JPH11275778A - Power supply device - Google Patents

Power supply device

Info

Publication number
JPH11275778A
JPH11275778A JP10089420A JP8942098A JPH11275778A JP H11275778 A JPH11275778 A JP H11275778A JP 10089420 A JP10089420 A JP 10089420A JP 8942098 A JP8942098 A JP 8942098A JP H11275778 A JPH11275778 A JP H11275778A
Authority
JP
Japan
Prior art keywords
voltage
power supply
power
supply device
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10089420A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sekino
吉宏 関野
Hirohisa Yamazaki
博久 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10089420A priority Critical patent/JPH11275778A/en
Publication of JPH11275778A publication Critical patent/JPH11275778A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device for feeding power to a DC voltage with a waveform that does not obstruct the breaking characteristics of a breaker or the like, even if power is fed to a load facility using a breaker for breaking an AC current. SOLUTION: A power supply device constantly closes a switch S1, opens a switch S2, and feeds power from a commercial AC power supply CS to a load computer 10 and then opens the switch S1 and closes the switch S2 at power failure, closes semiconductor switches Q1 and Q4, and feeds power to the load computer 10 with a voltage E1 of a battery B1. The semiconductor switches Q1 and Q4 are opened periodically and the switches Q2 and Q3 are closed, and a voltage E1 with a negative polarity is applied to the load computer 10, while the semiconductor switches Q2 and Q3 are turned on. Even if an arc discharge occurs when the computer 10 is short-circuited or the like, the arc discharge is extinguished by reversing the polarity of voltage periodically.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】本発明は直流電圧で給電する
電源装置および常時は交流電圧で給電し、停電時には直
流電圧で給電する電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device that supplies power with a DC voltage and a power supply device that always supplies power with an AC voltage and supplies a DC voltage when a power failure occurs.

【0002】[0002]

【従来の技術】最も一般的な電源装置では、常時は商用
の交流電力を受電し、これを整流器で一旦直流電圧に変
換し、この直流電圧をインバータで改めて精度の高い周
波数、正弦波電圧に変換して給電する。また、商用電源
の停電時には電池の放電電力を前記インバータで交流電
圧に変換して給電する方法をとっている。この常時の給
電における稼働状態では整流器とインバータの電力損失
が大きいため装置の効率が80パーセント程度と低い。
省エネルギーの取り組みを強化しようという国際的な環
境問題、あるいは省資源対応の動きに合わせるため電源
装置も効率を大幅に高める必要がある。
2. Description of the Related Art The most common power supply device receives commercial AC power at all times, converts it into a DC voltage once by a rectifier, and converts the DC voltage into a high-precision frequency and sine wave voltage again by an inverter. Convert and supply power. In addition, at the time of a power failure of a commercial power supply, a method is employed in which the discharged power of the battery is converted into an AC voltage by the inverter and fed. In the operation state in the normal power supply, the power loss of the rectifier and the inverter is large, so that the efficiency of the device is as low as about 80%.
Power supplies also need to be much more efficient to meet international environmental issues, such as strengthening energy conservation efforts, or to respond to resource conservation needs.

【0003】常時の給電効率を高める方法としては、商
用電源から負荷に直接給電し、つまり損失を伴う整流器
やインバータを稼働させずに給電し、停電時にのみイン
バータを稼働させて給電させる方法がある。この方法は
小容量の装置で実用例が見られる。
As a method of improving power supply efficiency at all times, there is a method in which power is directly supplied from a commercial power supply to a load, that is, power is supplied without operating a rectifier or an inverter with loss, and the inverter is operated only when a power failure occurs to supply power. . This method has found practical use in small capacity devices.

【0004】さらに停電時における電池からの給電時に
おいても効率を高める方法としてインバータによる正弦
波交流電圧(インバータの高周波スイッチング技術を使
って波形制御をするため半導体スイッチの損失が大き
い)への変換のプロセスをなくして直流電圧のままで給
電する方法も開示されている。負荷がコンピュータのよ
うに受電した交流電力を直流に変換して使う場合には外
部から直流電圧で給電しても動作には差し支えない回路
となっているのでこれを活用している(特開平8−33
233 交直流電源装置)。
Further, as a method of increasing the efficiency even when power is supplied from a battery at the time of a power failure, conversion into a sine-wave AC voltage by an inverter (the loss of a semiconductor switch is large because the waveform is controlled by using the high-frequency switching technology of the inverter) is increased. There is also disclosed a method of supplying power with a DC voltage without a process. When a load is used by converting AC power received like a computer into DC, it is used as a circuit that does not interfere with operation even if it is supplied with DC voltage from the outside. −33
233 AC / DC power supply).

