JPS61287720A - Cold high-orientation multi-layer film and manufacture thereof - Google Patents

Cold high-orientation multi-layer film and manufacture thereof

Info

Publication number
JPS61287720A
JPS61287720A JP14543186A JP14543186A JPS61287720A JP S61287720 A JPS61287720 A JP S61287720A JP 14543186 A JP14543186 A JP 14543186A JP 14543186 A JP14543186 A JP 14543186A JP S61287720 A JPS61287720 A JP S61287720A
Authority
JP
Japan
Prior art keywords
copolymer
film
stretching
temperature
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14543186A
Other languages
Japanese (ja)
Other versions
JPH0349741B2 (en
Inventor
Isao Yoshimura
功 吉村
Osamu Mizukami
治 水上
Hideo Hatake
秀夫 畠
Junichi Kageyama
順一 影山
Koji Kaneko
金子 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14543186A priority Critical patent/JPS61287720A/en
Publication of JPS61287720A publication Critical patent/JPS61287720A/en
Publication of JPH0349741B2 publication Critical patent/JPH0349741B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To manufacture the cold high-orientation multi-layer film capable of causing heat shrinkage at comparatively low temperature, by a method wherein at least one layer of ethylene-based copolymer layer and the layer of saponified nylon or ethylene-vinyl acetate are laminated and high orientation thereof is effected at a low temperature. CONSTITUTION:Vinyl ester-ethylene copolymer A, such as ethylene-vinyl acetate copolymer, a copolymer of ethylene and aliphatic unsaturated carbonic acid or the ester thereof or at least one kind of copolymer selected from ionomer series copolymer C, derived from the copolymer B, other layer consisting of saponified copolymer of nylon or ethylene-vinyl acetate and another different layer, consisting of copolymer of A-C but different from said one layer or crystalline polypropylene, are melted and laminated. This laminate is cooled suddenly by liquid refrigerant and is cold-orientated at a temperature up to 80 deg.C with the draw ratio per unit area of 5-30X by employing a flow-regulating and -contacting guide. The film is useful as a heat-shrinkable packing material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主として、包装材料の用途に供する多層系の
高度延伸フィルム及びそ°の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates primarily to multilayer highly oriented films for use as packaging materials and to their production.

具体的には、エチレン系共重合体を主成分とする樹脂を
含む層を少なくとも1層有し他にナイロン、エチレン−
酢酸ビニルケン化物から選ばれる樹脂を含む層を少なく
とも1層有した、多層の高度に延伸され、高度の配向が
付与された高強度の冷間高配向多層フィルム及び特定の
低温で高延伸することによりか−る多層フィルムを製造
する方法に関するものである。
Specifically, it has at least one layer containing a resin whose main component is an ethylene-based copolymer, and also contains nylon, ethylene-based copolymer, etc.
A multilayer highly stretched and highly oriented high strength cold highly oriented multilayer film having at least one layer containing a resin selected from saponified vinyl acetate, and by highly stretching at a specific low temperature. The present invention relates to a method for producing such a multilayer film.

従来技術 フィルムによる包装方法には、それぞれフィルムの特性
を生かした各種の包装方法、例えば、袋状にシールする
方法、フィルムをツイストすることによる方法、熱を加
えることによる収縮方法、サランラップ(旭化成工業株
式会社製品名)に代表される密着ラップ法、ストレッチ
ラップ法、スキンパック法等、数多くの方法が用いられ
、それぞれに独自の包装、特性が要求され、一つの方法
ごとに、フィルムの基材、組成形状、特性等を適合させ
たものを選び、包装されているのが現状である。
Conventional packaging methods using film include various packaging methods that take advantage of the characteristics of the film, such as sealing into a bag, twisting the film, shrinking by applying heat, and Saran wrap (Asahi Kasei Corporation). A large number of methods are used, such as the tight wrap method, stretch wrap method, and skin pack method represented by Co., Ltd. (product name), and each method requires its own packaging and characteristics. At present, products with suitable composition, shape, properties, etc. are selected and packaged.

それらの中で収縮方法とは延伸され配向がセットされた
フィルムの熱収縮性を利用し、予め被包装物をゆるく予
備包装例えばシールして、被包装物を囲った後、フィル
ムを熱風、赤外線、熱水、その他、熱媒体により加熱収
縮されて内容物をタイトに密着させる方法である。その
特徴は、包装物の外観が美しく商品価値を高め、内容物
を衛生的に保ちながら視覚及び触覚で品質を確認し得る
こと、異形物でも、複数個の商品でも1包みでタイトに
固定及び包装でき、振動衝撃などに対する保護性能がす
ぐれていること、等である。又、今スーパーマーケット
などで盛んに用いられているストレッチ包装方法に比較
して、包装スピードを上げること等ができる。
Among them, the shrink method utilizes the heat-shrinkability of a film that has been stretched and set in orientation, and after loosely pre-wrapping, for example sealing, the object to be packaged and enclosing the object, the film is exposed to hot air or infrared rays. This method involves heating and shrinking the contents using hot water or other heat medium to tightly adhere the contents. Its features are that the appearance of the package is beautiful and increases the product value, that the quality of the contents can be confirmed visually and tactile while keeping the contents sanitary, and that even irregularly shaped items or multiple items can be tightly fixed in one package. It can be packaged and has excellent protection against vibrations and shocks. Furthermore, compared to the stretch wrapping method currently widely used in supermarkets and the like, the wrapping speed can be increased.

ストレッチ包装では包装できないような異形物、トレー
等の容器なしの包装もでき得る。又、よりタイトに包装
でき得る等の特徴があるが、フィルムが収縮するまで充
分加熱しなければならないのが欠点となっている。
It is also possible to package irregularly shaped items that cannot be wrapped with stretch wrapping, such as trays, etc. without containers. It also has the advantage of being able to be packaged more tightly, but has the disadvantage of having to be heated sufficiently until the film shrinks.

上記欠点さえ解決すればストレッチ包装に比しフィルム
の使用面積、フィルムの省内厚化、包装スピード等、よ
りメリットのある包装方法とすることができる。
If the above-mentioned drawbacks can be solved, it is possible to create a packaging method that has more advantages than stretch packaging in terms of the area of use of the film, reduced internal thickness of the film, packaging speed, etc.

発明の解決しようとする問題点 本発明はその用途を特に限定するものではないが、その
好ましい一用途例として以後収縮包装について説明する
Problems to be Solved by the Invention Although the present invention does not particularly limit its use, shrink wrapping will be described below as a preferred example of its use.

高級収縮包装用フィルムとして現在量も多く使用されて
いるのは、可塑化ポリ塩化ビニル(以後PVCと言う)
の延伸フィルムである。これは比較的低温で高率の熱収
縮を起こし、広い加熱温度範囲で良好な収縮包装ができ
る大きな利点を有するためで、反面ヒートシール性、防
湿性に劣り、可塑剤による衛生上の問題、同経時劣化の
問題、熱線による溶断時、塩素系ガス等の有毒ガスを発
生し、又使用済みのフィルムを焼却する際の腐食性の有
毒ガス、又包装物を低温で保存する場合、寒冷地で取扱
う場合、耐寒性に劣る為、フィルムが硬くなり、脆くな
り、破れやすくなったりする等に問題を有する。
Plasticized polyvinyl chloride (hereinafter referred to as PVC) is currently used in large quantities as a high-grade shrink wrapping film.
It is a stretched film. This is because it causes a high rate of heat shrinkage at relatively low temperatures and has the great advantage of being able to produce good shrink packaging over a wide heating temperature range.On the other hand, it has poor heat sealability and moisture resistance, and there are hygiene problems caused by plasticizers. The problem of deterioration over time, the generation of toxic gas such as chlorine gas when melted by heat rays, corrosive toxic gas when incinerating used film, and the problem of storing packages at low temperatures in cold regions. When handled in a cold environment, there are problems such as the film becoming hard, brittle, and easily torn due to its poor cold resistance.

そこで近年、ポリプロピレン系(以後PPと言う)の収
縮包装用フィルムが注目されてきたが収縮性がPVCフ
ィルムに比して劣るのが欠点である。PP系の延伸フィ
ルムは機械的性質、防湿性、ヒートシール性などの点で
優れており収縮包装フィルムとして優れたフィルムであ
る。
Therefore, in recent years, polypropylene-based (hereinafter referred to as PP) films for shrink wrapping have attracted attention, but their drawback is that their shrinkability is inferior to that of PVC films. PP-based stretched films are excellent in terms of mechanical properties, moisture resistance, heat sealability, etc., and are excellent as shrink wrapping films.

又PVCに比べて、原料コスト、比重が小さい点に有利
である。しかしPPは軟化温度が高い結晶性高分子であ
り、且つ従来の延伸フィルムより高い加熱収縮温度を有
し、100℃前後の低温では、収縮率が小さい。その為
、収縮包装工程で高温に加熱しなければならなく、又加
熱温度の許容範囲が狭く、収縮率の温度依存度が急な為
、包装時の部分的な加熱むらが著しい収縮むらを生じて
“しわ”や“あばた”など実用上好ましくない欠点を生
じやすく、又これを防ぐ為充分加熱することは被包装物
の過加熱、フィルムの失透、溶融による穴開き、性能劣
化、シール部、エヤー抜き穴部の破れ等を発生する等の
大きな欠点になっている。又包装経時後応力がぬけて被
包装物がゆるみやすく、又包装後のフィルムは硬く、も
ろくなる欠点があった。
Also, compared to PVC, it has advantages in terms of raw material cost and low specific gravity. However, PP is a crystalline polymer with a high softening temperature and a higher heating shrinkage temperature than conventional stretched films, and its shrinkage rate is small at low temperatures of around 100°C. Therefore, it is necessary to heat the product to a high temperature in the shrink packaging process, and the permissible range of heating temperature is narrow, and the shrinkage rate has a steep temperature dependence, so uneven heating in some areas during packaging can cause significant uneven shrinkage. It is easy to cause practical defects such as "wrinkles" and "pockmarks", and in order to prevent this, sufficient heating may cause overheating of the packaged material, devitrification of the film, holes due to melting, performance deterioration, and sealing parts. This has resulted in major drawbacks such as tearing of the air vent hole. Moreover, after packaging, the stress is released and the packaged item tends to loosen, and the film after packaging becomes hard and brittle.

又、従来のポリエチレン系のフィルムは、今まで分子に
充分な延伸配向を付与することができなく、従って、得
られたフィルムは熱収縮率特に熱収縮応力が小さく、又
収縮温度が高く、フィルムの強度、光学特性も悪く、包
装後の被包装物の結束力も低く、特殊な用途に厚みをよ
り厚くして、用いられている。
In addition, conventional polyethylene films have not been able to impart sufficient stretching orientation to the molecules, and therefore, the obtained films have a low heat shrinkage rate, particularly a low heat shrinkage stress, and a high shrinkage temperature, making it difficult for the film to Its strength and optical properties are poor, and the cohesiveness of the packaged items after packaging is also low, so it is used in a thicker form for special purposes.

