JPS61288428A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61288428A
JPS61288428A JP60131253A JP13125385A JPS61288428A JP S61288428 A JPS61288428 A JP S61288428A JP 60131253 A JP60131253 A JP 60131253A JP 13125385 A JP13125385 A JP 13125385A JP S61288428 A JPS61288428 A JP S61288428A
Authority
JP
Japan
Prior art keywords
substrate
etching
film
thin film
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60131253A
Other languages
Japanese (ja)
Inventor
Tsunetoshi Arikado
経敏 有門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60131253A priority Critical patent/JPS61288428A/en
Publication of JPS61288428A publication Critical patent/JPS61288428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To contrive improvement in the characteristics of an element by a method wherein the upper end corner part of the groove, formed on a substrate by performing an isotropic etching of the thin film which is used as a mask when the substrate is etched, is exposed and the corner part is rounded off in the above-mentioned state, thereby enabling to prevent the generation of a leak at the corner part. CONSTITUTION:A thermally oxided film 12 is formed on a P-type Si substrate 11, and a desired resist pattern 13 is formed thereon. Then, the thermally oxided film 12 is selectively etched using the resist film 13 as a mask. Subsequently, after the resist 13 is removed, a groove 14 is formed by performing a selective etching on the Si substrate 11 using the thermally oxided film 12 as a mask. When the thermally oxided film 12 is etched, the upper surface of the Si substrate 11 is exposed a little, and the corners of the upper end of the Si substrate 11 are rounded off when its sputter etching is performed. Then, the thermally oxided film 12 is exfoliated completely. After the substrate 11 is etched, a before-oxidation treatment is performed, a gate oxide film 15 is formed on the substrate, and a polycrystalline Si film 16 is formed thereon.

Description

【発明の詳細な説明】 C発明の技術分野) 本発明は、半導体装置の製造方法に係わり、特に単結晶
シリコン基板の微細加工技術の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION C. Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and particularly to improvements in microfabrication techniques for single-crystal silicon substrates.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体集積回路、特に半導体メモリの高集積化は、依然
として2年で4倍の速度で進んでおり、設計寸法もいよ
いよりブミクロンの領域に突入しようとしている。
The integration of semiconductor integrated circuits, especially semiconductor memories, is still increasing at a rate of four times every two years, and the design dimensions are about to enter the Bumiron range.

メモリセルが1トランジスタ/1キヤパシタで構成され
、キャパシタのチャージの有無で1ビツトの記憶を行う
ダイナミックRAM (以下DRAMと略記する)の場
合、安定した動作を行い且つソフトエラーを抑制するた
めには、キャパシタ容量として30〜50[fF]が必
要である。パターン寸法が小さくなる一方で上記容量を
確保するためには、ゲート酸化膜を薄くする必要がある
In the case of a dynamic RAM (hereinafter abbreviated as DRAM) whose memory cell is composed of one transistor/one capacitor and stores one bit depending on whether or not the capacitor is charged, in order to perform stable operation and suppress soft errors, , a capacitor capacity of 30 to 50 [fF] is required. In order to ensure the above-mentioned capacitance while pattern dimensions become smaller, it is necessary to make the gate oxide film thinner.

しかし、ゲート酸化膜の薄膜化にも限度があり、このた
め上記容量を確保することが困難になっている。
However, there is a limit to how thin the gate oxide film can be made, making it difficult to ensure the above-mentioned capacity.

そこで最近、9i基板を深く掘り、縦型にキャパシタを
作り付ける、所謂トレンチキャパシタが提案されている
。これは、第4図に示す如<Si基板41を垂直にエツ
チングして溝42を形成し、その後基板表面を酸化して
溝42の底面と側面にゲート酸化膜43を形成し、次い
で溝42内に多結晶3i膜44を埋込んでキャパシタの
一方の電極を構成するものである。
Therefore, recently, a so-called trench capacitor, in which a 9i substrate is deeply dug and a capacitor is built vertically, has been proposed. As shown in FIG. 4, a Si substrate 41 is vertically etched to form a groove 42, the substrate surface is oxidized to form a gate oxide film 43 on the bottom and side surfaces of the groove 42, and then a gate oxide film 43 is formed on the bottom and side surfaces of the groove 42. A polycrystalline 3i film 44 is embedded therein to constitute one electrode of the capacitor.

