JPS61288475A - Manufacture of photo detector - Google Patents

Manufacture of photo detector

Info

Publication number
JPS61288475A
JPS61288475A JP60130309A JP13030985A JPS61288475A JP S61288475 A JPS61288475 A JP S61288475A JP 60130309 A JP60130309 A JP 60130309A JP 13030985 A JP13030985 A JP 13030985A JP S61288475 A JPS61288475 A JP S61288475A
Authority
JP
Japan
Prior art keywords
layer
type
electrode
region
hole current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60130309A
Other languages
Japanese (ja)
Inventor
Yuichi Ide
雄一 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60130309A priority Critical patent/JPS61288475A/en
Publication of JPS61288475A publication Critical patent/JPS61288475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable to remove promptly the slow component due to the diffusion of positive holes, by taking out electron current and positive hole current into an external circuit with these currents being separated. CONSTITUTION:On the surface of a semi-insulating InP substrate 21, SiO2mask 32 is deposited by a CVD method or the like, and a stripe-shaped opening with a width of about 2mum is formed by a normal photo lithography technique to expose the InP substrate 21. Next, etching forms a stripe-shaped trench with a depth of about 0.3mum and a width of about 2mum. Next, molecular beam epitaxy causes a P-type InGaAs hole current absorbing layer 22 to grow. Next, etching forms P-type InGaAs only in the trench. Thereafter, molecular beam epitaxy laminates an N-type InGaAs light-absorbing layer 23, an undoped Al InAs two-dimensional electron gas forming spacer layer 24, an N-type A4l InAs charge supplying layer 25 and an N-type InGaAs electrode forming layer 26. In the electrode forming process, the surfaces of the hole current absorbing layer 22 and the semi-insulating InP substrate 21 are exposed, and the charge supplying layer 25 is also exposed.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光通信装置等において用いられるホトディテ
クタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a photodetector used in optical communication devices and the like.

(従来技術とその問題点) モジュレーションドープしたホトディテクタ(以下MD
PDと略記する)は高速応答特性を有する光検出器であ
り、またへ午口接合を有する半導体装置である。従来報
告されているMDPDの例として、アプライド・フィツ
クス・レターズ(Appl、 Phys、 L@tt、
 43 (1983) 308 )に示されたMDPD
の構造を断面図で第6図に示す。このMDPD構造は、
半絶縁性InP基板11の上にアンドープAJ工nAs
バッファ一層12、アンドープ(n型)工nGaAs光
吸収層13.2次元電子ガスを形成するためのアンドー
プAj工nAsスペーサ層14、及びn型AI工nAs
電荷供給層15並びに電極形成用n型工nGaAs電極
形成層16を有する。ソース電極17及びドレイン電極
18は、金・ゲルマニウム(AuGe )のアロイ電極
であシ、破線テ示すようにアロイは2次元電子ガスの領
域まで深く進んでいる。
(Prior art and its problems) Modulation doped photodetector (MD
A photodetector (abbreviated as PD) is a photodetector with high-speed response characteristics, and is a semiconductor device having a meridian junction. Examples of conventionally reported MDPD include Applied Fixtures Letters (Appl, Phys, L@tt,
43 (1983) 308)
The structure is shown in FIG. 6 in cross section. This MDPD structure is
Undoped AJ nAs on the semi-insulating InP substrate 11
A buffer layer 12, an undoped (n-type) nGaAs light absorption layer 13, an undoped AJ-nAs spacer layer 14 for forming a two-dimensional electron gas, and an n-type AI nAs
It has a charge supply layer 15 and an n-type nGaAs electrode formation layer 16 for electrode formation. The source electrode 17 and the drain electrode 18 are gold-germanium (AuGe) alloy electrodes, and the alloy extends deep into the two-dimensional electron gas region as shown by the broken line.