又ポリエチレン系のフィルムでも高エネルギー線を用い
て、架橋反応を分子に充分中せしめて高温で延伸したフ
ィルムは熱収縮率、熱収縮応力が大きく通常のポリエチ
レンに比して、透明性、光沢などの光学特性、耐熱性等
、緒特性に非常に優れた緒特性を有するが、しかし、高
温度領域で収縮するため劣化しゃすく(特に光学特性が
大巾に)しかも温度に対し急激に収縮する等の加熱収縮
特性、高度の架橋のためヒートシールされにくい、引裂
抵抗性に劣り破れやすい等、又電熱線によるカットがで
き難い等のため、包装スピードが劣ってしまう等の欠点
を有する。以上のように収縮包装する場合の重要な特性
の一つとして低温で充分包装できることが望まれ特に生
鮮食品物を包装する時、等に必要とされる。
In addition, even in polyethylene films, films that are stretched at high temperatures after using high-energy rays to sufficiently induce a cross-linking reaction in the molecules have a high heat shrinkage rate and heat shrinkage stress, and are less transparent and glossy than regular polyethylene. It has very excellent optical properties, heat resistance, etc. However, it shrinks in high temperature ranges and deteriorates (particularly when its optical properties become large), and it also shrinks rapidly with temperature. It has disadvantages such as poor heat-shrinking properties, high degree of crosslinking that makes it difficult to heat seal, poor tear resistance and easy tearing, and difficulty in cutting with heating wire, resulting in poor packaging speed. As mentioned above, one of the important characteristics of shrink wrapping is that it can be wrapped sufficiently at low temperatures, which is particularly required when packaging fresh foods.

以上のように、フィルムの収縮温度(実用的には20%
以上収縮することが必要)が高いか、又はそれが温度に
より急激に変化率が大きく収縮する場合は、特に包装品
の仕上りを良くするためには重合体の融点をはるかに越
える温度で、しかも非常に狭い条件内で包装しなければ
ならなく、フィルムの特性の低下の度合いが大きく問題
を有するものであった。
As mentioned above, the shrinkage temperature of the film (practically 20%
If the shrinkage is high, or if the shrinkage rate is large and rapid depending on the temperature, it is necessary to use a temperature that far exceeds the melting point of the polymer, especially in order to improve the finish of the packaged product. The film had to be packaged under very narrow conditions, and the film properties were severely degraded, causing problems.

又、一方延伸フィルムの製法には、ポリプロピレンの場
合は一度押出し機、グイより溶融押出し急冷したチュー
ブ状原反を、150°〜160℃の高温に再加熱し、内
部に空気を導入することにより延伸する方法、又低密度
ポリエチレンの場合は、従来同様に二軸延伸し高度の延
伸配向をセットしようとすることは、加工時、破れてし
まいやすく、技術的に非常に困難なこととされている。
On the other hand, in the case of polypropylene, the stretched film is produced by melt-extruding and quenching the tube-shaped raw material using an extruder, then reheating it to a high temperature of 150° to 160°C and introducing air inside. In the case of low-density polyethylene, the conventional method of biaxial stretching to set a high degree of stretching orientation is considered to be technically extremely difficult as it tends to tear during processing. There is.

そのために、インフレーション法により例えば180〜
220℃の温度にて押出されてから適当に空気により冷
却させながら、即膨らまして所定のサイズのフィルムと
する方法が一般的である。
For this purpose, for example, 180 ~
A common method is to extrude at a temperature of 220° C., then immediately expand it while cooling with air to form a film of a predetermined size.

この方法はきわめて安価に容易にフィルムを製造し得る
特徴があるが、分子間の流動が起こりやすく、延伸によ
って満足な分子配向をセットすることができない。又、
光学特性も大巾に劣る。従って熱収縮率、熱収縮応力が
小さく、高温側にあり、特殊な用途にフィルム厚みを増
加させてしか用いることができないものである。そのた
めに低密度ポリエチレンを成型した後、適当な条件下で
高エネルギー放射線を照射して部分的に架橋反応を生ぜ
しめてから、融点を越える高温(例えば140℃)に再
加熱し延伸することにより、分子間の流動を防ぎ充分な
分子配向をセットする方法等があるが低温収縮性の度合
は低く、裂けやすいフィルムとなってしまう。
Although this method has the feature of being able to easily produce a film at a very low cost, intermolecular flow tends to occur and it is not possible to set a satisfactory molecular orientation by stretching. or,
The optical properties are also inferior to those of large cloth. Therefore, the heat shrinkage rate and heat shrinkage stress are low and on the high temperature side, and it can only be used for special purposes by increasing the film thickness. For this purpose, after molding low-density polyethylene, it is irradiated with high-energy radiation under appropriate conditions to cause a partial crosslinking reaction, and then reheated to a high temperature exceeding its melting point (for example, 140°C) and stretched. Although there are methods of preventing intermolecular flow and setting sufficient molecular orientation, the degree of low-temperature shrinkability is low and the film tends to tear easily.

又、最近、これらのフィルムの欠点を改良すべく、いく
つかの試みがなされている。例えば特公昭45−269
9号公報ではエチレン−酢酸ビニル共重合体とアイオノ
マー樹脂との混合組成を用い、例えば100℃で延伸す
ることにより、加熱時流動特性を改良して、延伸フィル
ムを得る方法がある。この方法では、強度も本発明のフ
ィルムより低いレベル(引張強度4.2 kg/ mm
2)で、光学特性に劣るものとなる。又収縮後の光学特
性は大きく悪化する傾向にある。又特公昭46−407
5号公報では特定のエチレン−プロピレン共重合体を用
いて延伸する方法等があるが、PvC系フィルムに比し
て、光学特性、加熱収縮特性、強度等、又加工性ともま
だ充分ではない。
Also, recently, several attempts have been made to improve the shortcomings of these films. For example, the special public official court Sho 45-269
No. 9 discloses a method of obtaining a stretched film by using a mixed composition of an ethylene-vinyl acetate copolymer and an ionomer resin and stretching the film at, for example, 100° C. to improve the flow characteristics upon heating. With this method, the strength was also lower than that of the film of the present invention (tensile strength 4.2 kg/mm
2), the optical properties are inferior. Furthermore, the optical properties after shrinkage tend to deteriorate significantly. Also special public service 1977-407
No. 5 discloses a method of stretching using a specific ethylene-propylene copolymer, but the optical properties, heat shrinkage properties, strength, etc., and processability are still insufficient compared to PvC films.

又、新しい包装用フィルムとして、各種多様の複合の多
層系フィルムが知られている。
Furthermore, various types of composite multilayer films are known as new packaging films.

最近は、要求特性の高度化により、ますます複合化の方
向にある。例えば、無延伸に近いフィルム又は延伸した
フィルムに他樹脂を溶融ラミネートしたもの等がある。
Recently, due to the increasing sophistication of required characteristics, there is a trend towards more and more complexities. For example, there are films that are almost unstretched or films that are stretched and melt-laminated with other resins.

例えば、無延伸のキャスト法によるポリプロピレン(C
,PPと言われている)又は延伸したポリプロピレン(
0,PP)に他樹脂をシ容融ラミネートしたヒートシー
ル性を改良したフィルム又は塩化ビニリデン系ラテック
スをコーティングして、バリヤー性能を付与したフィル
ム(Kコートフィルムと言われている)等、用途ごとに
多種多様なフィルム及び組合せが選ばれている。
For example, polypropylene (C
, PP) or stretched polypropylene (
Films with improved heat-sealability made by laminating other resins on 0, PP) or films coated with vinylidene chloride latex to provide barrier properties (referred to as K-coated films) are available depending on the application. A wide variety of films and combinations are selected.

又、一方、多種類の樹脂を各々別々の押出機で溶融して
、多層ダイを用いて、その内部で合流、融合して押出し
冷却してフィルム及びシートする共押出フィルムが一般
に知られている。
On the other hand, coextrusion films are generally known in which multiple types of resins are melted in separate extruders, merged and fused inside a multilayer die, extruded and cooled to form a film or sheet. .

しかし、いずれも多層を構成する各層とも、高度に延伸
されたフィルムを得るには、各樹脂ごとに最適の押出条
件、延伸条件等が異なり、製造時に偏肉、タテすじ、パ
ンク、破れ、各層の剥離、界面荒れによる白化などの不
良現象が発生し、又、目的の特性のフィルムとは異なっ
てしまい、これらの欠点解決は今迄非常に困難なことと
されている。
However, in order to obtain a highly stretched film for each of the layers that make up the multilayer, the optimal extrusion conditions, stretching conditions, etc. are different for each resin. Defect phenomena such as peeling of the film and whitening due to interface roughness occur, and the film also differs from the desired characteristics, and it has been extremely difficult to solve these defects until now.

問題点を解決するための手段 本発明者等はこれらのフィルム及び製法の欠点を更に改
良すべく研究を進めたところ、加熱収縮特性、特に低温
での加熱収縮率、加熱収縮応力、及び加熱収縮特性の温
度依存度の広さ、光学特性、フィルムのシール性、強度
等を同時に大巾に改良した優れたフィルム及び、それ等
の安価で加工性の優れた特定の製造方法を見いだした。
Means for Solving the Problems The inventors conducted research to further improve the shortcomings of these films and manufacturing methods, and found that the heat shrinkage properties, particularly the heat shrinkage rate at low temperatures, heat shrinkage stress, and heat shrinkage We have discovered an excellent film that simultaneously greatly improves the temperature dependence of properties, optical properties, film sealability, strength, etc., as well as a specific method for producing the same at low cost and with excellent processability.

すなわち、本発明は3種以上の重合体層よりなる多層高
延伸フィルムにおいて、一層が下記共重合体(A)〜(
C)より選ばれた少なくとも1種の共重合体; (A)  ビニルエステル単量体とエチレンとの共重合
体; (B)  脂肪族不飽和カルボン酸、脂肪族不飽和カル
ボッ酸アルキルエステルより選ばれる単量体とエチレン
との共重合体; (C)  前記共重合体(B)から誘導されたアイオノ
マー系共重合体 を主体として含み、他層がナイロン、エチレン−酢酸ビ
ニル共重合体ケン化物から選ばれる少なくとも1種の重
合体を含み、別の他の層が上記重合体(A)〜(C)よ
り選ばれた少なくとも1種の共重合体であって且つ上記
一層とは別の共重合体、結晶性ポリプロピレンから選ば
れる少なくとも1種の共重合体を含み、その引張強度が
5kg/mm2以上であり、及び収縮勾配が2.0以下
であることを特徴とする冷間高延伸多層フィルムを提供
する。
That is, the present invention provides a multilayer highly stretched film comprising three or more types of polymer layers, in which one layer is made of the following copolymers (A) to (
At least one copolymer selected from C); (A) a copolymer of a vinyl ester monomer and ethylene; (B) an aliphatic unsaturated carboxylic acid and an aliphatic unsaturated carboxylic acid alkyl ester a copolymer of ethylene and a monomer derived from the copolymer (B); (C) mainly contains an ionomer copolymer derived from the copolymer (B), and other layers include nylon and a saponified ethylene-vinyl acetate copolymer; The other layer contains at least one copolymer selected from the above polymers (A) to (C), and the other layer contains at least one copolymer selected from the above polymers (A) to (C). A cold-stretched multilayer comprising at least one copolymer selected from polymers and crystalline polypropylene, having a tensile strength of 5 kg/mm2 or more and a shrinkage gradient of 2.0 or less. Provide film.

またその製法に関するものである。It also relates to its manufacturing method.