しかしながら、この種の構造にあっては次のような問題
があった。即ち、3i基板41に溝42を形成する手法
としては、一般に反応性イオンエツチング法(RIE法
)が用いられるが、この方法では第4図にも示す如く溝
42の上端部45及び下端部46が角ばった形となる。
However, this type of structure has the following problems. That is, a reactive ion etching method (RIE method) is generally used as a method for forming the groove 42 in the 3i substrate 41, but in this method, as shown in FIG. becomes angular in shape.

これらの角ばった部分、特に上端部45ではストレスが
集中するので、この部分の酸化膜質が悪くなり、キャパ
シタを構成した場合リークの原因となる。こ、のリーク
は、メモリセルにおいては、記憶保持不良につながる重
大な問題である。
Stress is concentrated on these angular parts, especially the upper end 45, which deteriorates the quality of the oxide film in these parts, causing leakage when a capacitor is formed. This leakage is a serious problem in memory cells, leading to poor memory retention.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、RIE法等により垂直エツチングを行
って形成した溝の上端角部に丸みを付けることができ、
素子時性向上等に寄与し得る半導体装置の製造方法を提
供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to round the upper end corners of grooves formed by vertical etching by RIE method etc.
An object of the present invention is to provide a method for manufacturing a semiconductor device that can contribute to improving device performance.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、基板エツチング際のマスクである薄膜
を等方向にエツチングして基板に形成された溝の上端角
部を露出させ、この状態で該角部をスパッタリングして
丸めることにある。
The gist of the present invention is to expose the upper corner of the groove formed in the substrate by etching the thin film, which is a mask during substrate etching, in the same direction, and in this state, round the corner by sputtering.

即ち本発明は、シリコン基板に溝を形成する工程を含む
半導体装置の製造方法において、シリコン基板上に薄膜
を形成したのち、この薄膜上にレジストを塗布し該レジ
ストを露光現像して所望のレジストパターンを形成し、
次いで上記レジストパターンをマスクとして前記薄膜を
エツチングし、次いで異方性エツチングにより上記薄膜
をマスクとして前記シリコン基板をエツチングし、次い
で等方性エツチングにより前記薄膜の一部をエッチ゛ン
グし、しかるのち前記シリコン基板の露出した部分を該
基板に対し不活性なガスを用いてスパッタエツチングす
るようにした方法である。
That is, the present invention provides a method for manufacturing a semiconductor device that includes a step of forming a groove in a silicon substrate, in which a thin film is formed on the silicon substrate, a resist is applied on the thin film, and the resist is exposed and developed to form a desired resist. form a pattern,
Next, the thin film is etched using the resist pattern as a mask, the silicon substrate is etched by anisotropic etching using the thin film as a mask, a part of the thin film is etched by isotropic etching, and then the silicon substrate is etched by isotropic etching. In this method, exposed portions of the substrate are sputter-etched using an inert gas.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、薄膜をマスクとした基板のスパッタリ
ングにより、基板に形成された溝の上端角部を丸めるこ
とができる。このため、メモリセルのキャパシタ形成等
に適用した場合に、上記角部におけるリーク発生を未然
に防止することができ、素子の向上等をはかり得る。ま
た、薄膜を等方性エツチングする量により、基板上面の
露出層を制御できるので、溝の開口幅が拡大する等の不
都合を防止することが可能である。
According to the present invention, the upper end corners of the grooves formed in the substrate can be rounded by sputtering the substrate using a thin film as a mask. Therefore, when applied to the formation of a capacitor of a memory cell, it is possible to prevent leakage from occurring at the corner portion, and it is possible to improve the device. Further, since the exposed layer on the upper surface of the substrate can be controlled by changing the amount of isotropic etching of the thin film, it is possible to prevent problems such as an increase in the opening width of the groove.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図及び第2図は本発明の一実施例方法に係わるトレ
ンチキャパシタ形成工程を示す断面図である。まず、第
1図(a)に示す如く、面方位(100)のP型S:基
板11を950[”C]で水素燃焼酸化することにより
、厚さ8500[人コの熱酸化膜(薄膜)12を形成し
た。続いて、熱酸化膜12上にポジ型フォトレジスト1
3を塗布し、このレジストを露光現像して所望のレジス
トパターンを形成した。
FIGS. 1 and 2 are cross-sectional views showing a trench capacitor forming process according to an embodiment of the present invention. First, as shown in FIG. 1(a), a P-type S:substrate 11 with a plane orientation of (100) is subjected to hydrogen combustion oxidation at 950 [C] to a thickness of 8500 [C]. ) 12 was formed.Subsequently, a positive photoresist 1 was formed on the thermal oxide film 12.
3 was applied, and this resist was exposed and developed to form a desired resist pattern.