この構造では、入射したフォトンで励起された電子−正
孔対のうち、電子は、InGaAs層13とAlInA
g層14の界面にできる内部電界により2次元電子ガス
(13と14の界面でInGaAs層13側にできる)
領域に走行し、ソースドレイン間に印加された電圧によ
って流れる電流として外部に取シ出すことができる。こ
のデバイスは2次元電子ガス領域での電子の移動度が非
常に大きいから、高速に応答することが期待され、事実
先述の論文でも信号の立上シ時間は非常に短かい。しか
し、実験データでは立下シ時間が非常に長いことがわか
っている。このように立下り時間が長いのは、光励起で
発生した正孔が光吸収層13の奥、即ち2次元電子ガス
領域とは逆の方向へ移動し、比較的長い時間にわたって
電子と再結合することなく、拡散電流成分となって電極
に到達することが原因であることがわかっている。
In this structure, among the electron-hole pairs excited by the incident photons, the electrons are connected to the InGaAs layer 13 and the AlInA layer 13.
Two-dimensional electron gas (created on the InGaAs layer 13 side at the interface between 13 and 14) due to the internal electric field created at the interface of the g layer 14
It can be extracted to the outside as a current flowing in response to the voltage applied between the source and drain. Since this device has extremely high electron mobility in the two-dimensional electron gas region, it is expected to respond quickly, and in fact, the signal rise time is extremely short in the aforementioned paper. However, experimental data shows that the fall time is very long. The reason for such a long fall time is that the holes generated by photoexcitation move to the depths of the light absorption layer 13, that is, in the opposite direction to the two-dimensional electron gas region, and recombine with electrons over a relatively long period of time. It is known that the cause is that the current reaches the electrodes as a diffusion current component without being absorbed.

従って、MDPDで高速応答特性を得るKは正孔による
遅い電流成分を極力弁えるかあるいは無視できるデバイ
ス構造にすることが必要である。
Therefore, in order to obtain high-speed response characteristics in MDPD, it is necessary to create a device structure in which slow current components due to holes can be detected or ignored as much as possible.

そこで、本発明の目的は、信号電流の立上シ及び立下シ
において共に高速に応答するMDPDの製造方法を提供
することKある。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a method for manufacturing an MDPD that responds quickly to both the rise and fall of a signal current.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供するホトデ
ィテクタの製造方法は、半絶縁性基板表面の一部にp型
の第1半導体領域を形成するp型領域形成工程と、該基
板上に少くともn型の第2半導体層とこの第2半導体層
よりパンドギャップが大きい2次元電子ガス生成用のn
型の第3半導体層とこの第3半導体層よ)パ/ドギャッ
プが小さいn型の電極形成層とを頴次積層するエピタキ
シャル成長工程と、前記電極形成層上の前記第1半導体
領域を挾む位置に前記2次元電子ガスが形成された領域
までアロイされた第1及び第2の電極を、前記第3半導
体層表面上の前記第1及び第2の電極の間に位置する領
域に第3の電極を、前記第1半導体領域に第4の電極を
それぞれ形成する電極形成工程とから成ることを特徴と
する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the method for manufacturing a photodetector provided by the present invention includes forming a p-type first semiconductor region on a part of the surface of a semi-insulating substrate. a p-type region forming step, and at least an n-type second semiconductor layer on the substrate and an n-type semiconductor layer for two-dimensional electron gas generation having a larger pand gap than the second semiconductor layer.
an epitaxial growth step of sequentially stacking a third semiconductor layer of the same type and an n-type electrode formation layer with a small pad/de gap; and a position on the electrode formation layer sandwiching the first semiconductor region. The first and second electrodes are arranged up to the region where the two-dimensional electron gas is formed, and the third electrode is arranged in the region located between the first and second electrodes on the surface of the third semiconductor layer. The method is characterized by comprising an electrode forming step of forming an electrode and a fourth electrode in the first semiconductor region, respectively.