本発明の複合フィルムは、上記層を設け、特定の条件下
で冷間延伸することにより、今迄にない高度な延伸配向
と優れた性質を、上記レジンの組合せ層間又は他種レジ
ンによる層間との相乗効果により発揮させ得る点に特徴
がある。
By providing the above-mentioned layers and cold-stretching them under specific conditions, the composite film of the present invention can achieve unprecedentedly high degree of stretching orientation and excellent properties between the above-mentioned resin combination layers or between the layers of other resins. It is characterized by the fact that it can be exerted by the synergistic effect of the two.

該共重合体の内、異種同志、又それ以外の他種レジンと
組合わせることにより、それら単体のレジンによる延伸
条件を越えた、つまりそれら単独では達成することの出
来ない条件下で、例えばより低温の条件下で、非常に安
定に、特に高度の延伸配向が各履均−に付与され、強度
、透明性、その他諸特性に特に優れたフィルムが得られ
る。
By combining the copolymers with different types of copolymers or with other types of resins, stretching conditions exceeding those of the single resins, that is, conditions that cannot be achieved alone, can be achieved, e.g. Under low-temperature conditions, a particularly high degree of stretch orientation is imparted to each layer in a very stable manner, resulting in a film that is particularly excellent in strength, transparency, and other properties.

本発明のフィルムは、各種包装用フィルムとして、特に
限定はしないが、収縮性フィルムとしても、良好な性質
を有し、特に光学特性、強度、ヒートシール強度、ガス
バリヤ−特性に優れた、低温収縮特性、収縮応答性(ス
ピード)等に優れたフィルムとすることが出来る。
The film of the present invention has good properties as a shrinkable film, although it is not particularly limited, as a variety of packaging films. In particular, it has excellent optical properties, strength, heat seal strength, and gas barrier properties, and is shrinkable at low temperatures. A film with excellent characteristics, shrinkage response (speed), etc. can be obtained.

本発明の高延伸フィルムは、前記のそれぞれの重合体を
少なくとも一層含む多層グイ等により、例えばチューブ
状に押出し、この押出し成型物を例えば液状冷媒等によ
り急冷固化した後、必要により加熱して、80℃以下の
延伸温度で面積延伸倍率3〜30倍に冷間延伸すること
により製造することができる。
The highly stretched film of the present invention is extruded, for example, into a tube shape using a multilayer goo containing at least one layer of each of the above-mentioned polymers, and the extruded product is rapidly cooled and solidified using, for example, a liquid refrigerant, and then heated if necessary. It can be produced by cold stretching at a stretching temperature of 80° C. or lower and an area stretching ratio of 3 to 30 times.

本発明に用いることのできる共重合体の一つ(A)は、
ビニルエステル単量体とエチレンの共重合体である。該
単量体の含量は、好ましくは3〜13モル%である。こ
の共重合体の代表例は、エチレン−酢酸ビニル共重合体
であり、特に酢酸ビニル含量が3.5〜12モル%でメ
ルトインデックス0.2〜6であるものが好ましい。更
に好ましくは、酢酸ビニル含量が4.0〜11モル%で
、メルトインデックスが0.2〜4である。
One of the copolymers (A) that can be used in the present invention is
It is a copolymer of vinyl ester monomer and ethylene. The content of the monomer is preferably 3 to 13 mol%. A typical example of this copolymer is an ethylene-vinyl acetate copolymer, and particularly preferred is one having a vinyl acetate content of 3.5 to 12 mol % and a melt index of 0.2 to 6. More preferably, the vinyl acetate content is 4.0 to 11 mol% and the melt index is 0.2 to 4.

他の共重合体(B)は、脂肪族不飽和カルボン酸及び/
又は該カルボン酸アルキルエステル等の単量体とエチレ
ンとの共重合体である。該単量体の含量は、同様に、3
〜13モル%、好ましくは3〜12モル%であり、更に
好ましくは4.0〜11モル%である。これ等にはアク
リル酸、アクリル酸エステル、メタアクリル酸、メタア
クリル酸エステル等よりなる群から選ばれた少なくとも
1種の単量体とエチレンとの共重合体がある。
Other copolymers (B) include aliphatic unsaturated carboxylic acids and/or
Or it is a copolymer of a monomer such as the carboxylic acid alkyl ester and ethylene. The content of the monomer is similarly 3
It is 13 mol% to 13 mol%, preferably 3 to 12 mol%, and more preferably 4.0 to 11 mol%. These include copolymers of ethylene and at least one monomer selected from the group consisting of acrylic acid, acrylic esters, methacrylic acid, methacrylic esters, and the like.

共重合体(C)とは、上述のエチレンーメクアクリル酸
共重合体、エチレン−アクリル酸共重合体、エチレン−
メタアクリル酸エステル共重合体及びエチレン−アクリ
ル酸エステル共重合体等の一部分以上ケン化した重合体
より選ばれる共重合体の少なくとも一部を、例えばNa
+、Zn++、Mg”、他等の金属性イオンによりイオ
ン結合化せしめたものである。この内、用途により好ま
しいものは、エチレンーメクアクリル酸エステル、エチ
レン−アクリル酸エステルの部分ケン化重合体の少なく
とも一部分をイオン結合化したアイオノマーである。本
発明では該共重合体(A)〜(C)から選ばれる任意の
混合体を用いることもできる。
The copolymer (C) refers to the above-mentioned ethylene-methacrylic acid copolymer, ethylene-acrylic acid copolymer, ethylene-
At least a part of the copolymer selected from partially or more saponified polymers such as methacrylic ester copolymer and ethylene-acrylic ester copolymer is
+, Zn++, Mg'', and other metal ions.Among these, preferable ones depending on the application are ethylene-methacrylate ester and partially saponified polymer of ethylene-acrylate ester. The copolymer is an ionomer in which at least a portion of the copolymer is ionically bonded.In the present invention, any mixture selected from the copolymers (A) to (C) can also be used.

上記のエチレン以外の単量体の含量が3モル%以下の共
重合体では冷間延伸性が良くなく、相乗効果が期特出来
難くなり、延伸中にパンクしやすくなったりする。又、
表層の場合はシール性、光学特性、内層の場合は強度、
層間接着性等に問題を有するようになる。反対に、13
モル%以上では、共重合体(A)、(B)の場合特にフ
ィルムの弾性率が低下し、耐熱性が低下する傾向になる
A copolymer containing 3 mol% or less of a monomer other than ethylene does not have good cold stretchability, makes it difficult to achieve a synergistic effect, and tends to be punctured during stretching. or,
For the surface layer, sealability, optical properties, for the inner layer, strength,
Problems arise in interlayer adhesion and the like. On the contrary, 13
If the amount exceeds mol%, the elastic modulus of the film tends to decrease, particularly in the case of copolymers (A) and (B), and the heat resistance tends to decrease.

又、表層の場合フィルムの面同志がブロッキングする傾
向がある。更に又、ゴム的性質が強くなり冷間延伸、が
セットされにくく、常温で配向及び寸法が変化しやすい
ので、強度的にも劣ってくる等の傾向を示すため、多層
における相乗効果も低下する。
In addition, in the case of the surface layer, the surfaces of the film tend to block each other. Furthermore, the rubbery properties become stronger, making it difficult to set during cold stretching, and the orientation and dimensions change easily at room temperature, resulting in a tendency to deteriorate in strength, and the synergistic effect in multilayers also decreases. .

共重合体(C)の場合はゴム的性質に関し上記の限りで
はないが、やはり延伸性が低下する。共重合体(C)の
内で部分エステル結合を有したアイオノマー樹脂は延伸
性が良く、表層とした場合も柔軟性を有していて用途に
より好ましい場合がある。
In the case of the copolymer (C), although the rubber properties are not limited to those mentioned above, the stretchability is still reduced. Among copolymers (C), ionomer resins having partial ester bonds have good stretchability and have flexibility even when used as a surface layer, and may be preferable depending on the intended use.

又、本発明では前述の重合体組成物に他に適当な重合体
を混合してもよい。その時該共重合体は好ましくは50
重量%以上、より好ましくは60重量%以上、更に好ま
しくは70重量%以上であ6、例えば、該共重合体(C
)にナイロン系樹脂等、例えば、ナイロン6−66系共
重合体等を混合して用いてもよい。又、他の適当な樹脂
で、冷間延伸性を阻害しない種類のものであれば用1.
)ることかできる。混合して用いる場合は冷間延伸の特
徴として、相溶性のよい種類のものは勿論、やや悪い種
類のものでも延伸時に両者が相乗的に延伸され、緒特性
の低下(特に光学特性の低下、更に収縮後の光学特性の
低下)が少ない場合が多いばかりか、逆に特性のよい点
が相乗的に発揮される場合が多いのは驚くべきことであ
る。この関係は延伸の温度が上昇する程急速になくなり
、逆に悪い点が発現されるようになる。すなわち、本発
明の特定の延伸条件下つまり80℃以下(例えば軟化点
以下の35℃)の温度で低温延伸すれば優れた特性のフ
ィルムが得られる。
Further, in the present invention, other suitable polymers may be mixed with the above-mentioned polymer composition. The copolymer then preferably has a
The copolymer (C
) may be mixed with a nylon resin or the like, such as a nylon 6-66 copolymer. Also, other suitable resins may be used as long as they do not inhibit cold stretchability.
) can be done. When used as a mixture, cold stretching is characterized by the fact that not only those with good compatibility but also those with slightly poor compatibility are stretched synergistically during stretching, resulting in a decrease in optical properties (in particular, a decrease in optical properties). Furthermore, it is surprising that not only is there often little decrease in optical properties (after shrinkage), but on the contrary, good properties are often exhibited synergistically. This relationship disappears more rapidly as the stretching temperature increases, and on the contrary, bad points begin to appear. That is, a film with excellent properties can be obtained by low-temperature stretching under the specific stretching conditions of the present invention, that is, at a temperature of 80° C. or lower (for example, 35° C. below the softening point).

本発明では、前述共重合体、又は共重合体を主体とする
層を有した多層原反に高エネルギー線を照射し該共重合
体が沸騰キシレン不溶ゲル0〜70重量%、メルトイン
デックス2以下に処理した後、冷間延伸してもよい。こ
の場合冷間延伸性は改良される場合があり、又緒特性特
に耐熱性等が向上し用途により更に好ましくなることが
ある。
In the present invention, the above copolymer or a multilayer original fabric having a layer mainly composed of the copolymer is irradiated with high energy rays, and the copolymer is boiled as a xylene-insoluble gel of 0 to 70% by weight, with a melt index of 2 or less. After the treatment, cold stretching may be performed. In this case, the cold stretchability may be improved, and the web properties, particularly heat resistance, etc. may be improved, making it more desirable depending on the application.

この好ましい範囲は該不溶ゲル0.5〜50重量%、メ
ルトインデックス0.5以下である。更に好ましくは、
不溶ゲル3〜30重量%、メルトインデックス0.07
以下である。不溶ゲルが上記の量よりも多いと成型品の
伸び、強度の低下、劣化が起こり特にフィルムとした場
合のヒートシール特性の悪化、例えばシールされな(な
る、熱線により切断出来なくなる、破れやすくなる等の
問題を有するようになり、場合によって上記の程度が好
ましい。
The preferred range is 0.5 to 50% by weight of the insoluble gel and a melt index of 0.5 or less. More preferably,
Insoluble gel 3-30% by weight, melt index 0.07
It is as follows. If the amount of insoluble gel is more than the above amount, the molded product will elongate, lose strength, and deteriorate, resulting in deterioration of heat-sealing properties especially when made into a film, such as not being able to be sealed, being unable to be cut by heat rays, and becoming easily torn. In some cases, the above-mentioned degree is preferable.