【0005】図10は、従来例の電源装置における交直
流給電の回路構成を示す図である。スイッチを切り換え
て商用の交流電源からの交流電圧で、あるいは電池から
の直流電圧で負荷であるコンピュータに給電する。負荷
側の整流回路は入力電圧が交流であるかあるいは直流で
あるかを問わない。必要なのは給電する電圧のレベルで
ある。直流電圧は交流電圧の平均値から波高値の間で選
ばれる。このレベルは電池の直列接続数を選定するか電
池の出力電圧をチョッパ回路で昇圧あるいは降圧して得
る。
FIG. 10 is a diagram showing a circuit configuration of AC / DC power supply in a conventional power supply device. A switch is switched to supply power to a computer as a load with an AC voltage from a commercial AC power supply or a DC voltage from a battery. The rectifier circuit on the load side does not matter whether the input voltage is AC or DC. What is needed is the level of the voltage to be supplied. The DC voltage is selected between the average value of the AC voltage and the peak value. This level can be obtained by selecting the number of batteries connected in series or increasing or decreasing the output voltage of the battery by a chopper circuit.

【0006】[0006]

【発明が解決しようとする課題】この方法は省エネルギ
ーの視点からは優れているが直流給電に伴う欠点もあ
る。負荷側が交流電圧受電の設備、例えばコンピュータ
である場合、受電電流遮断用のブレーカの遮断特性に不
都合が生じる場合がある。ブレーカで電流を遮断させる
とアークが生じるが、交流電力の場合には電圧の極性が
周期的に、50Hzの場合には20ミリ秒毎に反転する
のでアークが生じても電流の極性反転の時点で消滅す
る。しかし、直流電流の場合にはこの電流極性反転のメ
カニズムがないため一旦生じたアークは消えにくい。直
流電圧が高くなるほどアークは消えにくく、場合によっ
ては遮断不能になり危険である。
Although this method is excellent from the viewpoint of energy saving, it has a drawback associated with DC power supply. If the load side is a facility for receiving an AC voltage, for example, a computer, there may be a case where the breaking characteristic of the breaker for cutting off the receiving current may be inconvenient. When the current is interrupted by a breaker, an arc is generated. However, in the case of AC power, the polarity of the voltage is periodically inverted. In the case of 50 Hz, the polarity is inverted every 20 milliseconds. Disappears. However, in the case of DC current, the arc once generated is difficult to extinguish because there is no mechanism for reversing the current polarity. The higher the DC voltage, the harder the arc is extinguished, and in some cases, the arc cannot be cut off, which is dangerous.

【0007】負荷設備側で使われている交流用のブレー
カを、形が大きくまた高価な直流遮断用に交換すればア
ークの遮断も可能となり問題は解決されるが、不特定多
数の負荷に給電する汎用の電源装置の場合には負荷側と
連携した対策はとれない。つまり、ブレーカを直流遮断
用のものに交換する処置を負荷側に強いることはできな
い。
[0007] If the AC breaker used on the load equipment side is replaced with a large-sized and expensive DC cut-off, the arc can be cut off and the problem can be solved, but power is supplied to an unspecified large number of loads. In the case of a general-purpose power supply device, a measure cooperating with the load side cannot be taken. In other words, it is not possible to force the load side to replace the breaker with a DC breaker.

【0008】本発明はこのような点に鑑みてなされたも
のであり、交流電流遮断用ブレーカを使った負荷設備に
給電してもブレーカ等の遮断特性に支障がでない波形を
持った直流電圧を給電できる電源装置を提供することを
目的とする。
The present invention has been made in view of the above-described circumstances, and a DC voltage having a waveform that does not hinder the cutoff characteristics of a breaker or the like even when power is supplied to a load facility using a breaker for alternating current cutoff. An object is to provide a power supply device that can supply power.

【0009】[0009]

【課題を解決するための手段】ブレーカのアーク放電消
弧を容易にするために、給電する直流電圧を連続波とし
ないで、周期的にゼロとなる期間を設けるか、あるいは
負、つまり反転した極性になる期間を設けた直流電圧波
形とする。つまりブレーカにとって交流電流遮断に準じ
た条件をつくる。
In order to easily extinguish the arc discharge of the breaker, the DC voltage to be supplied is not set to a continuous wave, but is provided with a period in which it is periodically zero, or is negative, that is, inverted. The DC voltage waveform has a period in which the polarity is provided. In other words, a condition similar to the AC current cutoff is created for the breaker.

【0010】[0010]

【発明の実施の形態】上記課題を解決するために本発明
の電源装置は、直流電圧で給電する電源装置および常時
は交流電圧で給電し、停電時には直流電圧で給電する電
源装置であって、この直流電圧は周期的に電圧ゼロの期
間あるいは負の極性になる期間を設けた波形であること
に特徴を有している。また、前記直流電圧がゼロあるい
は負の極性にある期間を0.5ミリ秒から5ミリ秒の範
囲としたことに特徴を有している。さらに、極性の異な
る前記直流電圧をチョッパで変換して得ることに特徴を
有している。また、負の極性の前記直流電圧をリアクタ
とコンデンサの直列共振回路で得ることに特徴を有して
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the above problems, a power supply device of the present invention is a power supply device that supplies power with a DC voltage and a power supply device that always supplies power with an AC voltage and supplies a DC voltage when a power failure occurs. This DC voltage is characterized in that it has a waveform in which a period of zero voltage or a period of negative polarity is provided periodically. Further, the present invention is characterized in that the period during which the DC voltage has zero or negative polarity is in the range of 0.5 to 5 milliseconds. Further, the present invention is characterized in that the DC voltages having different polarities are obtained by conversion with a chopper. Also, the invention is characterized in that the DC voltage having a negative polarity is obtained by a series resonance circuit of a reactor and a capacitor.