次いで、異方性エツチングにより、第1図(b)に示す
如く上記レジスト13をマスクとして熱酸化膜12を選
択エツチングした。このエツチングには、通常の陰極結
合型反応性イオンエツチング装置を用い、またエツチン
グガスとしてはCHF3を用いた。
Next, the thermal oxide film 12 was selectively etched by anisotropic etching using the resist 13 as a mask, as shown in FIG. 1(b). For this etching, an ordinary cathode-coupled reactive ion etching apparatus was used, and CHF3 was used as the etching gas.

次いで、02プラズマ沃化装置を用い、レジスト13を
除去した。その後、再び異方性エツチングにより、第1
図(C)に示す如く熱酸化膜12をマスクとして用い、
Si基板11を選択エツチングして溝14を形成した。
Next, the resist 13 was removed using a 02 plasma iodization device. Then, by anisotropic etching again, the first
As shown in Figure (C), using the thermal oxide film 12 as a mask,
Grooves 14 were formed by selectively etching the Si substrate 11.

このエツチングには、先と同様に陰極結合型反応性イオ
ンエツチング装置内を用い、ガスとしてはCBrF9ガ
スを用いた。また、エツチング時の圧力は 0.04[
torr] 、高周波電力は600 [W]とした。
For this etching, a cathode-coupled reactive ion etching apparatus was used as before, and CBrF9 gas was used as the gas. Also, the pressure during etching was 0.04[
torr] and the high frequency power was 600 [W].

この段階で、81基板11を2つに切断し、両方とも緩
衝弗酸溶液中に浸し、一方は第1図(d)に示す如く熱
酸化膜12を約0.3[μTrL]エツチングし、他方
は熱酸化膜12を全て剥離した。
At this stage, the 81 substrate 11 was cut into two parts, both were immersed in a buffered hydrofluoric acid solution, and the thermal oxide film 12 of one was etched by about 0.3 [μTrL] as shown in FIG. 1(d). On the other side, the thermal oxide film 12 was completely peeled off.

緩衝弗酸溶液中での酸化膜のエツチングは等方向に進む
ため、熱酸化膜12を0.3[μm]エツチングした方
の試料は、第2図(a)に示す如<Si基板11の上面
が少し露出される。そこで、この試料を再び反応性イオ
ンエツチング装置内に入れ、不活性ガスとしてArガス
を用い、圧力0.01[tOrr] 、高周波電力60
0 [W]で5分間スパッタエツチングを行った。スパ
ッタリング率は、イオン入射角に対して変化し、約60
度で最大値を持つため、イオンに晒されるSi基板11
の上端部は、第2図(b)に示す如く角が取れた形とな
る。その後、試料を再び緩衝弗酸溶液に浸し、熱酸化膜
12を完全に剥離した。
Since the etching of the oxide film in a buffered hydrofluoric acid solution proceeds in the same direction, the sample in which the thermal oxide film 12 was etched by 0.3 [μm] was as shown in FIG. 2(a). The top surface is slightly exposed. Therefore, this sample was put into the reactive ion etching apparatus again, and Ar gas was used as the inert gas, the pressure was 0.01 [tOrr], and the high frequency power was 60
Sputter etching was performed at 0 [W] for 5 minutes. The sputtering rate varies with the ion incidence angle and is approximately 60
The Si substrate 11 exposed to ions has a maximum value of
The upper end has a rounded shape as shown in FIG. 2(b). Thereafter, the sample was again immersed in a buffered hydrofluoric acid solution to completely peel off the thermal oxide film 12.

次いで、Si基板11のエツチング後直ちに熱酸化膜1
2を剥離した残り半分の試料と共に酸化前処理を行い、
第2図(C)に示す如くそれぞれの基板上に350[’
C]、ドライ02中でゲート酸化1115を形成しく膜
厚90人)、さらに気相成長法により多結晶3i膜16
を形成した。続いて、POCl2雰囲気下、 1000
 [’C]t’l 0分間リン拡散を行った後、緩衝弗
酸溶液中に該基板11を浸し、リン拡散中に多結晶S1
膜16の表面に形成された酸化膜の剥離を行った。その
後、全面にポジ型フォトレジストを塗布し、ゲート電極
のパターニングを行い、CF4102混合ガスプラズマ
を用いて多結晶S1膜16のエツチングを行った。
Next, immediately after etching the Si substrate 11, the thermal oxide film 1 is etched.
Perform oxidation pretreatment together with the remaining half of the sample from which 2 was peeled off,
As shown in FIG. 2(C), 350 ['
C], gate oxide 1115 is formed in dry 02 (film thickness 90 layers), and polycrystalline 3i film 16 is formed by vapor phase growth.
was formed. Subsequently, under a POCl2 atmosphere, 1000
['C]t'l After performing phosphorus diffusion for 0 minutes, the substrate 11 is immersed in a buffered hydrofluoric acid solution, and the polycrystal S1 is
The oxide film formed on the surface of the film 16 was removed. Thereafter, a positive photoresist was applied to the entire surface, a gate electrode was patterned, and the polycrystalline S1 film 16 was etched using CF4102 mixed gas plasma.