本発明の多層フィルムにおいて、上記共重合体同志の異
種レジン間で多層を構成する場合は必要な要件により層
構成を決定すれば良いが、その内でも各共重合体(A)
、(B)のグループに対しくC)のグループを多層とし
て組合わせる場合、特に共重合体(C)を表層にした時
に好ましい場合が多い。それは共重合体(C)は一般に
イオン結合のために硬い表層を形成する。他に、シール
性、光学特性に右いてもより適しているからである。次
に共重合体を含む層以外の他種レジンよりなる層と組合
わせる他層のレジンの例としては、ナイロン(Nyと略
する)、エチレン−酢酸ビニル共重合体ケン化重合体(
SEVAと略する)から選ばれる樹脂を含む組成物から
なり、更に好ましくはその他の他層として結晶性ポリプ
ロピレン(PPと略する)を配しても良い。又は他の混
合重合体等である。特に上記バリヤー性樹脂を中間層と
した場合バリヤー性、同耐ピンホール性が本発明より高
温度での延伸で得たものの場合に比し改良させうる事が
判明した。各層の厚み構成としての該共重合体層の比率
は、特に限定しなく下限は、例えば共重合体(C)を表
層にした場合、他層(A)、(B)等を配した場合又は
他に冷間延伸性の良い樹脂を用いた場合には一般に 1
0%以上である。その該共重合体層の全層に対する比率
は好ましくは少なくとも30%以上、より好ましくは少
なくとも50%以上の厚みである。層の組合せ方は2層
構造の場合、3層構造以上の場合が考えられるが好まし
くは3層、またはそれ以上がよい。之等は例えば(該共
重合体(A)、(B)、(C)を単にASBSCと略す
ると)C/Ny/C,Ny /B/C,C/5EVA/
C,等がある。
In the multilayer film of the present invention, when forming a multilayer between different resins of the above-mentioned copolymers, the layer structure may be determined depending on the necessary requirements, but among them, each copolymer (A)
, when group C) is combined with group C) as a multilayer, it is often preferable to use copolymer (C) as the surface layer. The copolymer (C) generally forms a hard surface layer due to ionic bonds. This is also because it is more suitable in terms of sealability and optical properties. Next, examples of other resin layers to be combined with a layer made of a resin other than the copolymer-containing layer include nylon (abbreviated as Ny), ethylene-vinyl acetate copolymer saponified polymer (
It is made of a composition containing a resin selected from SEVA (abbreviated as SEVA), and more preferably, crystalline polypropylene (abbreviated as PP) may be disposed as another layer. or other mixed polymers. In particular, it has been found that when the above-mentioned barrier resin is used as an intermediate layer, the barrier properties and pinhole resistance can be improved compared to those obtained by stretching at a high temperature according to the present invention. The ratio of the copolymer layer as the thickness structure of each layer is not particularly limited, and the lower limit is, for example, when the copolymer (C) is used as the surface layer, when other layers (A), (B), etc. are arranged, or If other resins with good cold stretchability are used, generally 1
It is 0% or more. The ratio of the copolymer layer to the total layer thickness is preferably at least 30% or more, more preferably at least 50% or more. The combination of layers may be a two-layer structure, a three-layer structure or more, but preferably three layers or more. For example, (the copolymers (A), (B), and (C) are simply abbreviated as ASBSC), C/Ny/C, Ny /B/C, C/5EVA/
There are C, etc.

又5層の場合は、PP/EPE/A/EPE/PP、C
/B/5EVA/B/CSC/A/5EVA/A/C,
等がある。
In the case of 5 layers, PP/EPE/A/EPE/PP, C
/B/5EVA/B/CSC/A/5EVA/A/C,
etc.

これらは表面の硬度、シール性、光学特性等を改良する
ため又はフィルムの腰強さ、包装時の機械適性、又機械
的強度等を改良するために有効であり、又高機能で高価
な他種レジンはこの層を特に薄くし、延伸加工性も向上
させる等の手段をとれば都合が良い。
These are effective for improving surface hardness, sealing properties, optical properties, etc., or for improving film stiffness, mechanical suitability for packaging, mechanical strength, etc., and are highly functional and expensive. For the seed resin, it is convenient if measures such as making this layer particularly thin and improving stretching processability are taken.

本発明のフィルムは冷間延伸の仕方、つまり二軸延伸以
外に、タテあるいはヨコの一軸延伸できるが、好ましく
はバブル状に二軸に延伸するのがより優れた緒特性のも
のが得られる。
The film of the present invention can be cold-stretched, that is, in addition to biaxial stretching, it can be uniaxially stretched vertically or horizontally, but it is preferable to biaxially stretch in a bubble shape to obtain better stretch properties.

本発明のフィルムは、その光学特性〔ヘイズ値(AST
M−D1003−52)]が一般に3.0%以下で好ま
しくは2.0%である。例えば、これはその製法より特
徴づけられる値であり、本発明の組成の急冷した性質を
全く損うことなく、加工、又主体となる組成物の融点以
下、更に好ましくは軟化点以下の領域でも低温でバブル
状で安定に延伸することができるため特に透明になるも
のである。又、収縮フィルムとした場合の収縮後のヘイ
ズは、例えば20〜40%収縮させてもほとんど悪化し
ないが、他のフィルムは大巾に悪化するものが多い(例
えば、PPは2.8%が6.5%に、架IPEフィルム
は2.5%が4.8%に)。この値は20%収縮後で好
ましくは4.0%以下であり、より好ましくは3.0%
以下である。
The film of the present invention has optical properties [haze value (AST
M-D1003-52)] is generally 3.0% or less, preferably 2.0%. For example, this is a value that is characterized by its manufacturing method, and can be processed or processed at temperatures below the melting point of the main composition, more preferably below the softening point, without impairing the quenched properties of the composition of the present invention. It is particularly transparent because it can be stably stretched in a bubble form at low temperatures. In addition, when used as a shrink film, the haze after shrinkage hardly deteriorates even if it is shrunk by 20 to 40%, but in many other films, the haze deteriorates significantly (for example, PP has a haze of 2.8%). 6.5%, and 2.5% for cross-IPE film to 4.8%). This value is preferably 4.0% or less after 20% shrinkage, more preferably 3.0%
It is as follows.

又、低温収縮性とは収縮包装フィルムとして用いる場合
に必要な性質の一つであり、フィルムを各温度条件で処
理した時の加熱収縮率で表わされる値の内、20%又は
40%収縮する(以後タテとヨコの平均収縮率で表わさ
れる)に必要な温度で表わされ、この値が低い程、低温
収縮特性を有することを意味する。又、通常収縮フィル
ムとして必要な収縮率は、包装方法によっても異なるが
、20%以上好ましくは40%以上必要である。具体的
にはフィルムから切取った正方形の試験片に規定寸法の
タテ、ヨコの標線を入れ、収縮中に自分自身又は他の物
に粘着しないようにタルクなどの粉末をまぶし所定の温
度の熱風で5分間処理し、加熱収縮させた後の各方向そ
れぞれの寸法の変化率で表わした値をタテ、ヨコの平均
した値で加熱収縮率を表わすものであり、この値を各温
度で測定し、グラフ化して、20%又は40%の加熱収
縮率で表わされる温度をそれぞれ20%、40%収縮温
度という。
In addition, low-temperature shrinkability is one of the properties necessary when used as a shrink packaging film, and it shrinks by 20% or 40% of the value expressed by the heat shrinkage rate when the film is treated at various temperature conditions. (hereinafter expressed as the average vertical and horizontal shrinkage rate), and the lower this value is, the better the low-temperature shrinkage characteristics are. The shrinkage rate required for a shrink film usually varies depending on the packaging method, but is usually 20% or more, preferably 40% or more. Specifically, a square test piece cut from a film is marked with vertical and horizontal markings of specified dimensions, and the test piece is coated with powder such as talc to prevent it from sticking to itself or other objects during shrinkage. The heat shrinkage rate is the average value of the vertical and horizontal values expressed as the change rate of dimensions in each direction after heat shrinkage after being treated with hot air for 5 minutes, and this value is measured at each temperature. However, when graphed, the temperatures expressed by a heat shrinkage rate of 20% or 40% are referred to as 20% and 40% shrinkage temperatures, respectively.

本発明によるフィルム中、収縮包装用に用いる場合では
、この値が低く、例えば後述市販の収縮用ポリプロピレ
ンフィルムが20%値で120℃、40%値で134℃
であるのに比し、例えば実験例INα1のように20%
で49℃、40%で72℃と低い値の特性を有する。こ
の程度は20%値で表わし85℃以下、好ましくは75
℃以下、更に好ましくは70℃以下である。この値は延
伸の温度程度、組成、層組合せ等によって二次的に影響
されるが、本発明の冷間延伸の大きな特徴の一つとして
低いレベルにある。この値が高いと、実用時にかなりの
高温中に、長時間曝さないと熱収縮を生じないことにな
り、ヒーターの熱量を大きくしなければならなく、又包
装作業の速度も遅くなる。又被包装物に熱が伝わり、特
に熱により危険な品物、変質変形してしまう様な品物、
特に繊維類、生鮮食品類には好ましくない。又収縮カー
ブが高温で急に立ち上るような傾向のフィルムは包装時
の収縮温度付近のごくわずかな変動に対する収縮率の変
化が大きいため、予め緩く包装して収縮トンネル内を通
過させた場合にフィルムに当たる熱風の温度が全体に少
し低すぎると収縮不足でぴったりとフィツトした包装に
仕上らず、又、少し温度が高いと溶融してフィルムに孔
があく、又は失透して光学的ムラを生じせしめる等のよ
うな事態となり、又被包装物に接触している所としない
所ではフィルム温度が異なってくるのは常識であり、こ
の時みにくいあばた状の収縮ムラを生じせしめ、著しく
商品価値を損うこととなる。
When the film according to the present invention is used for shrink wrapping, this value is low; for example, the commercially available shrinkable polypropylene film mentioned below has a temperature of 120°C at 20% value and 134°C at 40% value.
For example, as in Experimental Example INα1, 20%
It has characteristics with low values of 49°C at 40% and 72°C at 40%. This level is expressed as a 20% value and is below 85°C, preferably 75°C.
The temperature is preferably 70°C or lower, more preferably 70°C or lower. This value is secondarily influenced by the stretching temperature, composition, layer combination, etc., but it is at a low level as one of the major features of the cold stretching of the present invention. If this value is high, thermal shrinkage will not occur unless exposed to considerably high temperatures for a long period of time in practical use, requiring a large amount of heat from the heater and slowing down the packaging process. In addition, heat is transmitted to the packaged items, especially items that are dangerous due to heat, items that may deteriorate or deform, etc.
It is particularly unfavorable for fibers and fresh foods. In addition, for films whose shrinkage curve tends to rise suddenly at high temperatures, the shrinkage rate changes greatly in response to very small changes around the shrinkage temperature during packaging, so if the film is loosely wrapped in advance and passed through a shrink tunnel, If the overall temperature of the hot air that hits the film is too low, the package will not shrink properly due to insufficient shrinkage, and if the temperature is too high, it will melt and cause holes or devitrification in the film, resulting in optical unevenness. It is common knowledge that the temperature of the film differs between areas that are in contact with the packaged item and those that are not, which causes unsightly pock-like shrinkage unevenness and significantly reduces the product value. It will be a loss.