(発明の概要) 次に本発明によって製造されるMDPDを図面を参照し
て説明する。第4図は後に説明する本発明の第1乃至第
3の実施例により製造される新規なMDPDの斜視図で
ある。本MDPDでは、半絶縁性InP基板21’の表
面の一部にp型工nGaAs(正味の不純物濃度(以下
Nと略記する)N−5x101Hcm″″3)の正孔電
流吸い出し層(第1半導体領域)22が深さ〜0.3μ
m1 幅〜2μmの範囲に形成してあり、さらにその上
にn型1nGaム8(N〜3 X 10”cx−”、厚
さ〜1.5μm)光吸収層(第2半導体層)23、アン
ドープAn工nAa(厚さ〜100人)2次元電子ガス
形成スペーサ層(第3半導体層)24、n型AI工nA
s(N〜5X 10I?cIL−”、厚さ〜1000人
)電荷供給層(第3半導体層)25、n型工nGaAs
(トI X 10”(m””、厚さ〜150人)電極形
成層26を有している。また電極として、ソース電極(
第1電極)28及びドレイン電極(第2電極)27が金
0ゲルマニウムで、ゲート電極(第3電極)29がチタ
ン・金で、正孔電流吸い出し電極(第4電極)30が金
拳亜鉛でそれぞれ形成しである。本MDPDでは一部に
半絶縁性InP基板21及びp型1nGaAs正孔電流
吸い出し層22の表面が露出した平坦な領域があシ、正
孔電流吸い出し電極3oはこの領域に形成しである。
(Summary of the Invention) Next, an MDPD manufactured according to the present invention will be explained with reference to the drawings. FIG. 4 is a perspective view of a novel MDPD manufactured according to the first to third embodiments of the present invention, which will be described later. In this MDPD, a hole current sucking layer (the first semiconductor Area) 22 is depth ~0.3μ
m1 width is formed in the range of ~2 μm, and further thereon, an n-type 1nGa film 8 (N~3 x 10"cx-", thickness ~1.5 μm) light absorption layer (second semiconductor layer) 23, Undoped An Aa (thickness ~ 100 people) 2-dimensional electron gas formation spacer layer (third semiconductor layer) 24, n-type AI NA
s (N ~ 5X 10I?cIL-", thickness ~ 1000 people) Charge supply layer (third semiconductor layer) 25, n-type nGaAs
(I x 10"(m"", thickness ~ 150 people)) has an electrode formation layer 26. Also, as an electrode, a source electrode (
The first electrode) 28 and the drain electrode (second electrode) 27 are made of gold and germanium, the gate electrode (third electrode) 29 is made of titanium/gold, and the hole current extraction electrode (fourth electrode) 30 is made of zinc. Each is formed separately. In this MDPD, there is a flat area in which the surfaces of the semi-insulating InP substrate 21 and the p-type 1nGaAs hole current extraction layer 22 are exposed, and the hole current extraction electrode 3o is formed in this area.

第5図に、第4図に破線31で示す面における第4図M
DPDの断面図を示す。このデバイスでは光を入射する
と光吸収層(第2半導体層)23において、電子−正孔
対が生成される。このうち電子は2次元電子ガス領域近
傍で発生する内部電界によりご〈短時間のうちに2次元
電子ガス領域に到達するから、ソースドレイン間に信号
電流として取シ出すことができる。2次元電子ガス中で
は電子は散乱を受ける割合が小さく通常の単層半導体よ
り大きな移動度を有しているから、電極間での電子の走
行時間が短かく高速に応答するのである。一方、正孔は
電子と反対方向に移動していくが、本発明のように正孔
吸い出し層(第1半導体領域)22を設けた構造では、
電極29と30に逆方向バイアスした状態にして正孔電
流として電極30に吸い出すことが可能である。
In FIG. 5, in the plane shown by the broken line 31 in FIG.
A cross-sectional view of the DPD is shown. In this device, when light is incident, electron-hole pairs are generated in the light absorption layer (second semiconductor layer) 23. Among these, the electrons reach the two-dimensional electron gas region within a short time due to the internal electric field generated near the two-dimensional electron gas region, so that they can be taken out as a signal current between the source and drain. In a two-dimensional electron gas, electrons are less likely to be scattered and have a higher mobility than a normal single-layer semiconductor, so the transit time of electrons between electrodes is short and the response is fast. On the other hand, holes move in the opposite direction to electrons, but in a structure in which a hole sucking layer (first semiconductor region) 22 is provided as in the present invention,
With the electrodes 29 and 30 biased in the opposite direction, it is possible to extract the hole current to the electrode 30 as a hole current.

以上述べたように本MDPDでは、電子電流と正孔電流
とを分離して外部回路に取シ出すことによ)、従来問題
であった正孔の拡散による遅い成分を速やかに取シ除く
ことが可能になっている。
As mentioned above, in this MDPD, by separating the electron current and hole current and outputting them to an external circuit, it is possible to quickly remove the slow component due to hole diffusion, which has been a problem in the past. is now possible.

(実施例) 本発明の製造方法によれば上述したような優れた特性を
有する新規なMDPDを得ることができる。
(Example) According to the manufacturing method of the present invention, a novel MDPD having the excellent properties as described above can be obtained.