【0011】[0011]

【実施例】図1に本発明の第1の実施例を示す。(a)
は回路構成図であり、(b)は停電時、つまり電池から
給電している期間の出力の直流電圧の波形である。S1
およびS2はスイッチで、これはリレー、ブレーカある
いは半導体スイッチを使うことも可能である。常時はス
イッチS1を閉じてS2を開いて商用の交流電源CSか
ら負荷のコンピュータ10に給電する。停電時にはスイ
ッチS1を開きS2を閉じて、半導体スイッチQ1,Q
4を閉じて電池B1の電圧E1で負荷のコンピュータ1
0に給電する。周期的に半導体スイッチQ1,Q4を開
いてQ2,Q3を閉じる。半導体スイッチQ2,Q3が
オンしている期間には負極性の電圧E1が負荷のコンピ
ュータ10に印加される。
FIG. 1 shows a first embodiment of the present invention. (A)
Is a circuit configuration diagram, and (b) is a waveform of an output DC voltage during a power failure, that is, a period during which power is supplied from the battery. S1
And S2 are switches, which may use relays, breakers or semiconductor switches. Normally, the switch S1 is closed and S2 is opened to supply power to the load computer 10 from the commercial AC power supply CS. In the event of a power failure, switch S1 is opened and S2 is closed, and semiconductor switches Q1, Q
4 is closed and the load computer 1 is driven by the voltage E1 of the battery B1.
Power 0. The semiconductor switches Q1 and Q4 are opened periodically and Q2 and Q3 are closed. While the semiconductor switches Q2 and Q3 are on, a negative voltage E1 is applied to the load computer 10.

【0012】停電時に半導体スイッチQ1〜Q4の断続
によって生じる直流給電電圧の波形を(b)に示す。負
荷側のブレーカCBに、例えば、コンピュータ10に短
絡事故が生じた場合などにアーク放電が生じても周期的
に起こる電圧の極性転換によってこれを消弧する。商用
周波数の交流電流遮断用ブレーカは半周期毎に、すなわ
ち10ミリ秒の周期(50Hzの場合)で極性転換が生
じる交流回路で使われる。従って、直流回路で使う場合
にも極性転換の周期(ton)を10ミリ秒より短くす
る必要はない。周期を延長できる限界は遮断する電圧、
電流および回路条件に依存する。負極性の電圧を印加し
ている時間(toff)は給電電流の極性が反転するま
でに要する時間できまる。負荷が抵抗とみなせる場合で
あれば瞬時に反転するが、給電ケーブルのインダクタン
スやノイズ抑制用のフィルタ等が存在すると電流が反転
するまでの時期が電圧反転時より遅れる。交流電圧半サ
イクルの期間の1/2,つまり5ミリ秒以上は必要とし
ない。従って、直流電圧の極性が反転して負の極性にな
っている期間は安全性を見て大きく選んでも5ミリ秒あ
ればよい。
FIG. 2B shows a waveform of the DC power supply voltage generated by the interruption of the semiconductor switches Q1 to Q4 at the time of power failure. Even if an arc discharge occurs in the breaker CB on the load side, for example, when a short circuit fault occurs in the computer 10, the arc is extinguished by periodically changing the polarity of the voltage. A commercial frequency AC current interrupting breaker is used in an AC circuit in which a polarity change occurs every half cycle, ie, every 10 milliseconds (at 50 Hz). Therefore, even when used in a DC circuit, it is not necessary to make the polarity switching period (ton) shorter than 10 milliseconds. The limit that can extend the cycle is the voltage to cut off,
Depends on current and circuit conditions. The time during which the negative voltage is applied (toff) is determined by the time required until the polarity of the power supply current is reversed. If the load can be regarded as a resistance, the load is reversed instantaneously. However, if the inductance of the power supply cable or a noise suppression filter is present, the time until the current is reversed is later than the time of the voltage reversal. It does not require more than 2 , of the half-cycle of the AC voltage, that is, 5 ms or more. Therefore, the period during which the polarity of the DC voltage is inverted to the negative polarity may be selected as large as 5 milliseconds in view of safety.

【0013】各半導体スイッチQ1〜Q4と逆並列に接
続しているダイオードD1〜D4は半導体スイッチQ1
〜Q4に逆方向の電圧が印加されて破壊されるのを防止
するために挿入する。半導体スイッチの逆方向の耐圧が
高ければダイオードを必ずしも設ける必要はない。
The diodes D1 to D4 connected in antiparallel with the respective semiconductor switches Q1 to Q4 are connected to the semiconductor switches Q1 to Q4.
QQ4 is inserted in order to prevent a reverse voltage from being applied and destroyed. If the reverse breakdown voltage of the semiconductor switch is high, it is not necessary to provide a diode.

