装置のりアクドルを最大出力にしてその損失を大
きくすることは、電力を無駄に消費し電力料金も増大す
ることから好ましくない。なお、その対策として、しゃ
断器を用いて開閉する方式が考えられるが、しゃ断器の
寿命や起動時に発生するコンデンサの突入電流によって
系統電圧にじよう乱が生じる等の問題がある。
By the way, in the above system, if the reactive power of the load or its fluctuation is zero, Q? =0, or (
b - becomes constant, and (b, becomes maximum. At this time, in general, Qr, -Qa becomes and the reactor current becomes maximum, and the loss (proportional to the square of the voltage) also becomes maximum. In other words, when the load is on a steelmaking arc furnace, the molten steel is taken out after each melting process, and raw material scrap is put in after the furnace is repaired, so the downtime is about 20 to 30 minutes. In a load that occurs every two hours, it is not preferable to increase the loss by increasing the output of the reactive power compensator's accelerator to its maximum output during this stop period because it wastes power and increases the power bill. As a countermeasure, a method of opening and closing using a breaker may be considered, but there are problems such as disturbances in the system voltage due to the life of the breaker and the inrush current of the capacitor that occurs at startup.

したがって、この発明は負荷の運転停止等によって生じ
る主としてリアクトルの負荷損失を、簡単かつ安価な手
段で容易に低減することを目的とする。
Therefore, it is an object of the present invention to easily reduce the load loss mainly caused by the reactor due to the stoppage of the load, etc., by a simple and inexpensive means.

〔問題点を解決するための手段〕[Means for solving problems]

降圧が可能な降圧変圧器と、負荷の無効電力またはその
変動が零になったことを検出する検出器とを設ける。
A step-down transformer that can step down the voltage and a detector that detects when the reactive power of the load or its fluctuation has become zero are provided.

〔作用〕[Effect]

上記検出器により負荷の無効電力またはその変動が零に
なったことが検出されたときは、上記変圧器によってそ
の2次側電圧を下げ、主としてリアクトルに流れる電流
を低減してその損失を減少同図において、3はリアクト
ル、4はサイリスタスイッチ、5はコンデンサであり、
これらによって良く知られている無効電力補償装置が構
成される。なお、その作用は〔従来の技術〕の項で説明
した通りである。したがって、この実施例は負荷時タッ
プ切換変圧器の如く降圧が可能な変圧器1、および無効
電力検出器6を設けた点が特徴である。
When the detector detects that the reactive power of the load or its fluctuation has become zero, the transformer lowers its secondary voltage, mainly reducing the current flowing through the reactor to reduce its loss. In the figure, 3 is a reactor, 4 is a thyristor switch, and 5 is a capacitor.
These constitute a well-known reactive power compensator. Note that its operation is as explained in the [Prior Art] section. Therefore, this embodiment is characterized in that it is provided with a transformer 1 capable of stepping down the voltage, such as an on-load tap change transformer, and a reactive power detector 6.

なお、同図の2はアーク炉の如く変動の大きな負荷、7
は電圧検出器、8は電流検出器、9はタップ切換器駆動
装置である。
In addition, 2 in the same figure is a load with large fluctuations such as an arc furnace, and 7
8 is a voltage detector, 8 is a current detector, and 9 is a tap changer driving device.