以下、図面を参照して本発明の実施例を詳細に説明する
。第1図(a)〜(f)は本発明の第1の実施例の主要
な工程を示す図である。先ず第1図(&)に示す半絶縁
性Ink(100)基板21の表面を有機溶剤により洗
浄し、さらに臭素、メタノール混合液等でエツチングし
て清浄化する。その上にCVD法等によj5 EiiO
,マスク32を付着させ、通常のホトリソグラフィー技
術によって幅2μmのストライプ状の開孔部を設けて工
nP基板21を露出させ同図(b)のような構造を形成
する。次いで同図(C)Oj5に、前述の臭素、メタノ
ール混合液等により化学エツチングするか、又は、イオ
ンを用いたドライエツチングにょシ深さ0.3μm、幅
2μmのストライプ状の溝を形成する。次[SiO,マ
スク32を付けたまま分子線エピタキシー装置に導入し
、分子線エピタキシー法にょl)p型1nGaAs(N
〜5 X 10”CI!−” )正孔電流吸い出し層2
2を成長する。p型工nGaAs正孔電流吸い出し層2
2は81o、マスク32の上にも付着するが、分子線エ
ピタキシー装置から基板結晶を取シ出し、7ツ酸によっ
てエツチングすればS10.マスク32とともに除去さ
れる。このようにして溝の中にのみp型工nGaAsを
形成し、同図(d)のような基板結晶を得る。ここまで
がp型領域形成工程であるO 次にp型InGjLAa正孔電流吸い出し層22の形成
された基板結晶を再び分子線エピタキシー装置に導入し
、分子線エピタキシー法によ)以下の各層を順次積層し
て第1図(e)の構造を得るエピタキシャル成長工程を
行なう°。即ち、n型工nGaAs(N 〜3 X 1
0”cm−” )光吸収層23を1.5μm、アンドー
プAjlnム82次元電子ガス形成用スペー ・す層2
4を100λ、n型Aj工nA1!(N〜5×10”c
m−” )電荷供給層25を0.1μm、n型InGa
ム8(N〜1×101cIIL″″3)電極形成層26
を150人積層中る。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIGS. 1(a) to 1(f) are diagrams showing the main steps of the first embodiment of the present invention. First, the surface of the semi-insulating Ink (100) substrate 21 shown in FIG. On top of that, j5 EiiO is applied by CVD method etc.
, a mask 32 is attached, and striped openings with a width of 2 .mu.m are provided using a conventional photolithography technique to expose the nP substrate 21 and form a structure as shown in FIG. 2(b). Next, in the same figure (C), a striped groove having a depth of 0.3 .mu.m and a width of 2 .mu.m is formed in Oj5 by chemical etching using the aforementioned bromine/methanol mixture or by dry etching using ions. Next, the p-type 1nGaAs (N
~5 X 10"CI!-") Hole current extraction layer 2
Grow 2. P-type nGaAs hole current extraction layer 2
2 is also deposited on the mask 32 at 81o, but if the substrate crystal is taken out from the molecular beam epitaxy apparatus and etched with 7-acid, S10. It is removed together with the mask 32. In this way, p-type nGaAs is formed only in the grooves to obtain a substrate crystal as shown in FIG. 2(d). This is the p-type region formation process.Next, the substrate crystal on which the p-type InGjLAa hole current extraction layer 22 has been formed is again introduced into the molecular beam epitaxy apparatus, and the following layers are sequentially formed using the molecular beam epitaxy method. An epitaxial growth process is performed to stack layers to obtain the structure shown in FIG. 1(e). That is, n-type nGaAs (N ~ 3 x 1
0"cm-") The light absorption layer 23 is 1.5 μm thick, and the undoped layer 2 has a 82-dimensional electron gas formation space layer 2.
4 to 100λ, n type Aj engineering nA1! (N~5×10”c
m-”) The charge supply layer 25 is 0.1 μm thick and is made of n-type InGa.
8 (N~1×101cIIL″″3) electrode forming layer 26
There are 150 people involved.