【0014】図2に本発明の第2実施例における交直流
給電の回路構成図を示す。第1実施例(図1)では直流
電圧が正極性の時のレべルと負極にある時のレベルが等
しく電圧E1である。しかし、負極性になっている期間
の電圧レベルは給電する電力量には直接関与するもので
はないので任意に選べる。第2実施例では負極性になっ
ている期間の電圧E2のレベルを直列接続されている電
池B2,B3の電圧E1より低く選んである。電圧E2
は直列接続されている電池B2,B3を分割した電池B
3の電池電圧である。
FIG. 2 is a circuit diagram of an AC / DC power supply according to a second embodiment of the present invention. In the first embodiment (FIG. 1), the level when the DC voltage is positive is equal to the level when the DC voltage is at the negative polarity, and is the voltage E1. However, the voltage level during the negative polarity is not directly related to the amount of power to be supplied, and can be arbitrarily selected. In the second embodiment, the level of the voltage E2 during the negative polarity period is selected to be lower than the voltage E1 of the batteries B2 and B3 connected in series. Voltage E2
Is a battery B obtained by dividing the batteries B2 and B3 connected in series.
3 is the battery voltage.

【0015】図3に本発明の第3実施例における交直流
給電の回路構成図を示す。2組の電池B1,B3を使
い、直流電圧の給電時には半導体スイッチQ5をオンさ
せて電池B1の電圧E1で給電する。周期的に負極性の
電圧を印加する際には半導体スイッチQ5をオフさせ、
Q6をオンさせて電池B3の電圧−E2を出力する。
FIG. 3 is a circuit diagram of an AC / DC power supply according to a third embodiment of the present invention. When two sets of batteries B1 and B3 are used, the semiconductor switch Q5 is turned on to supply power at the voltage E1 of the battery B1 when DC voltage is supplied. When periodically applying a negative voltage, the semiconductor switch Q5 is turned off,
Q6 is turned on to output the voltage -E2 of the battery B3.

【0016】図4に本発明の第4実施例における交直流
給電の回路構成図を示す。第4実施例で負荷に印加する
直流電圧を周期的にゼロに落とす場合の回路構成例であ
る。第1実施例における直流電圧のパターン(図1b)
では、周期的に直流電圧の極性を反転させているが、例
えば給電ケーブルが短くて電源から負荷側を見たときの
インダクタンスが小さければ直流電圧の極性を負にする
ことは必ずしも必要ではない。直流電圧をゼロあるいは
ゼロ近くまで落とすことによって給電電流をブレーカが
遮断できるレベルまで小さくすることができる。つまり
ブレーカに期待する遮断機能を果たさせることができ
る。
FIG. 4 is a circuit diagram of an AC / DC power supply according to a fourth embodiment of the present invention. 13 is a circuit configuration example in a case where a DC voltage applied to a load is periodically dropped to zero in a fourth embodiment. DC voltage pattern in the first embodiment (FIG. 1b)
In this example, the polarity of the DC voltage is periodically inverted. However, for example, it is not always necessary to make the polarity of the DC voltage negative if the power supply cable is short and the inductance when the load is viewed from the power supply is small. By reducing the DC voltage to zero or near zero, the supply current can be reduced to a level at which the breaker can shut off. That is, the breaking function expected from the breaker can be performed.

【0017】例では、第3実施例(図3)における電池
B3,半導体スイッチQ6,ダイオードD6を除いた回
路構成となっている。半導体スイッチQ5をオンさせて
いる期間に電圧E1で給電し、周期的にQ5をオフさせ
ると給電電圧はゼロとなる。
In the example, the circuit configuration is the same as that of the third embodiment (FIG. 3) except for the battery B3, the semiconductor switch Q6, and the diode D6. When the semiconductor switch Q5 is turned on, power is supplied at the voltage E1, and when the Q5 is periodically turned off, the power supply voltage becomes zero.