又、この温度が高いと収縮後の光学特性のみならず強度
等の機械物性が大巾に低下してしまう。
Furthermore, if this temperature is high, not only the optical properties after shrinkage but also the mechanical properties such as strength will be significantly reduced.

又シール部、エヤー抜き穴より破れてしまう等の欠点を
生じることとなる。
Further, there may be problems such as the seal portion or the air vent hole being torn.

又、この値があまり極端に低い場合には、ロール状に巻
かれたフィルムが常温で寸法変化してしまい好ましくな
い。市販の可塑化収縮包装用PVCフィルムは、この値
が20%収縮で58℃、40%で83℃であり、低温収
縮性で温度に対してなだらかな好ましい収縮特性を有す
る。
Moreover, if this value is too extremely low, the dimensions of the film wound into a roll may change at room temperature, which is not preferable. A commercially available PVC film for plasticized shrink packaging has this value of 58° C. at 20% shrinkage and 83° C. at 40% shrinkage, and has favorable shrinkage properties at low temperatures and gentle changes in temperature.

充分冷間で高配向した他の特徴の一つとしての収縮カー
ブのなだらかさを表わす値として収縮率20%と60%
間の対応温度でカーブの傾きを表わすと、つまり収縮勾
配=(60−20)/Δt(%/l’)で表わすと本発
明のフィルムは2゜0以下、好ましくは1.5以下、よ
り好ましくは1.3以下である。又、収縮率が小さく6
0%近くで飽和となる場合又はそれ以下の場合は20〜
40%間の収縮勾配とする。二軸延伸の場合、いずれも
タテ、ヨコの平均値でこの値を表わし、以後他の特性も
同様とする。但し、−軸延伸の場合はこの限りではなく
主として延伸をかけた方向の値とする。
Shrinkage rates of 20% and 60% are values that represent the smoothness of the shrinkage curve, which is one of the other characteristics of sufficiently cold and highly oriented.
If we express the slope of the curve at the corresponding temperature between, that is, the shrinkage slope = (60-20)/Δt (%/l'), the film of the present invention has a slope of 2°0 or less, preferably 1.5 or less, and Preferably it is 1.3 or less. In addition, the shrinkage rate is small6
If it is saturated near 0% or below, 20~
The shrinkage gradient is between 40%. In the case of biaxial stretching, this value is expressed as the average value of the vertical and horizontal directions, and the same applies to other properties hereinafter. However, in the case of -axis stretching, this is not the case, and the value is mainly in the direction of stretching.

他の特徴としてフィルムを構成する主体となる連合体の
Vicat軟化点での収縮率(以後Vicat収縮率と
いう)が少なくとも15%以上、好ましくは20%以上
、更に好ましくは25%以上である。
Another characteristic is that the shrinkage rate at the Vicat softening point (hereinafter referred to as Vicat shrinkage rate) of the main association forming the film is at least 15% or more, preferably 20% or more, and more preferably 25% or more.

ν1cat軟化点はΔSTM−D1525(荷重1kg
)で測定される値である。この値が低いと、実用的に収
縮する場合低温収縮性に不足することとなり包装温度を
大巾に上昇しなければならない。そうすると、フィルム
が大きく軟化し、収縮する応力も大巾に低下し、又融点
以上の温度に長時間さらされることになり、均一なシワ
のない包装ができなく、又緒特性の低下をまぬがれない
結果となる。
ν1cat softening point is ΔSTM-D1525 (load 1kg
) is the value measured at If this value is low, low-temperature shrinkability is insufficient for practical shrinkage, and the packaging temperature must be significantly increased. As a result, the film becomes greatly softened, its shrinkage stress is greatly reduced, and it is exposed to temperatures above its melting point for a long period of time, making it impossible to package uniformly without wrinkles, and deteriorating the string properties. result.

更に他の特徴として、フィルムを構成する主とした重合
体の結晶融点の温度までにおいてすでに充分収縮するこ
とが必要で、本発明のフィルムはこれを充分満足するも
のである。この値が低いと、包装時その温度以上に充分
さらさなければ包装できない。この値は(mp収縮率と
いう)、好ましくは25%以上、より好ましくは30%
以上、更に好ましくは35%以上、最も好ましくは40
%以上である。
Another feature is that the film must already shrink sufficiently up to the crystal melting point of the main polymer constituting the film, and the film of the present invention fully satisfies this requirement. If this value is low, the product cannot be packaged unless it is sufficiently exposed to temperatures above that temperature during packaging. This value (referred to as mp shrinkage rate) is preferably 25% or more, more preferably 30%
or more, more preferably 35% or more, most preferably 40% or more
% or more.

令名、可塑化PVC以外のフィルムで、この様な収縮率
特性で且つ強度のあるフィルムは、いまだかつて市販さ
れていない。
A film other than plasticized PVC with such shrinkage rate characteristics and strength has never been commercially available.

本発明のフィルムはこれ以上の特性レベルを達成したも
のであり、令名にないフィルムである。
The film of the present invention has achieved a level of properties higher than this and is a film that is unprecedented.

又収縮時の加熱収縮応力は、収縮包装用フィルムとして
用いる場合に加熱収縮率とともに、加熱収    −縮
特性の中で重要な特性の一つであり、例えば後述のよう
に加熱収縮率が高くても収縮時の応力が極度に低ければ
包装中及び包装後の被包装物にフィツトせず、且つ結束
力がです、収縮包装用フィルムとしては全く用をなさな
い。
In addition, the heat shrinkage stress during shrinkage is one of the important heat shrinkage characteristics, along with the heat shrinkage rate, when used as a shrink packaging film. However, if the stress during shrinkage is extremely low, it will not fit the packaged items during or after packaging, and the binding strength will be poor, making it completely useless as a shrink wrapping film.

又、少しの程度でも物を結束する力が不足の場合は、厚
みの厚いフィルムを用いてカバーシナげればならず、不
経済であり、不都合である。本発明のフィルムの特徴と
して通常この値のピーク値は、最低50g/n+m”以
上で、更には、100g/mm”以上、より好ましくは
150g/mm2以上である。市販のポリエチレンの収
縮フィルムではこの値が10g/mm2以下5g/+n
+n2程度であり、用途が限定される。本発明のフィル
ムは例えばRunNαlのように210g/++un2
もある。通常本発明のフィルムは、この値が100〜4
00g/m1112程度と充分高いレベルを有するもの
である。
Furthermore, if the binding force is insufficient even to a small extent, a thick film must be used to tie the cover, which is uneconomical and inconvenient. As a feature of the film of the present invention, the peak value is usually at least 50 g/n+m'', more preferably 100 g/mm'' or more, and more preferably 150 g/mm2 or more. For commercially available polyethylene shrink films, this value is less than 10g/mm2 and 5g/+n.
It is about +n2, and its uses are limited. The film of the present invention has a weight of 210g/++un2, such as RunNαl.
There is also. Usually, the film of the present invention has this value of 100 to 4.
It has a sufficiently high level of about 00g/m1112.

又、この収縮応力が低温収縮性フィルムでは、収縮率の
変化に相応する近いレベルの温度から発揮されなければ
意味がなく、その温度依存性曲線が(タテ、ヨコの平均
値で表わす)収縮率温度曲線とよくバランスがとれてい
なければならない。
In addition, for low-temperature shrinkable films, this shrinkage stress has no meaning unless it is exerted from a temperature close to the level corresponding to the change in shrinkage rate, and the temperature dependence curve (expressed as the average value of vertical and horizontal values) is meaningless. It must be well balanced with the temperature curve.

又高温域まで広がっていた方が好ましい場合もある。こ
の応力のピーク値の温度は90℃以下、好ましくは80
℃以下である。
In some cases, it may be preferable for the temperature to extend to a high temperature range. The temperature at the peak value of this stress is 90°C or less, preferably 80°C or less.
below ℃.

更に本発明は、その製法から引張り強さが特に強いと同
時に破断伸びが大きいことが特徴であり、最低5kg/
鮒2の破断強度(JIS−21702の方法により測定
された値)を有し、好ましくは7kg/mm2以上の値
を有するものであり、その時の伸びも100%以上、好
ましくは150%以上、更に好ましくは200%以上で
ある。又更にそのこにyは破断強度(kg/mJ2)、
xは破断伸び(%)とする。
Furthermore, the present invention is characterized by its particularly high tensile strength and high elongation at break due to its manufacturing method, with a minimum of 5 kg/
It has the breaking strength of Carp 2 (value measured by the method of JIS-21702), preferably a value of 7 kg/mm2 or more, and the elongation at that time is also 100% or more, preferably 150% or more, and Preferably it is 200% or more. Furthermore, y is the breaking strength (kg/mJ2),
x is elongation at break (%).

この様に引張り強度が強く、伸びがあると、フィルムが
タフであり破れにくいことを意味し、包装物の保護フィ
ルムとして非常に有利になり、フィルムの厚みを節約で
きる。
Such high tensile strength and elongation mean that the film is tough and resistant to tearing, making it very advantageous as a protective film for packages and saving on film thickness.

本発明のフィルムは、例えば後述するRun No、1
2の様に破断強度12.8kg/mm2、伸び230%
のレベルのものである。通常配向により強度を上げると
伸びが極度に低下する傾向にあり、例えば市販の充分架
橋(沸騰キシレン不溶ゲル67%)し高温で延伸したフ
ィルムでは強度8kg/mm2で伸びが45%であり破
れやすい。又、落錐衝撃強度(ダート強度という)AS
TM−Di 709−67に準じて測定され、通常の方
法では破れず測定でき難いため特にミサイルヘッドにミ
ゾ−エッヂ部をもうけフィルムを引裂きやすくしたシャ
ープな特殊ヘッドを使用した値で表わし、本フィルムは
この値が特に強い点に特徴がある。例えば収縮PVC,
PPフィルムが16kg−cm、 8kg−cmである
のにRun No、 12では実に33kg−cm(い
ずれも17μ換算)と低密度PE市販の重装の100〜
150μ厚みのものに相当する程の値を有する。
The film of the present invention is, for example, Run No. 1, which will be described later.
2, breaking strength 12.8kg/mm2, elongation 230%
level. Normally, when the strength is increased by orientation, the elongation tends to decrease extremely. For example, a commercially available film that is fully crosslinked (67% boiling xylene insoluble gel) and stretched at high temperature has a strength of 8 kg/mm2 and an elongation of 45%, making it easy to tear. . In addition, falling cone impact strength (referred to as dart strength) AS
It is measured according to TM-Di 709-67, and because it is difficult to measure without tearing with normal methods, it is expressed as a value using a sharp special head that has a groove edge on the missile head to make it easier to tear the film. is characterized in that this value is particularly strong. For example, shrinkable PVC,
Although the PP film is 16 kg-cm and 8 kg-cm, Run No. 12 is actually 33 kg-cm (both converted to 17μ), which is 100 ~
This value is equivalent to that of a material with a thickness of 150 μm.