次に、電極形成工程に入#)n型InGaAs電極形成
層26上にSin、マスクをCVD法によ膜形成し、通
常のホトリソグラフィー技術によって、Sin、マスク
の少くともp型InGaA#正孔電流吸い出し層22の
直上を含む一部を除去し、n型工nGaAa電極形成層
26を露出させる。続いて、p型領域形成工程と同様の
エツチング法により、前記露出部分のn型工nGaAs
電極形成層26、n型AjInム8電荷供給層25、A
n工nAaスペーサ層24、n型工nGaAs光吸収層
23を除去し、第1図(f)に示すようにp型rnGa
As正孔電流吸い出し層22と半絶縁性InP基板21
の表面を露出させるO続いて810.マスクを更にホト
リソグラフィーにより加工し、正孔電流吸い出し層22
の直上にストライプ状の開孔部を設けn型工nGaAs
電極形成層26を露出させる。次いでp型領域形成工程
と同様にしてn型工nGaAθ電櫃形成層26のみをス
トライプ状に除去し、n型Aj工nAs電荷供給層25
を露出させる。以上により第1図(f)の構造が形成さ
れる。続いて、残された一対のn型工nGaAs+電極
形成層26の双方に金・ゲルマニウムを蒸着し、ア/ド
ープAjInAsスペーサ層24を突き抜ける深さまで
アロイ化し、ソース電極28、ドレイン電極27とする
。更に、p型InGaAa正孔電流吸い出し層22の露
出した表面に金・亜鉛を蒸着し、アロイ化して正孔電流
吸い出し電極30とし、そして、ストライプ状に露出し
たn型入1工nAa電荷供給層25上にチタン・金を付
着させ、ゲート電極29として第4図に示す本発明のM
DPDが実現される。
Next, in the electrode forming step, a film of Sin and a mask is formed on the n-type InGaAs electrode forming layer 26 by the CVD method, and at least p-type InGaA holes of the Sin and mask are formed by ordinary photolithography technology. A portion of the current extraction layer 22 including the area directly above it is removed to expose the n-type nGaAa electrode formation layer 26. Subsequently, using the same etching method as in the p-type region forming step, the exposed portion is etched with n-type nGaAs.
Electrode formation layer 26, n-type AjIn layer 8 charge supply layer 25, A
The n-type nAa spacer layer 24 and the n-type nGaAs light absorption layer 23 are removed, and a p-type rnGa layer is formed as shown in FIG. 1(f).
As hole current extraction layer 22 and semi-insulating InP substrate 21
O to expose the surface of 810. The mask is further processed by photolithography to form a hole current extraction layer 22.
A striped opening is provided directly above the n-type nGaAs.
The electrode forming layer 26 is exposed. Next, in the same manner as the p-type region forming step, only the n-type nGaAθ charge supply layer 26 is removed in stripes, and the n-type AJNAs charge supply layer 25 is removed.
expose. Through the above steps, the structure shown in FIG. 1(f) is formed. Subsequently, gold/germanium is deposited on both of the remaining pair of n-type nGaAs+ electrode formation layers 26 to form an alloy to a depth that penetrates the a/doped AjInAs spacer layer 24 to form a source electrode 28 and a drain electrode 27. Further, gold and zinc are deposited on the exposed surface of the p-type InGaAa hole current extraction layer 22 and alloyed to form the hole current extraction electrode 30, and then the n-type one-layer nAa charge supply layer exposed in a stripe shape is formed. Titanium and gold are deposited on the gate electrode 25, and the M of the present invention shown in FIG. 4 is used as the gate electrode 29.
DPD is realized.

第2図<a>〜(d)は、本発明の第2の実施例におけ
るp型領域形成工程を示す図である。本実施例は、半絶
縁性工nP基板21上にストライプ状開孔部を有スるS
10.マスク32を形成する工程(第2図(a)、 (
b) )までは、先述の第1の実施例と同じなので説明
を省略する。本実施例のp型領域形成工程では、第2図
(1))に示される基板21に対し、p型不純物として
亜鉛を拡散し、p型工nP(N〜5×10”am−” 
)領域(第1半導体領域)22を幅〜2μm1 深さ〜
0.3μmKわたって形成して同図(0)のような構造
を得る。次いで810.マスク32をフッ酸によって除
去すれば同図(d)のような構造の基板結晶となる。
FIGS. 2<a> to 2(d) are diagrams showing a p-type region forming step in a second embodiment of the present invention. In this example, a S
10. Step of forming the mask 32 (FIG. 2(a), (
b) Since the steps up to ) are the same as those of the first embodiment described above, the explanation will be omitted. In the p-type region forming step of this embodiment, zinc is diffused as a p-type impurity into the substrate 21 shown in FIG.
) region (first semiconductor region) 22 with a width of ~2 μm1 and a depth of ~
A structure as shown in FIG. 3(0) is obtained by forming a layer over 0.3 μmK. Then 810. If the mask 32 is removed using hydrofluoric acid, a substrate crystal having a structure as shown in FIG. 3(d) will be obtained.

以上でp型領域形成工程は終了する。以後のエピタキシ
ャル成長工程及び電極形成工程は、第1の実施例と同じ
であり説明は省略する。木簡2の実施例では、第1半導
体領域がp型工nP22である点が第1の実施例とは異
なるが、全工程中のエピタキシャル成長が1回で済む利
点を有し、かつ第1の実施例と同じ効果を有するMDP
Dが実現される。
This completes the p-type region forming step. The subsequent epitaxial growth process and electrode formation process are the same as those in the first embodiment, and their explanation will be omitted. The second embodiment of the wooden tablet differs from the first embodiment in that the first semiconductor region is p-type nP22, but it has the advantage that epitaxial growth in the entire process can be performed only once, and is different from the first embodiment. MDP with the same effect as the example
D is realized.