第3図はこのように・して形成したトレンチキャパシタ
の電流−電圧特性を示す図である。図中実線に示すのが
前述したスパッタリングを行った実施例の場合、破線に
示すのがスパッタリングを行わない従来例の場合である
。この図からも、スパッタリング作用によって、上端部
の角を取った基板の方が電流値が小さく、リークがない
ことが判る。
FIG. 3 is a diagram showing the current-voltage characteristics of the trench capacitor formed in this manner. The solid line in the figure shows the embodiment in which the above-described sputtering is performed, and the broken line shows the conventional example in which sputtering is not performed. It can also be seen from this figure that due to the sputtering action, the current value is smaller in the substrate with rounded corners at the upper end, and there is no leakage.

このように本実施例方法によれば、熱酸化膜12をマス
クとした3i基板11のスパッタリングにより、Si基
板11に形成された溝14の上端角部を丸めることがで
きる。このため、トレンチキャパシタを形成した場合に
、上記角部におけるリークを未然に防止することができ
、該キャパシタを用いたメモリセルの特性向上をはかる
ことができる。また、熱酸化膜12を全部除去するので
はなく、一部等方的にエツチングしているので、溝14
の開口幅を殆ど広げることなく、該幅をスパッタリング
前と略同じに保持することができる。
As described above, according to the method of this embodiment, the upper corner of the groove 14 formed in the Si substrate 11 can be rounded by sputtering the 3i substrate 11 using the thermal oxide film 12 as a mask. Therefore, when a trench capacitor is formed, leakage at the corner can be prevented, and the characteristics of a memory cell using the capacitor can be improved. In addition, since the thermal oxide film 12 is not completely removed but is etched isotropically, the groove 14
The width of the opening can be maintained substantially the same as before sputtering without increasing the width of the opening.

即ち、熱酸化膜12を完全に除去した状態でスパッタリ
ングすると、溝14のテーパが大きくなり開孔口が広く
なるのである。また、熱酸化膜12を基板11上に残し
た状態でスパッタリングするので、基板11上の素子形
成領域がダメージを受ける等の不都合を避けることが可
能である。
That is, if sputtering is performed with the thermal oxide film 12 completely removed, the taper of the groove 14 becomes larger and the opening becomes wider. Furthermore, since sputtering is performed while the thermal oxide film 12 remains on the substrate 11, it is possible to avoid problems such as damage to the element formation region on the substrate 11.

なお、本発明は上述した実施例方法に限定されるもので
はない。例えば、前記スパッタリング時のガスはArに
限るものではなく、3iに対して不活性なガスであれば
よい。また、3i基板上に形成する薄膜はシリコン酸化
膜に限るものではなく、シリコン窒化膜、或いはSi基
板とのエツチング選択比の十分大きなものであれば用い
ることが可能である◎また、スパッタリング前に薄膜を
等方向にエツチングするlは、所望する溝開口部のテー
パ角等の条件に応じて適宜変更可能である。
Note that the present invention is not limited to the method of the embodiment described above. For example, the gas used during the sputtering is not limited to Ar, but may be any gas that is inert to 3i. Furthermore, the thin film to be formed on the 3i substrate is not limited to a silicon oxide film, but can be a silicon nitride film or any film that has a sufficiently high etching selectivity with respect to the Si substrate. The length 1 for etching the thin film in the same direction can be changed as appropriate depending on conditions such as the desired taper angle of the groove opening.