【0018】図5に本発明の電源装置に適用する第1例
の直流電源部を示す。半導体スイッチQ7,ダイオード
D7,リアクタLおよびコンデンサC1で昇圧チョッパ
を構成し、電池B4の電圧E2、例えばDC48Vを所
望の電圧E1,例えばDC140Vまで昇圧する。すな
わち、半導体スイッチQ7をオンさせると電池B4の放
電電流がリアクタLに流れ、これに電磁エネルギ1/2
×(インダクタンス)×(電流)2 が蓄積される。この
間、コンデンサC1の電圧E1が出力電圧となる。次に
Q7をオフさせるとリアクタLの電流はダイオードD7
を通してコンデンサC1を充電する。リアクタLはエネ
ルギー保存則に則り図示の極性の電圧を誘起しエネルギ
を放出する。電圧E1は電池B4の電圧とリアクタLの
電圧の和であり、リアクタLの電圧分だけ昇圧されたレ
ベルになる。この半導体スイッチQ7のオン・オフのサ
イクルを繰り返しで動作させ、電圧E1を所望のレベル
に制御する。リアクタLのインダクタンスを小さくし小
形化および低コスト化を図るためスイッチング周波数
は、例えば20kHz以上に高くする。なお、半導体ス
イッチQ7をオン・オフするための制御信号は図には示
されていない制御装置から与えられる。
FIG. 5 shows a first example of a DC power supply unit applied to the power supply device of the present invention. The semiconductor switch Q7, the diode D7, the reactor L, and the capacitor C1 constitute a boost chopper, and boosts the voltage E2 of the battery B4, for example, DC48V, to a desired voltage E1, for example, DC140V. That is, when the semiconductor switch Q7 is turned on, the discharge current of the battery B4 flows through the reactor L, and the electromagnetic energy becomes 1/2
× (inductance) × (current) 2 is accumulated. During this time, the voltage E1 of the capacitor C1 becomes the output voltage. Next, when Q7 is turned off, the current of the reactor L becomes the diode D7.
Through the capacitor C1. The reactor L emits energy by inducing a voltage having the polarity shown in the figure according to the law of conservation of energy. The voltage E1 is the sum of the voltage of the battery B4 and the voltage of the reactor L, and has a level increased by the voltage of the reactor L. The ON / OFF cycle of the semiconductor switch Q7 is repeatedly operated to control the voltage E1 to a desired level. The switching frequency is increased to, for example, 20 kHz or more in order to reduce the inductance of the reactor L to reduce the size and cost. A control signal for turning on / off the semiconductor switch Q7 is provided from a control device not shown.

【0019】この第1例の直流電源部は、第1実施例
(図1)の電池B1に置き換えて使う。また、電池B4
の電圧E2と昇圧された電圧E1とを第2実施例(図
2)における電池B2およびB3に置き換えて使う。
The DC power supply of the first embodiment is used in place of the battery B1 of the first embodiment (FIG. 1). Also, battery B4
And the boosted voltage E1 are used in place of the batteries B2 and B3 in the second embodiment (FIG. 2).

【0020】図6に本発明の電源装置に適用する第2例
の直流電源部を示す。先の第1例の直流電源部(図5)
にリアクタLX,コンデンサC2およびダイオードD8
を付加した回路である。リアクタLXはリアクタLと磁
気的に結合している。リアクタLに図示の極性の電圧が
誘起している期間にはリアクタLXにも図示の極性の電
圧が誘起するのでこれによりコンデンサC2が充電され
る。この第2例の直流電源部の+E1,0,−E2を第
3実施例(図3)の電池B1およびB3に置き換えて使
う。
FIG. 6 shows a second example of a DC power supply unit applied to the power supply device of the present invention. DC power supply unit of the first example (FIG. 5)
The reactor LX, the capacitor C2 and the diode D8
Is a circuit to which is added. Reactor LX is magnetically coupled to reactor L. During the period when the voltage having the polarity shown is induced in the reactor L, the voltage having the polarity shown is also induced in the reactor LX, so that the capacitor C2 is charged. The + E1,0, -E2 of the DC power supply unit of the second example is used by replacing the batteries B1 and B3 of the third embodiment (FIG. 3).

【0021】図7に本発明の電源装置に適用する第3例
の直流電源部を示す。第1例の直流電源部(図5)では
電池B4の電圧とリアクタLの電圧を重畳してコンデン
サC1の電圧、つまり出力の+E1としている。これに
対してこの第3例の直流電源部では、リアクタLに誘起
した電圧でコンデンサC3を充電し、電池B4の電圧と
コンデンサC3の電圧とを加算して出力の電圧+E1と
する。この出力電圧+E1を第1実施例(図1)の電池
B1に代替えて使用する。また電圧+E1および+E2
を第2実施例(図2)の電池B2およびB3に代替えて
使用する。
FIG. 7 shows a DC power supply unit of a third example applied to the power supply device of the present invention. In the DC power supply unit (FIG. 5) of the first example, the voltage of the battery B4 and the voltage of the reactor L are superimposed to make the voltage of the capacitor C1, that is, + E1 of the output. On the other hand, in the DC power supply unit of the third example, the capacitor C3 is charged with the voltage induced in the reactor L, and the voltage of the battery B4 and the voltage of the capacitor C3 are added to obtain an output voltage + E1. This output voltage + E1 is used instead of the battery B1 of the first embodiment (FIG. 1). In addition, voltages + E1 and + E2
Is used in place of the batteries B2 and B3 of the second embodiment (FIG. 2).