この値は一般に15kg−0m以上、好ましくは20k
g−cmである(但し、以後17μ換算とする)。
This value is generally greater than 15kg-0m, preferably 20k
g-cm (hereinafter converted to 17μ).

この様に引張強度が強く、伸びがあるとフィルムがタフ
であり破れにくいことを意味し、包装物の保護用フィル
ム、スキンパック等用フィルム等として非常に有利にな
り、フィルムの厚みを節約できる。フィルム厚みは限定
しないが、通常5〜200μ、好ましくは8〜100μ
である。用途は収縮フィルムに限定するものではなくク
フネスを利用した産業用フィルムきして一般に利用でき
るものである。
High tensile strength and elongation mean that the film is tough and difficult to tear, making it very advantageous as a protective film for packages, a film for skin packs, etc., and it can save on film thickness. . Film thickness is not limited, but usually 5 to 200μ, preferably 8 to 100μ
It is. The application is not limited to shrinkage films, but can be generally used as industrial films using Kufunesu.

次に本発明の高延伸フィルムの製造方法の好ましい一例
について詳細に説明する。
Next, a preferred example of the method for producing a highly stretched film of the present invention will be described in detail.

本発明の方法は前述の各共重合体を加熱混合溶融し、多
層環状グイより押出し、液状冷媒により急冷固化せしめ
た充分偏肉の少ないチューブ状原反とし、これを即その
まま、又は必要により高エネルギー線で処理した後、常
温でそのまま又は多少加熱し、80℃以下の延伸温度で
面積延伸倍率5倍〜30倍で冷間延伸する(尚、ここで
いう延伸温度とは延伸開始点の温度を表わす)。ここで
延伸は延伸開始部と加熱部とを実質上隔離することを目
的とした整流接触ガイドを用いフィルム表面に同伴する
流体及びその境膜を周方向に少なくとも不連続的に接触
除去しながら行う。
The method of the present invention involves heating, mixing, and melting the above-mentioned copolymers, extruding them through a multilayer annular gouer, and rapidly cooling and solidifying them with a liquid refrigerant to obtain a tube-shaped material with sufficiently small thickness deviation, which can be used immediately as it is, or if necessary, can be After treatment with energy rays, it is left as it is at room temperature or heated slightly, and then cold stretched at a stretching temperature of 80°C or less and an area stretching ratio of 5 to 30 times (the stretching temperature here refers to the temperature at the starting point of stretching). ). Here, the stretching is carried out using a rectifying contact guide designed to substantially isolate the stretching start part and the heating part, while at least discontinuously contacting and removing the fluid accompanying the film surface and its film in the circumferential direction. .

実施例 以下好ましい実施態様について説明するが、これに限定
されるものではない。
Examples Preferred embodiments will be described below, but the invention is not limited thereto.

押出しは、充分偏肉及び熱、時間履歴を与えることの少
ない多層環状グイから150〜280℃の押出温度でも
って押出し周囲を液状冷媒で均一に急冷固化せしめ、充
分均一(外形的にも内部的にも)なチューブ状原反とす
る。この原反は必要によっては高エネルギー線により前
処理されてもよく、例えば電子線、ガンマ線、紫外線等
により、例えば電子線で1〜10メガラツドの線量で前
述の処理をすればよい。過度の処理はかえって緒特性に
よくない結果をもたらす。
Extrusion is carried out by using a multilayer annular goo, which does not give sufficient unevenness in thickness, heat, or time history, at an extrusion temperature of 150 to 280°C, and uniformly quenching and solidifying the surrounding area with a liquid refrigerant. (also) into a tube-shaped raw material. This raw fabric may be pretreated with high-energy radiation, for example, with electron beams, gamma rays, ultraviolet rays, etc., for example, at a dose of 1 to 10 megarads. Excessive treatment may actually have negative effects on the properties of the fibers.

次に、延伸はそのままの常温で、又は都合により加熱す
るが、この時主体となる重合体の主結晶が、又好ましく
は各層をなす重合体の主結晶が溶融する温度(DSC法
によるピーク値で20℃/分のスキャンスピードで測定
)以下にすることが必要で、この理由は一度溶融した結
晶は実用的に昇温、降温するスピードが速い時はどヒス
テレシス効果により融点よりかなり低い温度の結晶化温
度で結晶化するため充分な冷間配向を付与でき難くなる
ためである。例えば、アイオノマー樹脂ではこの傾向は
特に大きく、エチレン−メタアクリル酸よりなるNa架
橋タイプのメタアクリル酸含1: 5.4モル%、メル
トインデックス=1.3、密度:0.942g/cm3
のものは20℃/分ノスキャンスピード(実際の成膜ス
ピードはもっと速い)では融点100℃のピークが、結
晶化する温度が50℃にピークを有する場合もあるが、
しかし結晶化度の低い場合はこの限りではない。
Next, the stretching is carried out at room temperature as it is, or by heating if necessary, at a temperature at which the main crystals of the main polymer, and preferably the main crystals of the polymers forming each layer, melt (the peak value determined by the DSC method). (measured at a scanning speed of 20°C/min).The reason for this is that once a crystal is melted, when the temperature rises and falls at a fast rate, the hysteresis effect causes the crystal to reach a temperature considerably lower than its melting point. This is because the crystallization occurs at the crystallization temperature, making it difficult to provide sufficient cold orientation. For example, this tendency is particularly strong in ionomer resins, and Na crosslinked type methacrylic acid content 1 made of ethylene-methacrylic acid: 5.4 mol%, melt index = 1.3, density: 0.942 g/cm3
At a scanning speed of 20°C/min (actual film formation speed is much faster), the melting point may peak at 100°C, and the crystallization temperature may peak at 50°C.
However, this is not the case when the degree of crystallinity is low.

本発明で一般に延伸は80℃以下、好ましくは20〜7
0℃、より好ましくは20〜60℃のごく低温で、又同
時に、更に好ましくは重合体のVicat軟化点以下で
延伸するのが好ましい。すなわち、Vicat軟化点よ
り10℃以下、更に好ましくは15℃以下、の温度です
るのがよい。フィルムの特性は加工安定性のゆるす限り
低温で延伸するのが好ましく、前述上限温度以上での延
伸は急激に緒特性が悪化すると同時に延伸安定性も悪化
し、偏肉、バブルのゆれ等不均一現象が発生するように
なる。特性的には本発明でいう低温収縮性、収縮勾配等
が悪化し、光学特性、強度、伸び又はその他バリヤー性
フィルムの場合の耐ピンホール性等の特性も大巾に低下
するようになる。加熱及び延伸中のバブルはエヤーリン
グ等により温調した空気を吹かせながら均一に、できる
だけ表層部の空気流れを均一に制御しながら行う方が好
ましい。原反の加熱温度は、延伸開始部の温度より20
℃を越えない温度にするのが好ましい。又延伸開始部と
延伸終了部で少なくとも5℃、好ましくは10℃の温度
差をもうけて延伸を行うのが好ましい場合が多い。
In the present invention, the stretching is generally 80°C or less, preferably 20 to 7
It is preferred to stretch at a very low temperature of 0°C, more preferably 20-60°C, and at the same time, more preferably below the Vicat softening point of the polymer. That is, the temperature is preferably 10° C. or lower, more preferably 15° C. or lower than the Vicat softening point. It is preferable to stretch the film properties at a low temperature as long as processing stability allows. If the film is stretched at a temperature higher than the above-mentioned upper limit temperature, the film properties will deteriorate rapidly and at the same time, the stretching stability will also deteriorate, resulting in non-uniformity such as uneven thickness and bubble wobbling. The phenomenon begins to occur. In terms of properties, the low-temperature shrinkability, shrinkage gradient, etc. referred to in the present invention deteriorate, and the optical properties, strength, elongation, and other properties such as pinhole resistance in the case of barrier films also deteriorate significantly. Bubbling during heating and stretching is preferably performed uniformly while blowing temperature-controlled air using an air ring or the like, and while controlling the air flow in the surface layer as uniformly as possible. The heating temperature of the original fabric is 20° below the temperature at the start of stretching.
Preferably, the temperature does not exceed °C. Further, it is often preferable to conduct the stretching with a temperature difference of at least 5° C., preferably 10° C., between the stretching start point and the stretching end point.

表層部の空気流れを制御する一方法として、加熱部と延
伸開始部とを実質上隔離することを目的とした整流接触
ガイドを用いフィルムの表面に同伴する流体(気体)及
びその境膜を周方向に不連続的に接触除去し加熱部と延
伸開始部及び冷却部との相互作用による不均一性を除く
方法があり、この方法は、延伸開始部、延伸部、延伸終
了域でも同様に用いられ得る。バブル内の内圧は高く、
例えば100〜5000mm水柱圧下(H2O)(20
0μで100mmφの原反ベースで)の高圧下で充分高
延伸するのが好ましく、より好ましくは200〜200
0mm (H2O)である。
One way to control the air flow in the surface layer is to use a rectifying contact guide, which is designed to substantially isolate the heating area and the stretching start area, to control the fluid (gas) entrained on the surface of the film and its surrounding film. There is a method of discontinuous contact removal in the direction to remove non-uniformity due to interaction between the heating section, the stretching start section, and the cooling section. This method can also be used in the stretching start section, stretching section, and stretching end region. It can be done. The internal pressure inside the bubble is high;
For example, 100-5000 mm water column pressure (H2O) (20
It is preferable to stretch the film to a sufficiently high degree under high pressure (based on an original fabric of 0μ and 100mmφ), more preferably 200 to 200
0 mm (H2O).

又、延伸倍率は面積延伸倍率で5〜30倍、好ましくは
面積延伸倍率が5〜30倍で且つ横方向の延伸倍率が2
〜7倍である。より好ましくは前者が7〜20倍で、且
つ後者が2〜5倍である。
Further, the stretching ratio is 5 to 30 times in area stretching ratio, preferably 5 to 30 times in area stretching ratio, and 2 times in transverse direction.
~7 times. More preferably, the former is 7 to 20 times, and the latter is 2 to 5 times.

この時、前述した様に充分均一な原反を作ることが重要
であり、例えば原反の偏肉が原反厚みに対して±10%
程度又はそれ以上だと延伸中パンクしてしまいうまく延
伸できない場合がある。原反の偏肉は好ましくは±5%
以下、更に好ましくは±2%以下がよい。延伸の程度は
送りニップロールと引取りルップロールのスピード比に
よるタテ方向の延伸比を決定するとあとはバブル内に空
気を封入しバブルの延伸終了点近く(白化寸前)まで延
伸し横方向の膨張が止まる程度とするのが最も安定に延
伸を実施するに良い方法である。又、原反バブルは内圧
と径との関係上50n+m径程度以上、好ましくは10
0鮒径以上装置の許す限り大型サイズが好都合である。
At this time, as mentioned above, it is important to make a sufficiently uniform raw fabric. For example, the uneven thickness of the raw fabric is ±10% of the thickness of the raw fabric.
If the thickness is above or below this level, punctures may occur during stretching, resulting in poor stretching. Uneven thickness of raw fabric is preferably ±5%
It is more preferably ±2% or less. The degree of stretching is determined by the speed ratio of the feed nip roll and the take-up rup roll, which determines the stretching ratio in the vertical direction.Then, air is sealed in the bubble and the bubble is stretched until it reaches the end of stretching (just before whitening), and the expansion in the lateral direction stops. The most stable method is to stretch at a certain level. In addition, the original fabric bubble has a diameter of about 50n+m or more, preferably 10nm or more in relation to the internal pressure and diameter.
It is convenient to use a carp diameter of 0 or more as large as the equipment allows.