また、木簡2の実施例ではp型不純物の導入法として拡
散を用いたが、イオン注入法によっても良いことは言う
までもなく、また不純物としては亜鉛でなくベリリウム
、マグネシウム、マンガン等でも良い。
Further, in the embodiment of wooden tablet 2, diffusion was used as the method for introducing the p-type impurity, but it goes without saying that ion implantation may also be used, and the impurity may be beryllium, magnesium, manganese, etc. instead of zinc.

第3図(a)# (kl)は、本発明の第3の実施例に
おけるp型領域形成工程を示す図である。本実施例のp
型領域形成工程では、半絶縁性工nP基板21を前述の
第1の実施例と同様に処理して清浄化しく第3図(&)
 ) 、次いで集束イオンビーム源を設けた真空槽中に
導入する。この真空槽中でp型不純物としてベリリウム
のイオンビームをストライプ状に注入し、同図(1))
のようにp型InP正孔電流吸い出し層22を幅2μm
、深さ0.3μmにわたって形成する。
FIG. 3(a) #(kl) is a diagram showing a p-type region forming step in a third embodiment of the present invention. p of this example
In the mold region forming step, the semi-insulating engineered nP substrate 21 is treated and cleaned in the same manner as in the first embodiment described above.
) and then introduced into a vacuum chamber equipped with a focused ion beam source. In this vacuum chamber, a beryllium ion beam was implanted as a p-type impurity in a stripe pattern (Fig. 1(1)).
The p-type InP hole current extraction layer 22 has a width of 2 μm as shown in FIG.
, is formed over a depth of 0.3 μm.

続くエピタキシャル成長工程では、基板結晶をそのまま
大気に曝らさずに分子線エピタキシー装置に導入し、第
1.第2の実施例と同様に積層構造を形成し、第1図(
・)と同じ構造を得る。以後の電極形成工程は第1.第
2の実施例と同じなので説明は省略する。
In the subsequent epitaxial growth step, the substrate crystal is introduced into a molecular beam epitaxy apparatus without being exposed to the atmosphere. A laminated structure was formed in the same manner as in the second embodiment, and as shown in FIG.
) to obtain the same structure. The subsequent electrode forming process is the 1st step. Since this is the same as the second embodiment, the explanation will be omitted.

木簡3の実施例によれば、p型領域形成工程とエピタキ
シャル成長工程を一貫したドライな環境下で行なうこと
が可能である。これは、基板結晶が工程間で大気に曝ら
された場合に生じる汚染による結晶欠陥の発生や、工程
の複雑さがなくなることを意味する。従って素子の信頼
性や特性に優れたMDPDが歩留シよく得られる。
According to the embodiment of wooden tablet 3, it is possible to perform the p-type region formation step and the epitaxial growth step in a consistent dry environment. This means that crystal defects due to contamination that occur when the substrate crystal is exposed to the atmosphere between processes and the complexity of the process are eliminated. Therefore, MDPDs with excellent device reliability and characteristics can be obtained with a high yield.

上記第1乃至第3の実施例では、正孔電流吸い出し電極
30を設けるためにエピタキシャル成長工程の後にエツ
チングによってp型1nGaAs正孔電流吸い出し層2
2を露出させ、そこに正孔電流吸い出し電極30を付け
ている。別の手順として、あらかじめ第1図(d)(第
2図(d))の構造の基板結晶上に1310.等の選択
成長マスクを形成し、そのマスク上にはエピタキシャル
成長工程による積層構造を形成しないか、或いは後でマ
スクとその上の積層構造を除去するかしてもこの目的は
達せられる。
In the first to third embodiments, the p-type 1nGaAs hole current sinking layer 2 is etched after the epitaxial growth process in order to provide the hole current sinking electrode 30.
2 is exposed, and a hole current extraction electrode 30 is attached thereto. As another procedure, 1310. This objective can also be achieved by forming a selective growth mask such as the above and not forming a laminated structure by an epitaxial growth process on the mask, or by removing the mask and the laminated structure thereon later.

また上記実施例中の分子線エピタキシー成長法では、■
nP基板21の成長中の温度は500℃に制御し、n型
不純物としてSi、 p型不純物としてベリリウムを用
いた。不純物はn型用にan、 p型用には、マンガン
、マグネシウム等でも良い。また、エピタキシャル法と
して有機金属気相成長法、ハロゲンもしくはハライドを
用いた気相成長法、或いは液相成長法を用いても本発明
の要件を満せば良いのは言うまでもない。
In addition, in the molecular beam epitaxy growth method in the above example,
The temperature during growth of the nP substrate 21 was controlled at 500° C., and Si was used as the n-type impurity and beryllium was used as the p-type impurity. The impurity may be an for n-type, and manganese, magnesium, etc. for p-type. Furthermore, it goes without saying that metal-organic vapor phase epitaxy, vapor phase epitaxy using halogen or halide, or liquid phase epitaxy may be used as the epitaxial method as long as they satisfy the requirements of the present invention.