【0022】図8に本発明の電源装置に適用する第4例
の直流電源部を示す。第3例の直流電源部(図7)を使
って出力の取り出し方を変えた例である。コンデンサC
3の電圧を+E1とし電池B4を−E2としている。こ
の直流電源部は第3実施例(図3)の電池B1,B3に
代替えできる。
FIG. 8 shows a fourth example of a DC power supply unit applied to the power supply device of the present invention. This is an example in which the way of extracting the output is changed using the DC power supply unit (FIG. 7) of the third example. Capacitor C
3 is + E1 and the battery B4 is -E2. This DC power supply can be replaced by the batteries B1 and B3 of the third embodiment (FIG. 3).

【0023】電池は単独では電圧が低いので多数個を直
列に接続して使う。この電池は電圧変動が大きい。鉛蓄
電池の場合、電池から直接得られる電圧は1個当たり、
充電から放電までのプロセスで2.22Vから1.6V
まで変動する。第1〜3実施例(図1〜3)の直流電源
部を電池に代わって図5〜8のチョッパで構成した直流
給電部を使えば給電する電圧は一定のレベルを保つので
負荷のコンピュータ10にとって望ましい。
Since a single battery has a low voltage, a large number of batteries are connected in series and used. This battery has large voltage fluctuations. In the case of a lead-acid battery, the voltage directly obtained from the battery is
2.22V to 1.6V in the process from charge to discharge
Fluctuate up to If the DC power supply unit of the first to third embodiments (FIGS. 1 to 3) is replaced by a battery and a DC power supply unit composed of a chopper of FIGS. 5 to 8 is used, the voltage to be supplied is maintained at a constant level. Desirable for

【0024】図9に本発明の第5実施例における交直流
給電の回路構成図を示す。直流電圧給電中における負極
性の電圧としてリアクタとコンデンサの直列共振によっ
て得たパルス状電圧を使っている。停電中で、電池から
給電している状態を説明する。直流電圧給電は半導体ス
イッチQ8をオンさせて電池B1から給電する。周期的
にQ8をオフさせて次のプロセスで生じる負のパルスを
負荷のコンピュータ10に与える。コンデンサC4が図
示の極性で充電されているのでサイリスタTHをオンさ
せるとリアクタL2,3(L2とL3は独立した部品で
もよい、また、磁気的に結合させた部品てもよい)とコ
ンデンサC4が直列共振を開始する。
FIG. 9 is a circuit diagram of an AC / DC power supply according to a fifth embodiment of the present invention. The pulse voltage obtained by the series resonance of the reactor and the capacitor is used as the negative voltage during the DC voltage supply. A state in which power is supplied from a battery during a power failure will be described. DC voltage is supplied from the battery B1 by turning on the semiconductor switch Q8. Periodically, Q8 is turned off to provide the load computer 10 with a negative pulse resulting from the next process. When the thyristor TH is turned on because the capacitor C4 is charged with the polarity shown in the figure, the reactors L2 and L3 (L2 and L3 may be independent components, or may be magnetically coupled components) and the capacitor C4. Initiate series resonance.

【0025】コンデンサC4の電圧が減少して、続いて
図とは逆の極性で電圧が増加し、コンデンサC4の逆極
性の電圧とリアクタL3の電圧の和(負の極性)がコン
ピュータ10に印加される。次にダイオードD10を介
して逆方向の共振電流が流れ始めてコンデンサC4は再
度図示の極性に戻る。この時点ではサイリスタTHには
導通させる信号を与えないので直列共振が持続すること
はない。このプロセス後に半導体スイッチQ8をオンさ
せて電圧E1のレベルで直流給電を行う。
The voltage of the capacitor C4 decreases, and then the voltage increases in the opposite polarity to that shown in the figure. The sum (negative polarity) of the voltage of the opposite polarity of the capacitor C4 and the voltage of the reactor L3 is applied to the computer 10. Is done. Then, a reverse resonance current starts flowing through the diode D10, and the capacitor C4 returns to the illustrated polarity again. At this time, the thyristor TH is not supplied with a signal for conducting, so that the series resonance does not continue. After this process, the semiconductor switch Q8 is turned on to supply DC power at the level of the voltage E1.

【0026】第5実施例(図9)における電池B1に代
わって図5および図7のチョッパで構成した直流給電部
も使える。
Instead of the battery B1 in the fifth embodiment (FIG. 9), a DC power supply constituted by the chopper shown in FIGS. 5 and 7 can be used.

【0027】リアクタL3は半導体スイッチQ8をオン
させた瞬間に流れるコンデンサC4の充電電流を抑制す
るために挿入したもので充電電流が過大にならなければ
必ずしも必要とするものではない。サイリスタTHに代
わってトライアックやトランジスタも適用できる。
The reactor L3 is inserted to suppress the charging current of the capacitor C4 flowing at the moment when the semiconductor switch Q8 is turned on, and is not always necessary unless the charging current becomes excessive. A triac or a transistor can be used instead of the thyristor TH.