すなわち、無効電力検出器6は電圧検出器7および電流
検出器8によって検出される電圧、電流値から負荷2の
無効電力QFを求め、この無効電力またはその変動が零
か否かを検出する。そして、これが零のときはその旨の
信号を送出するので、これによってタップ切換器駆動装
置9が動作し、変圧器1のタップ電圧を降下させ、リア
クトル3に流れる電流を低減して、その損失を減少させ
るようにする。このとき、当然のことながらコンデンサ
5に流れる電流も低減され、これによってコンデンサ5
による損失も低減される。なお、変圧器1のタップ電圧
は、例えば1/2程度に低下できるようにしておき、コ
ンデンサ5を投入するとき、降圧変圧器1のタップ電圧
をこの最低タップ迄下げて投入するようにする。つまり
、コンデンサ起動時の突入電流Im(過渡最大値)は、
で表わされる。ここに、Emは定常電圧、2は回路イン
ピーダンス、’XLは回路リアクタンス、XOはコンデ
ンサリアクタンス、ωは角周波数(−2πf)、αは係
数である。したがって、定常電圧Ernt−降圧変圧器
1の最低タップで投入することにより、コンデンサの突
入電流を比例的に低減させることができ、これによって
系統の電圧降下を減少させることか可能となる。
That is, the reactive power detector 6 determines the reactive power QF of the load 2 from the voltage and current values detected by the voltage detector 7 and the current detector 8, and detects whether this reactive power or its fluctuation is zero. When this is zero, a signal to that effect is sent out, which causes the tap changer drive device 9 to operate, lowering the tap voltage of the transformer 1 and reducing the current flowing through the reactor 3, reducing its loss. to reduce the At this time, as a matter of course, the current flowing through the capacitor 5 is also reduced, which causes the capacitor 5 to
The loss caused by this is also reduced. Note that the tap voltage of the transformer 1 is set so that it can be lowered to about 1/2, for example, and when the capacitor 5 is turned on, the tap voltage of the step-down transformer 1 is lowered to this lowest tap before being turned on. In other words, the inrush current Im (transient maximum value) when starting the capacitor is:
It is expressed as Here, Em is a steady voltage, 2 is a circuit impedance, 'XL is a circuit reactance, XO is a capacitor reactance, ω is an angular frequency (-2πf), and α is a coefficient. Therefore, by turning on the steady voltage Ernt at the lowest tap of the step-down transformer 1, the inrush current of the capacitor can be proportionally reduced, thereby making it possible to reduce the voltage drop in the system.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、製鋼アーク炉や電鉄負荷の如(、停
止期間が頻繁におきかつその時間が比較的長い負荷にお
いて、電力および電力料金の節約が可能になる利点がも
たらされるばかりでなく、電源系統が弱くてコンデンサ
の投入時に系統電圧降下も問題となるような場合にも、
これを減少させることができる効果が得られるものであ
る。
According to the present invention, not only is there an advantage that electric power and electric power charges can be saved in loads such as steelmaking arc furnaces and electric railway loads (such as loads that have frequent and relatively long outage periods), but also In cases where the power supply system is weak and the system voltage drop becomes a problem when the capacitor is turned on,
The effect of reducing this can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す概要図、第2図は無効
電力補償動作を説明するだめの一般的な動作原理図であ
る。 符号説明 1・・・・・・降圧変圧器、2・・・・・・負荷、6・
・・・・・リアクトル、4・・・・・・サイリスタスイ
ッチ、5・・・・・・コンデンサ、6・・・・・・無効
電力検出器、7・・・・・・電圧検出器、8・・・・・
・電流検出器、9・・・・・・タップ切換器駆動装置。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清 If1図
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 is a general operating principle diagram for explaining reactive power compensation operation. Code explanation 1...Step-down transformer, 2...Load, 6...
...Reactor, 4 ... Thyristor switch, 5 ... Capacitor, 6 ... Reactive power detector, 7 ... Voltage detector, 8・・・・・・
- Current detector, 9...Tap changer drive device. Agent Patent Attorney Akio Namiki Agent Patent Attorney Kiyoshi Matsuzaki If1

Claims (1)

【特許請求の範囲】[Claims] 降圧が可能な変圧器の2次側にコンデンサと可変リアク
トルとを並列接続し負荷側にて発生する無効電力を補償
するシステムであつて、負荷側の無効電力またはその変
動分が零になつたときそのことを検出する検出手段を備
え、該検出手段によりそのことが検出されたときは前記
変圧器の2次側電圧を下げることにより、可変リアクト
ルおよびコンデンサによる損失を低減することを特徴と
する無効電力補償システム。
A system that compensates for the reactive power generated on the load side by connecting a capacitor and a variable reactor in parallel on the secondary side of a transformer that can step down, and the reactive power on the load side or its fluctuation becomes zero. The present invention is characterized by comprising a detecting means for detecting this, and when the detecting means detects this, the secondary voltage of the transformer is lowered to reduce losses due to the variable reactor and the capacitor. Reactive power compensation system.
JP60126235A 1985-06-12 1985-06-12 Reactive power compensation system Expired - Lifetime JPH061948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60126235A JPH061948B2 (en) 1985-06-12 1985-06-12 Reactive power compensation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60126235A JPH061948B2 (en) 1985-06-12 1985-06-12 Reactive power compensation system

Publications (2)

Publication Number Publication Date
JPS61288731A true JPS61288731A (en) 1986-12-18
JPH061948B2 JPH061948B2 (en) 1994-01-05

Family

ID=14930131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60126235A Expired - Lifetime JPH061948B2 (en) 1985-06-12 1985-06-12 Reactive power compensation system

Country Status (1)

Country Link
JP (1) JPH061948B2 (en)

Also Published As

Publication number Publication date
JPH061948B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
EP0410128B1 (en) Superconductive voltage stabilizer
US4672298A (en) Power factor correction system
US4700283A (en) Control system for an electric locomotive having AC to DC converters
JPS61288731A (en) Reactive power compensation system
CN107294109A (en) Smelting iron and steel intelligent grid energy-saving compensated system
JP2909820B2 (en) Load starting method using AC uninterruptible power supply
JPH0715875A (en) Controller for reactive power compensator
JPH06189475A (en) Uninterruptible power supply apparatus
JP2670282B2 (en) Control method of flicker suppressing device
SU1101967A1 (en) Static equalizer of reactive power
CA1234595A (en) System for control of the electroslag remelting
JPS59119423A (en) Gate controlling system of thyristor switch for opening and closing capacitor
JP2001275255A (en) Voltage compensating device
JP2000139040A (en) Uninterruptible power supply
JPH09229560A (en) Method for controlling flicker-restraining apparatus for arc furnace
JP2581902Y2 (en) Detector for short circuit between electrodes in electric furnace
JP2792085B2 (en) Control method of reactive power compensator
JPS61285693A (en) Electrode control system for steel making arc furnace
JPS6259877B2 (en)
JP2006042495A (en) Power supply system
JPH11275778A (en) Power supply device
JPH02117093A (en) Control of arc current for dc arc furnace
JP2604321Y2 (en) DC arc furnace controller
Bogle et al. J & L Steel's Pittsburgh Works Electric Furnace Shop—A Power Application Story
JPH0318237A (en) Uninterruptible power supply system