その他、本発明の要旨を逸脱しない範囲で、種々変形し
て実施することができる。
In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の一実施例方法に係
わるトレンチキャパシタ形成工程を示す断面図、第3図
は上記実施例の効果を説明するた。 めのもので電流−電圧特性を示す特性図、第4図は従来
の問題点を説明するための断面図である。 11・・・3i基板、12・・・熱酸化膜(薄膜)、1
3・・・レジスト、14・・・溝、15・・・ゲート酸
化膜、16・・・多結晶$1膜。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 vg(v)  − 第3図
1 and 2 are cross-sectional views showing the trench capacitor forming process according to an embodiment of the present invention, and FIG. 3 is for explaining the effects of the above embodiment. FIG. 4 is a characteristic diagram showing the current-voltage characteristics of the first one, and a cross-sectional view for explaining the problems of the conventional method. 11...3i substrate, 12...thermal oxide film (thin film), 1
3...Resist, 14...Trench, 15...Gate oxide film, 16...Polycrystal $1 film. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 vg (v) - Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)シリコン基板上に薄膜を形成しこの薄膜上にレジ
ストパターンを形成する工程と、上記レジストパターン
をマスクとして前記薄膜を選択エッチングする工程と、
次いで異方性エッチングにより上記薄膜をマスクとして
前記シリコン基板を選択エッチングする工程と、次いで
等方性エッチングにより前記薄膜の一部をエッチングす
る工程と、次いで前記シリコン基板の露出した部分を該
基板に対し不活性なガスを用いてスパッタエッチングす
る工程とを含むことを特徴とする半導体装置の製造方法
(1) forming a thin film on a silicon substrate and forming a resist pattern on the thin film; selectively etching the thin film using the resist pattern as a mask;
Next, a step of selectively etching the silicon substrate using the thin film as a mask by anisotropic etching, a step of etching a part of the thin film by isotropic etching, and then a step of etching the exposed portion of the silicon substrate onto the substrate. A method for manufacturing a semiconductor device, comprising the step of sputter etching using an inert gas.
(2)前記シリコン基板をエッチングする際に、反応性
イオンエッチング法を用いたことを特徴とする特許請求
の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein a reactive ion etching method is used when etching the silicon substrate.
(3)前記薄膜として、シリコン酸化膜を用いたことを
特徴とする特許請求の範囲第1項記載の半導体装置の製
造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein a silicon oxide film is used as the thin film.
(4)前記薄膜を等方性エッチングする量により、前記
基板に形成される溝のテーパ角を変えることを特徴とす
る特許請求の範囲第1項記載の半導体装置の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the taper angle of the groove formed in the substrate is changed depending on the amount of isotropic etching of the thin film.
JP60131253A 1985-06-17 1985-06-17 Manufacture of semiconductor device Pending JPS61288428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131253A JPS61288428A (en) 1985-06-17 1985-06-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131253A JPS61288428A (en) 1985-06-17 1985-06-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61288428A true JPS61288428A (en) 1986-12-18

Family

ID=15053585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131253A Pending JPS61288428A (en) 1985-06-17 1985-06-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61288428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203957A (en) * 1991-06-12 1993-04-20 Taiwan Semiconductor Manufacturing Company Contact sidewall tapering with argon sputtering
US5541425A (en) * 1994-01-20 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having trench structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203957A (en) * 1991-06-12 1993-04-20 Taiwan Semiconductor Manufacturing Company Contact sidewall tapering with argon sputtering
US5541425A (en) * 1994-01-20 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having trench structure
US5795792A (en) * 1994-01-20 1998-08-18 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a trench structure

Similar Documents

Publication Publication Date Title
US5472904A (en) Thermal trench isolation
JP3107691B2 (en) Semiconductor memory device and method of manufacturing the same
US6136664A (en) Filling of high aspect ratio trench isolation
JP3501297B2 (en) Method for manufacturing semiconductor memory device
JPS6340337A (en) Method of isolating integrated circuit
JPH05152429A (en) Manufacture of semiconductor device
JPS63234534A (en) Manufacture of semiconductor element
US5393694A (en) Advanced process for recessed poly buffered locos
US6146972A (en) Method for fabricating semiconductor device
JPS61288428A (en) Manufacture of semiconductor device
JP2879841B2 (en) Manufacturing method of planar diode
JPH01241129A (en) Manufacture of semiconductor device
JPH0491468A (en) Manufacture of semiconductor device
JPS58220443A (en) Manufacture of semiconductor device
JPH02130852A (en) Semiconductor device
JPS59149030A (en) Manufacture of semiconductor device
KR19980084714A (en) Method for manufacturing isolation region of semiconductor device
KR100333363B1 (en) Method for isolating semiconductor device
JPS60189235A (en) Production of semiconductor device
JPS6129167A (en) Manufacture of semiconductor device
JPS61107740A (en) Manufacture of semiconductor device
JPS61160976A (en) Manufacture of semiconductor device
JPS6399563A (en) Manufacture of semiconductor device
JP2005142430A (en) Semiconductor device and its manufacturing method
JPH04340721A (en) Manufacture of semiconductor device