【0028】この負荷に印加する直流電圧の極性反転は
周期的に行う。極性反転の周期は商用の交流電源の半周
期、つまり10ミリ秒程度あれば問題はないが、電源
に、例えば図5〜8のようにチョッパを使えば過電流抑
制機能をもたせられるので電流が異常に増加することが
なくなり、この極性反転の周期は1秒程度まで長くして
もよい。
The polarity reversal of the DC voltage applied to the load is performed periodically. There is no problem if the polarity inversion cycle is a half cycle of a commercial AC power supply, that is, about 10 milliseconds. However, if a chopper is used in the power supply, for example, as shown in FIGS. Abnormal increase does not occur, and the polarity inversion cycle may be extended up to about 1 second.

【0029】本発明の説明図において半導体スイッチと
してバイポーラ・トランジスタを例に取り上げている
が、これに限らず、パワー・MOSFETやIGBTも
支障なく使える。また、電池としては鉛蓄電池や太陽電
池、燃料電池等も実用になる。原理としては電池とは言
えないが実用化が期待されている電気二重層コンデンサ
も使える。
In the illustration of the present invention, a bipolar transistor is taken as an example of a semiconductor switch. However, the present invention is not limited to this, and power MOSFETs and IGBTs can be used without any problem. In addition, a lead storage battery, a solar battery, a fuel cell, and the like are also practically used as batteries. In principle, electric double layer capacitors, which are not batteries but are expected to be put to practical use, can also be used.

【0030】電池として太陽電池や燃料電池を使う場合
には商用の交流電源に依存する必要がない。また、交流
電力を直流に変換する整流器がある場合には常時これを
使ってもよい。これらの場合には第1ないし第4の実施
例から交流給電系の回路(切り換えスイッチSのある系
統)を除いて負荷へは常時、直流電圧給電とする。
When a solar cell or a fuel cell is used as a battery, there is no need to rely on a commercial AC power supply. If there is a rectifier that converts AC power to DC, it may be used at all times. In these cases, the load is always supplied with DC voltage except for the circuit of the AC power supply system (the system having the changeover switch S) from the first to fourth embodiments.

【0031】[0031]

【発明の効果】本発明によれば直流電圧給電中に周期的
にゼロ電圧とし、あるいは電圧の極性を負とするので、
例えば負荷側で短絡事故等でアーク放電が生じても、こ
の周期以上の期間にわたってアーク放電が持続すること
がなくなる。従って給電経路に設けられたブレーカが交
流電流遮断用つまり遮断能力が小さくても実用上支障が
なく、交流受電用に設計されたコンピュータ等の電子設
備に直流給電が可能となる。これにより電源装置の効率
向上が図られ、省エネルギー化推進に大きく貢献でき
る。
According to the present invention, the zero voltage is periodically set during the supply of the DC voltage, or the polarity of the voltage is set to be negative.
For example, even if an arc discharge occurs on the load side due to a short circuit accident or the like, the arc discharge does not continue for a period longer than this cycle. Therefore, even if the breaker provided on the power supply path has a small AC current interrupting capability, that is, a small interrupting capability, there is no practical problem, and DC power can be supplied to electronic equipment such as a computer designed for AC power receiving. As a result, the efficiency of the power supply device is improved, which can greatly contribute to the promotion of energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は第1実施例における交直流給電の回路
構成図であり、(b)は直流電圧の出力波形図である。
FIG. 1A is a circuit configuration diagram of AC / DC power supply in a first embodiment, and FIG. 1B is an output waveform diagram of a DC voltage.

【図2】第2実施例における交直流給電の回路構成図で
ある。
FIG. 2 is a circuit configuration diagram of AC / DC power supply in a second embodiment.

【図3】第3実施例における交直流給電の回路構成図で
ある。
FIG. 3 is a circuit configuration diagram of AC / DC power supply in a third embodiment.

【図4】第4実施例における交直流給電の回路構成図で
ある。
FIG. 4 is a circuit configuration diagram of AC / DC power supply in a fourth embodiment.

【図5】本発明の電源装置に適用する第1例の直流電源
部の回路構成図である。
FIG. 5 is a circuit configuration diagram of a DC power supply unit of a first example applied to the power supply device of the present invention.

【図6】本発明の電源装置に適用する第2例の直流電源
部の回路構成図である。
FIG. 6 is a circuit configuration diagram of a DC power supply unit of a second example applied to the power supply device of the present invention.

【図7】本発明の電源装置に適用する第3例の直流電源
部の回路構成図である。
FIG. 7 is a circuit configuration diagram of a DC power supply unit of a third example applied to the power supply device of the present invention.

【図8】本発明の電源装置に適用する第4例の直流電源
部の回路構成図である。
FIG. 8 is a circuit configuration diagram of a DC power supply unit of a fourth example applied to the power supply device of the present invention.

【図9】第5実施例における交直流給電の回路構成図で
ある。
FIG. 9 is a circuit configuration diagram of AC / DC power supply in a fifth embodiment.

【図10】従来例の電源装置における交直流給電の回路
構成図である。
FIG. 10 is a circuit configuration diagram of AC / DC power supply in a conventional power supply device.