まえ、マスク32としてCVD法によるS10゜を用い
て説明したが、スパッタ法によるものでも良く、マスク
材質は8ixNYやAlx0Yやレジスト膜でも使用可
能である。
Although the mask 32 was explained using S10° made by the CVD method, it may be made by the sputtering method, and the mask material may be 8ixNY, Alx0Y, or a resist film.

さらに、実施例として、半絶縁性工nP基板21を使っ
てInGjLAjAa系の材料について説明したが、I
nGanGa系やGaAa基板、Ga8b基板を用いた
GaAjAs系、GaAjSb系等他の半導体材料にも
本発明が適用できることは明らかである。また、基板2
1が半導体でなくとも半絶縁性であれば良いことも言う
までもない。
Furthermore, as an example, an InGjLAjAa-based material was explained using a semi-insulating engineered nP substrate 21, but I
It is clear that the present invention can be applied to other semiconductor materials such as nGanGa type, GaAa substrate, GaAjAs type using Ga8b substrate, and GaAjSb type. Also, the board 2
It goes without saying that 1 does not need to be a semiconductor as long as it is semi-insulating.

(発明の効果) 以上、詳細に説明したように、本発明の製造方法によれ
ば、高速応答性に優れた新規なホトディテクタを高い歩
留シで得ることが可能である。
(Effects of the Invention) As described above in detail, according to the manufacturing method of the present invention, it is possible to obtain a novel photodetector with excellent high-speed response at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の第1の実施例の工程を
示す図、第2図(JL)〜(d)は本発明の第2の実施
例におけるp型領域形成工程を示す図、第3図(a)、
 (1))は本発明の第3の実施例におけるp型領域形
成工程を示す図、第4図は本発明の第1乃至第3の実施
例により製造されるMDPDの斜視図、第5図は第4図
の破線310面における断面図、第6図は従来のMDP
Dの断面図である。 11.21・・・半絶縁性工nP基板、12・・・アン
ドープAj工nAsバッファ層、22−1)型工nGa
Aa(又はInP )正孔電流吸い出し層(第1半導体
領域)、13 # 23− n WIInGaAs光吸
収層(第2半導体層)、14.24・・・ア/ドープム
j工nAaスペーサ層(第3半導体層)、15.25・
・・n型入4工nAs電荷供給層(第3半導体層)、1
6.26・・・n型工nGaAs電極形成層(電極形成
層)、17゜27・・・ドレイン電極(第2電極)、x
L  28・・・ソース電極(第1電極)、29・・・
ゲート電極(第3電極)、30・・・正孔電流吸い出し
電極(第4電極)。 代理人  弁理士  本 庄 伸 介 第1図 第1図 (e) l (f) 第2図 (a) (b) (c) 第3図 (a) (b) ■0 P型子地物イオミ/ 第4図 21−卓地縁性基祇 22− 正孔電麦咬い畝L4 z3−44収層 24−一−スベーwt層 25−f荷茨給層 26−眠JFb形べ麿 27−−−ドしインi極 28−一一一ノース屯、131メ 29−−−グ°−トf極 30−−一正孔尤堤一皮いムしL極 第5図 第6図
FIGS. 1(a) to (f) are diagrams showing the steps of the first embodiment of the present invention, and FIGS. 2(JL) to (d) are the steps of forming the p-type region in the second embodiment of the present invention. A diagram showing FIG. 3(a),
(1)) is a diagram showing the p-type region forming step in the third embodiment of the present invention, FIG. 4 is a perspective view of MDPD manufactured according to the first to third embodiments of the present invention, and FIG. is a sectional view taken along the broken line 310 in Fig. 4, and Fig. 6 is a conventional MDP.
It is a sectional view of D. 11.21... Semi-insulating nP substrate, 12... Undoped AJ nAs buffer layer, 22-1) Mold nGa
Aa (or InP) hole current extraction layer (first semiconductor region), 13#23-n WIInGaAs light absorption layer (second semiconductor layer), 14.24...A/doped layer nAa spacer layer (third semiconductor layer), 15.25・
...N-type 4-layer nAs charge supply layer (third semiconductor layer), 1
6.26...N-type nGaAs electrode formation layer (electrode formation layer), 17°27...Drain electrode (second electrode), x
L 28...source electrode (first electrode), 29...
Gate electrode (third electrode), 30... hole current extraction electrode (fourth electrode). Agent Patent Attorney Shinsuke Honjo Figure 1 Figure 1 (e) l (f) Figure 2 (a) (b) (c) Figure 3 (a) (b) ■0 P-type child feature Iomi / Fig. 4 21-Takuji connection base 22-Hole electric barley bite ridge L4 z3-44 collection layer 24-1-sube wt layer 25-f load thorn supply layer 26-sleep JFb type bemaro 27-- - Input i pole 28-111 North tun, 131 me 29--G °-t f pole 30--One hole embankment L pole Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性基板表面の一部にp型の第1半導体領域を形
成するp型領域形成工程と、該基板上に少くともn型の
第2半導体層とこの第2半導体層よりバンドギャップが
大きい2次元電子ガス生成用のn型の第3半導体層とこ
の第3半導体層よりバンドギャップが小さいn型の電極
形成層とを順次積層するエピタキシャル成長工程と、前
記電極形成層上の前記第1半導体領域を挾む位置に前記
2次元電子ガスが形成された領域までアロイされた第1
及び第2の電極を、前記第3半導体層表面上の前記第1
及び第2の電極の間に位置する領域に第3の電極を、前
記第1半導体領域に第4の電極をそれぞれ形成する電極
形成工程とから成ることを特徴とするホトディテクタの
製造方法。
a p-type region forming step of forming a p-type first semiconductor region on a part of the surface of the semi-insulating substrate; and at least an n-type second semiconductor layer on the substrate, the bandgap being larger than the second semiconductor layer. an epitaxial growth step of sequentially stacking an n-type third semiconductor layer for two-dimensional electron gas generation and an n-type electrode formation layer having a smaller band gap than the third semiconductor layer; and the first semiconductor on the electrode formation layer. The first layer is alloyed up to the region where the two-dimensional electron gas is formed at positions sandwiching the region.
and a second electrode on the surface of the third semiconductor layer.
and an electrode forming step of forming a third electrode in a region located between the second electrodes and a fourth electrode in the first semiconductor region.
JP60130309A 1985-06-16 1985-06-16 Manufacture of photo detector Pending JPS61288475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60130309A JPS61288475A (en) 1985-06-16 1985-06-16 Manufacture of photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130309A JPS61288475A (en) 1985-06-16 1985-06-16 Manufacture of photo detector