又、得られたフィルムの物性上、できるだけバブルの安
定性の許す限り充分冷間の方が好ましいが、実際には、
安定性とのバランス(パンクしない様に)でその時の組
成により多少調整し延伸温度を決定すればよい。
In addition, in view of the physical properties of the obtained film, it is preferable to keep the film sufficiently cold as long as the stability of the bubbles allows, but in reality,
The stretching temperature may be determined by making some adjustments depending on the composition at the time, in balance with stability (avoiding punctures).

本発明の方法により得られたフィルムは、前述の通りの
優れた物性を有するものであると同時に延伸後のフィル
ムの偏肉が非常に少なく±5%程度以下である場合が多
い。これは高−バブル内圧により強い伸張力がフィルム
に付与されるため又通常のような加熱冷却の熱履歴が特
に少なく均一で安定性が良いためと思われる。光学特性
(ヘイズ、グロスとも)は原反の段階で多少悪く見えて
も本発明の方法による冷間延伸後には非常に良くなる特
徴がある。又前述のごとき多層にする事により、単層の
時よりも加工の安定性は大巾に向上しより均一な高度な
製品が出来るものである。
The film obtained by the method of the present invention has excellent physical properties as described above, and at the same time, the thickness deviation of the film after stretching is very small, often about ±5% or less. This is thought to be because a strong tensile force is imparted to the film due to the high internal pressure of the bubbles, and also because the thermal history of heating and cooling as usual is particularly small, resulting in uniformity and good stability. Even if the optical properties (both haze and gloss) appear somewhat poor at the raw stage, they become much better after cold stretching by the method of the present invention. Furthermore, by using multiple layers as described above, processing stability is greatly improved compared to when using a single layer, and more uniform and sophisticated products can be produced.

以上に比して、通常の融点以上に加熱した延伸法では、
この様なことはなく、光学特性を良くしようとするには
逆に延伸の温度をより上昇してゆかなければならなく、
ますます配向はかかりにくくなってしまい強度も低くな
る傾向にある場合が多い。
In comparison to the above, in the stretching method in which heating is performed above the normal melting point,
This does not happen, and in order to improve the optical properties, it is necessary to increase the stretching temperature.
In many cases, orientation becomes increasingly difficult and strength tends to decrease.

又、融点前後±5〜10℃の温度でも同様なことが言え
光学特性は更に好ましい結果とはならないばかりか加う
るに混合組成では特に原反が丁度もろい温度条件になり
パンクし高特性を付与でき難い。
Moreover, the same thing can be said at temperatures of ±5 to 10°C around the melting point, and not only will the optical properties not produce even more favorable results, but in addition, in the case of mixed compositions, the temperature conditions will make the original fabric particularly brittle, causing punctures and imparting high properties. It's difficult to do.

本発明の後述の実施例の如く極低温で、例えば31℃で
本発明で言う延伸がうまく達成される事は、令名、にな
く、特定の該共重合体を含む例えば多層チューブを用い
て、均一な急冷原反を用いる事、特定の延伸方法等の条
件を満たす事等の相乗効果により、初めて達成されるも
のである。
As shown in the later-described embodiments of the present invention, the stretching described in the present invention can be successfully achieved at extremely low temperatures, for example, 31° C., and is not limited to the use of, for example, a multilayer tube containing a specific copolymer. This was achieved for the first time through the synergistic effect of using a uniformly quenched original fabric and satisfying conditions such as a specific stretching method.

例えば、PP単体履の場合は140〜160℃程度の非
常に狭い範囲下で、しかも延伸は困難で、微妙な条件下
でのみ、連続延伸が達成され、それ以下ではパンクして
延伸出来なく、又それ以上では白化した弱く劣ったフィ
ルムが得られなく、又、それ以下の80℃近辺、ましで
は上記例の場合の様に、例えば32℃では全く延伸を達
成出来難い、この点は驚くべき事である。
For example, in the case of single PP shoes, continuous stretching can only be achieved under very narrow conditions of 140 to 160°C, which is difficult, and can only be achieved under delicate conditions. Moreover, if the temperature is higher than that, a whitened, weak and inferior film cannot be obtained, and if the temperature is lower than that, around 80°C, let alone, as in the case of the above example, 32°C, it is difficult to achieve stretching at all, which is surprising. That's a thing.

又、その得られた特性も単体層の場合に比し強度、光学
特性等、低温収縮性、シール性、引裂強度、衝撃強度ら
に優れたものとなり通常の延伸以上の高延伸のレベルに
なる。
In addition, the properties obtained are superior to those of a single layer in terms of strength, optical properties, low-temperature shrinkability, sealing properties, tear strength, impact strength, etc., and the level of stretching is higher than that of normal stretching. .

尚、本発明のフィルムは延伸した後で、自由に例えばオ
ンライン、巻取後等に熱処理を行い、常温近くで保管す
る場合、例えばロール状に巻いた時寸法変化しロールが
くずれるのを防ぐための安走化処理ができ、常温での収
縮する成分をカットしたりすることができる。又その処
理の程度によっては他の物性を落さないで低温で収縮す
る成分を自由にコントロールすることができる。更に、
二軸に延伸したフィルムを用いて配向をタテ、ヨコに移
動させたりすることも自由にできる。
In addition, after the film of the present invention has been stretched, it can be freely heat-treated, for example, on-line, after winding, etc., and when stored near room temperature, for example, to prevent dimensional changes and collapse of the roll when it is wound into a roll. can be treated to make it safer, and components that shrink at room temperature can be removed. Furthermore, depending on the degree of treatment, components that shrink at low temperatures can be freely controlled without degrading other physical properties. Furthermore,
It is also possible to freely move the orientation vertically or horizontally using a biaxially stretched film.

実験例1 酢酸ビニル基含量:5.5モル%、メルトインデックス
二0.6、結晶融点(以後mpと省略する)=88℃、
Vicat軟化点72℃のエチレン−酢酸ビニル共重合
体(al )と、エチレン−メタアクリル酸共重合体N
aタイプアイオマー樹脂:メタアクリル酸含量6.6モ
ル%、メルトインデックス1.0、中和度25%、mp
83℃、Vicat 64℃(C,)とを2台の押出機
を用い、前者は径35mmでL/D=30のスクリュー
を有する押出機で後者は径40mmでL/D=30のス
クリューを有する押出機で、シリンダ一部最高温度24
0℃でそれぞれ可塑化溶融し1.5 +n+nのスリッ
トを有する100mm径の2種3層環状グイより押出し
、ダイ先端から10cmのところで水の均一に出る水冷
リングで急冷して径100+nmで第1層(外層)、第
2層(中間層)、第3層(内層)各々構成で表1の各厚
みの原反を得た。いずれも偏肉(周方向)は±2%以下
であった。これらの原反を2対の送りニップロールと引
取りニップロールの間に通してこの間で熱風により37
℃に加熱しそのまま内部に空気を入れ、前述した整流接
触ガイドを用いて連続的に膨張させて、はぼタテ3.5
倍、ヨコ3.5倍に延伸して、延伸終了域を15℃の冷
風の吹き出るエヤーリングにて冷却し、デフレータ−で
折りたたみ、ニップロールで引き取って耳部を縦方向に
スリットして2枚のフィルムに分け、それぞれ一定の張
力で巻き取って各厚みの所定のフィルムを得た。
Experimental Example 1 Vinyl acetate group content: 5.5 mol%, melt index 2 0.6, crystal melting point (hereinafter abbreviated as mp) = 88°C,
Vicat ethylene-vinyl acetate copolymer (al) with a softening point of 72°C and ethylene-methacrylic acid copolymer N
A-type iomer resin: methacrylic acid content 6.6 mol%, melt index 1.0, neutralization degree 25%, mp
83°C and Vicat 64°C (C,) using two extruders, the former having a screw diameter of 35 mm and L/D = 30, and the latter having a screw diameter of 40 mm and L/D = 30. In an extruder with a cylinder part maximum temperature 24
They were each plasticized and melted at 0°C, extruded through a 100 mm diameter two-type, three-layer annular goo having a slit of 1.5 + n + n, and quenched with a water cooling ring that uniformly discharged water at a distance of 10 cm from the tip of the die. Raw fabrics having the respective thicknesses shown in Table 1 were obtained with each layer (outer layer), second layer (intermediate layer), and third layer (inner layer). In all cases, the thickness deviation (circumferential direction) was ±2% or less. These raw fabrics are passed between two pairs of feed nip rolls and take-up nip rolls, and are heated by hot air between them.
℃, then let air into the interior, and expand it continuously using the rectifying contact guide mentioned above, until the height of the balloon is 3.5 cm.
Stretched by 3.5 times and 3.5 times horizontally, cooled the stretched area with an air ring blowing cold air at 15℃, folded with a deflator, taken with a nip roll, and slit the edges lengthwise to form two films. The film was divided into 2 parts and each film was wound up with a constant tension to obtain a film of each thickness.

表2には得られたフィルムを比較例である市販の3種類
のフィルムと比較して緒特性値を記述しである。
Table 2 describes the characteristic values of the obtained film in comparison with three commercially available films serving as comparative examples.

*但しmp及びVicat収縮率はいずれも主体層とし
て層比率の高い方の樹脂で表わした。
*However, both the mp and Vicat shrinkage rates are expressed using the resin with a higher layer ratio as the main layer.

比較サンプル0は市販のPVCシュリンク・フィルム、
■は同PPシュリンク・フィルム、○は同架橋ポリエチ
レン・シュリンク・ フィルム。
Comparative sample 0 is a commercially available PVC shrink film,
■ indicates the same PP shrink film, ○ indicates the same cross-linked polyethylene shrink film.

得られたフィルムはいずれも優れた特性を示し比較例■
、■、Oフィルム以上の特性を有するものであった。又
出来た各種フィルムを収縮用途用フィルムとしてキュウ
リ、4本市販のL型シーラーにより包みを90℃の熱風
が出る市販のトンネルを1秒間通過させることにより、
タイトでシワもなくフィツトし包装仕上りが良く、収縮
後の光学特性の悪化もなく、美麗に収縮包装ができるも
のであった。又、収縮包装時の熱風温度トンネル内の滞
留時間を変化させて試験してみた結果、低温側から広い
温度、スピード範囲を良好に包装できる結果が得られた
All of the obtained films showed excellent properties and are comparative examples■
, (■), had properties superior to that of the O film. In addition, the resulting various films were used as shrinkage films for cucumbers, and the packages were wrapped using a commercially available L-shaped sealer and passed through a commercially available tunnel that emitted hot air at 90°C for 1 second.
It was a tight, wrinkle-free fit, had a good packaging finish, and had no deterioration in optical properties after shrinkage, allowing for beautiful shrink wrapping. Furthermore, as a result of testing by varying the residence time in the hot air temperature tunnel during shrink wrapping, results were obtained that allowed for good packaging over a wide temperature and speed range starting from the low temperature side.