【符号の説明】[Explanation of symbols]

10 負荷であるコンピュータ B1,2,3,4 電池 C1,2,3,4 コンデンサ CB ブレーカ CS 商用の交流電源 D1,2,3,4,5,6,7,8,9 ダイオード E1,2 電圧 L,L2,3 リアクタ LX リアクタ Q1,2,3,4,5,6,7,8 半導体スイッチ S1,2 スイッチ TH サイリスタ 10 Computer as load B1,2,3,4 Battery C1,2,3,4 Capacitor CB breaker CS Commercial AC power supply D1,2,3,4,5,6,7,8,9 Diode E1, Voltage L, L2, 3 reactor LX reactor Q1, 2, 3, 4, 5, 6, 7, 8 semiconductor switch S1, switch TH thyristor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 直流電圧で給電する電源装置および常時
は交流電圧で給電し、停電時には直流電圧で給電する電
源装置であって、 この直流電圧は周期的に電圧ゼロの期間あるいは負の極
性になる期間を設けた波形であることを特徴とする電源
装置。
1. A power supply device that supplies power with a DC voltage and a power supply device that always supplies power with an AC voltage and supplies a DC voltage when a power failure occurs, wherein the DC voltage periodically has a period of zero voltage or a negative polarity. A power supply device having a waveform provided with a certain period.
【請求項2】 前記直流電圧がゼロあるいは負の極性に
ある期間を0.5ミリ秒から5ミリ秒の範囲としたこと
を特徴とする請求項1記載の電源装置。
2. The power supply device according to claim 1, wherein a period during which the DC voltage has zero or negative polarity is in a range of 0.5 to 5 milliseconds.
【請求項3】 極性の異なる前記直流電圧をチョッパで
変換して得ることを特徴とする請求項1あるいは2記載
の電源装置。
3. The power supply device according to claim 1, wherein said DC voltages having different polarities are obtained by conversion by a chopper.
【請求項4】 負の極性の前記直流電圧をリアクタとコ
ンデンサの直列共振回路で得ることを特徴とする請求項
1あるいは2記載の電源装置。
4. The power supply device according to claim 1, wherein the DC voltage having a negative polarity is obtained by a series resonance circuit of a reactor and a capacitor.
JP10089420A 1998-03-18 1998-03-18 Power supply device Pending JPH11275778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10089420A JPH11275778A (en) 1998-03-18 1998-03-18 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10089420A JPH11275778A (en) 1998-03-18 1998-03-18 Power supply device

Publications (1)

Publication Number Publication Date
JPH11275778A true JPH11275778A (en) 1999-10-08

Family

ID=13970176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10089420A Pending JPH11275778A (en) 1998-03-18 1998-03-18 Power supply device

Country Status (1)

Country Link
JP (1) JPH11275778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254102A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Uninterruptible power supply device
US7807280B2 (en) 2000-06-12 2010-10-05 Honda Giken Kogyo Kabushiki Kaisha Control device for starting fuel cell vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807280B2 (en) 2000-06-12 2010-10-05 Honda Giken Kogyo Kabushiki Kaisha Control device for starting fuel cell vehicle
US8133631B2 (en) 2000-06-12 2012-03-13 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for starting fuel cell vehicle
JP2009254102A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Uninterruptible power supply device

Similar Documents

Publication Publication Date Title
CN110224381B (en) Photovoltaic inverter and photovoltaic power generation system thereof
KR20040041200A (en) power supply apparatus for motor and controlling method thereof
EP3270486B1 (en) Uninterruptible power supply
WO2018113704A1 (en) A switching arrangement for switching between two inputs, equipment, system and a method
CN1197220C (en) Charge circuit for UPS
CN101841233B (en) Dynamic voltage compensation device based on AC/AC converter
EP0479196B1 (en) Power supply circuit
CN107317339B (en) Voltage source type adjusting device with multiple redundancy configurations and control method thereof
JPH11275778A (en) Power supply device
JP2006014456A (en) Dc multitermial distribution system
US7230353B2 (en) Charging circuit in uninterruptible power supply system
CN201663434U (en) Electric protection device for DC circuit of inverter
KR100384451B1 (en) Uninterruptible power supply with integrated charger and inverter
CN100514827C (en) Control device for geometric proportion driven power supplying apparatus
CN215897281U (en) Voltage regulation and control type oscillation type direct current breaker
JP2017158265A (en) Electric power supply system and electric power conversion system
CN100502216C (en) Non-isolation type AC power supply unit and control method thereof
JPH02269426A (en) Dc uninterruptible power supply unit
CN113839370A (en) Voltage regulation and control type oscillation type direct current breaker and control method thereof
Hamzah et al. Application of single phase matrix converter topology in uninterruptible power supply circuit incorporating unity power factor control
CN219107111U (en) Battery group parallel device
CN216489897U (en) UPS with rectifier serving as inverter and active filter
CN209634294U (en) A kind of mine heavy type electric wheel self-discharging vehicle chopper braking circuit
JPH0545081Y2 (en)
KR200256205Y1 (en) Uninterruptible Power Supply Apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130