Publications (1)

Publication Number Publication Date
JPS61288475A true JPS61288475A (en) 1986-12-18

Family

ID=15031237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130309A Pending JPS61288475A (en) 1985-06-16 1985-06-16 Manufacture of photo detector

Country Status (1)

Country Link
JP (1) JPS61288475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378640A (en) * 1991-12-20 1995-01-03 Litton Systems, Inc. Method of fabricating a transmission mode InGaAs photocathode for night vision system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129180A (en) * 1984-07-20 1986-02-10 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129180A (en) * 1984-07-20 1986-02-10 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378640A (en) * 1991-12-20 1995-01-03 Litton Systems, Inc. Method of fabricating a transmission mode InGaAs photocathode for night vision system

Similar Documents

Publication Publication Date Title
JP2867983B2 (en) Photodetector and method of manufacturing the same
US7462889B2 (en) Avalanche photodiode
JP2833588B2 (en) Photodetector and method of manufacturing the same
US5157473A (en) Avalanche photodiode having guard ring
JPH08242016A (en) Manufacture of photodiode
JP4009106B2 (en) Semiconductor light receiving element and manufacturing method thereof
JP2006040919A (en) Avalanche photodiode
JPH0322478A (en) Photodiode-field-effect transistor assembly
JP2003110133A (en) Avalanche photodiode
JP2020009861A (en) Infrared detector, infrared detection device, and manufacturing method for infrared detector
JP2019125645A (en) Infrared detector, imaging element, imaging system, and method of manufacturing infrared detector
JP4109159B2 (en) Semiconductor photo detector
JPS61288475A (en) Manufacture of photo detector
JP2001177142A (en) Photodetector
JP2008060161A (en) Optical detector, and method of manufacturing optical detector
JP2670553B2 (en) Semiconductor light receiving / amplifying device
JPH05102517A (en) Avalanche photodiode and its manufacturing method
JPH11340481A (en) Photodetector and fabrication
JP2645460B2 (en) Manufacturing method of light receiving element
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH0584677B2 (en)
JP2001007378A (en) Semiconductor light receiving device, and manufacture thereof
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JP2991555B2 (en) Semiconductor light receiving element
JPH02253666A (en) Semiconductor photodetector