以上に比して市販のポリプロピレン収縮フィルムは12
0℃でもほとんど収縮しなくサンプルにシワを残したま
まであり、同条件下熱風温度を上げて180℃で5秒間
通過しなくては十分な収縮ができなく、これより上げて
も、又滞留時間を長くしても、フィルムに穴がおいて破
れたり、フィルムが失透したりして、適正温度範囲が非
常に狭いものであったが、本サンプルのフィルムはフィ
ルムの光学特性は収縮後も殆んど変化がなく例えばRu
nNo、2は40%収縮後で0.7%であった。又市販
のPVC収縮フィルムは同条件ではまだ収縮不足で、シ
ワが残り、温度条件を160℃で4秒間とする必要があ
った。又収縮曲線では同じレベルでもPVCより応答性
がより早いことが判明した。フィルムの強度、伸び、加
熱収縮特性は、二軸延伸の場合は縦、ヨコともバランス
がとれた特性を示しているので以後紙、横の平均値で表
わすこととする。
Compared to the above, commercially available polypropylene shrink film has 12
Even at 0℃, there is almost no shrinkage and wrinkles remain on the sample, and under the same conditions, the hot air temperature must be raised and the hot air passed at 180℃ for 5 seconds to achieve sufficient shrinkage. Even if the film was lengthened, the film would be punctured and torn, or the film would become devitrified, and the appropriate temperature range was very narrow. There is almost no change, for example, Ru
nNo.2 was 0.7% after 40% contraction. Furthermore, the commercially available PVC shrink film still did not shrink sufficiently under the same conditions, leaving wrinkles, and it was necessary to set the temperature condition to 160° C. for 4 seconds. It was also found that the shrinkage curve showed faster response than PVC even at the same level. The strength, elongation, and heat shrinkage properties of the film are well-balanced in both the longitudinal and transverse directions when biaxially stretched, so they will be expressed as average values for the paper and transverse directions.

又、比較例としてRunNo、2の原反を用い延伸温度
92℃で延伸を試みようとした場合、延伸中の首部がく
ねり、非常に不安定ですぐパンクしてしまい、うまく延
伸することが出来なかった(比較例Run No、 1
 )。このフィルムの小片のヘイズを測定してみると6
.8%と高い値を有する透明性の悪いフィルムであった
。又収縮応力値も40g/mm2と低いものであった。
Also, as a comparative example, when trying to stretch the raw fabric with Run No. 2 at a stretching temperature of 92°C, the neck part was bent during stretching, and it was very unstable and easily punctured, so that it could not be stretched successfully. (Comparative example Run No. 1
). When I measured the haze of a small piece of this film, it was 6.
.. It was a film with poor transparency having a high value of 8%. The shrinkage stress value was also as low as 40 g/mm2.

延伸温度を135℃とした時ようやくバブルが連続的に
形成された。このフィルムはヘイズ値5.9%で低温収
縮性はなく収縮勾配4.8で、20%収縮率は89℃で
Vicat収縮率は14%であり、収縮応力は12g/
mm2で引張強度は3.5 kg / mm2同伸び4
90%でありとても高配向のフィルムといえるものでは
なかった。Run Nα3の原反を用いて85℃の延伸
温度で延伸しようとしたが延伸中のバブルが不安定でパ
ンクしやすかった。又光学特性も悪くヘイズ値8.5%
であり、引張強度も4、3 kg / mlT12と低
(低温収縮性の低いフィルムであった。
Bubbles were continuously formed only when the stretching temperature was set to 135°C. This film has a haze value of 5.9%, no low temperature shrinkage, a shrinkage slope of 4.8, a 20% shrinkage rate of 89°C, a Vicat shrinkage rate of 14%, and a shrinkage stress of 12 g/
Tensile strength in mm2 is 3.5 kg / mm2 elongation 4
It was 90% and could not be called a highly oriented film. An attempt was made to stretch the original fabric of Run Nα3 at a stretching temperature of 85° C., but the bubbles during stretching were unstable and easily punctured. Also, the optical properties are poor, with a haze value of 8.5%.
The tensile strength was also low at 4.3 kg/mlT12 (the film had low low-temperature shrinkability).

実施例1 実験例1と同様な方法で、3台の押出機、3種3層グイ
、3種5層ダイをそれぞれ用いて表3の各組成よりなる
層の組合せで原反を得た。Run No。
Example 1 In the same manner as in Experimental Example 1, original fabrics were obtained using the combinations of layers having the respective compositions shown in Table 3 using three extruders, three types of three-layer die, and three types of five-layer die. Run No.

12の原反はエネルギー線として電子線を照射した後、
その他の原反はそのまま後述のような延伸温度で冷間延
伸を行ないフィルムを得た。これらのフィルムの特性を
表4に示す。
After irradiating the original fabric No. 12 with an electron beam as an energy beam,
The other original fabrics were subjected to cold stretching as they were at the stretching temperature described below to obtain films. The properties of these films are shown in Table 4.

表   3 b2はエチレン−メチルメタアクリル酸エステル共重合
体の部分ケン化物(メチ ルメタアクリル酸エステル基含量ニ ア、 0モル%、メルトインデックス=5mp:84℃
、Vicat  : 64℃);C2はエステル−メチ
ルメタアクリル酸エステル共重合体の部分ケン化(40
% 重合体よりなるアイオマー樹脂(Na タイプ)(メタアクリル酸及び同エス テル基含量ニア、0モル%、メルトインデックス:1.
0、mp:9Q℃、 Vicat 66℃); NY+はナイロン6.66共重合体; 5EVAはエチレン55モル%の酢酸ビニルとの共重合
体(EVA)でケン化度98 %のもの * 2 ) 8Mradの電子線照射処理でC2、b2
層はそれぞれGelが45重量%、25重量% 表   4 〉 延伸する時の温度はRunNo、8.12でそれぞれ5
1.42℃でありヨコ延伸比はほぼ=3〜4倍、タテ延
伸比は2.8〜4倍でありいずれも安定に延h)  伸
することが出来た。得られたフィルムはいずれも優れた
特性、特に光学特性、強度特性にすぐれたものであった
。又、前述市販の■PVC4@PP。
Table 3 b2 shows partially saponified ethylene-methyl methacrylate copolymer (methyl methacrylate group content near, 0 mol%, melt index = 5mp: 84°C
, Vicat: 64°C); C2 is partially saponified ester-methyl methacrylate copolymer (40°C);
% Iomer resin (Na type) consisting of polymer (methacrylic acid and ester group content near, 0 mol%, melt index: 1.
0, mp: 9Q℃, Vicat 66℃); NY+ is a nylon 6.66 copolymer; 5EVA is a copolymer (EVA) of 55 mol% ethylene and vinyl acetate with a degree of saponification of 98% * 2) C2, b2 by 8 Mrad electron beam irradiation treatment
The layers each contained 45% by weight and 25% by weight of Gel.
The temperature was 1.42°C, the horizontal stretch ratio was approximately 3 to 4 times, and the vertical stretch ratio was 2.8 to 4 times, and stable stretching was possible in both cases. All of the obtained films had excellent properties, particularly excellent optical properties and strength properties. Also, the aforementioned commercially available ■PVC4@PP.

■架橋PEの各サンプルのフィルムについてそれぞれの
適する収縮温度でタテ、ヨコの平均寸法で20.40.
60%収縮後のへイス値を調べた結果oPVc1.9.
2.0.2.3%、○PPで2.8.6.5.11.0
%、■架橋でP E 2.5.4,8.6.5%と、い
ずれも大きく悪化するものが多い。
■The average vertical and horizontal dimensions of each sample film of cross-linked PE at the appropriate shrinkage temperature are 20.40.
The Heiss value after 60% contraction was found to be oPVc 1.9.
2.0.2.3%, ○PP 2.8.6.5.11.0
%, () crosslinking resulted in P E of 2.5.4% and 8.6.5%, both of which significantly deteriorated in many cases.

実施例2 実施例1と同様な方法にて次表の表5の組合せで原反を
得て、Run No、 20の延伸温度57℃で安定に
フィルムを得た。このものの特性を表6に示表   5 ここに al :酢酸ビニル基含景: 5.5モル%、メルトイ
ンデックス:0.6、結晶融点(以後mpと省略する)
:88℃、Vicat軟化点72℃のエチレン−酢酸ビ
ニル共重合体二 C2:前出 5EVA:酌工 ++− 表   6 *) 比■は市販の内包装用バリヤーシュリンクバック
でバリヤ一層は塩化ビニルデン系フィルムで約10μ多
層は16μのEVA、内層は照射EVA系で36μのフ
ィルム。
Example 2 Original fabrics were obtained using the combinations shown in Table 5 in the same manner as in Example 1, and films were stably obtained at a stretching temperature of 57° C. with Run No. 20. The properties of this product are shown in Table 6. Table 5 Here, al: Contains vinyl acetate group: 5.5 mol%, Melt index: 0.6, Crystal melting point (hereinafter abbreviated as mp)
: Ethylene-vinyl acetate copolymer 2C2 with Vicat softening point of 72°C at 88°C: 5EVA mentioned above: Chiba ++ Table 6 *) Comparison ■ is a commercially available barrier shrink back for inner packaging, and the barrier layer is vinyldene chloride-based. The film is about 10μ multi-layered with 16μ EVA, and the inner layer is irradiated EVA based film with 36μ.

RunNa2Oのサンプルは比較サンプルより光学特性
、低温収縮性、収縮応力特性、引張強度、衝撃強度、と
も優れたものであり、又バリヤー特性も優れていた。実
用テストとして3kgの加工肉を真空包装した後80℃
の温水のシャワー中に3 sec間通し、処理する事に
よりタイトにシュリンクした保存性の良い包装物が得ら
れた。
The RunNa2O sample had better optical properties, low-temperature shrinkability, shrinkage stress properties, tensile strength, and impact strength than the comparative sample, and also had better barrier properties. As a practical test, 3 kg of processed meat was vacuum packed at 80℃.
By placing the package in a hot water shower for 3 seconds, a tightly shrinkable package with good shelf life was obtained.

比較例として、al /PVDCI /a+(120/
80/200:各μ) 、C2/ at / P VD
C2/ a 1/ C2(20/ 120 / 60 
/ 160 /40:各μ)の原反を用いて100℃で
延伸を試みた。
As a comparative example, al /PVDCI /a+(120/
80/200: each μ), C2/at/PVD
C2/a 1/C2(20/120/60
/ 160 / 40: Stretching was attempted at 100°C using the original fabric of each μ).

ここに a、c2.前出 ・PVDC、:塩化ビニリデン共重合体:塩化ビニルを
10重量%共重合したもの主体; PVDC2:塩化ビニリデン共重合体ニアクリル酸を共
重合したもの しかしパンクして延伸が長時間連続せず、しかもタテ方
向に未延伸のスジ等が発生してうまくゆかなかった。又
そのフィルムも白っぽく光学特性も悪くヘイズ13%で
強度も引張強度4.5 kg / +n+n2、と低い
フィルムであった。又、85℃で延伸を試みたがバブル
のくねりが発生してすぐパンクしてしまい延伸を連続さ
せることが出来なかった。
Here a, c2. PVDC: Vinylidene chloride copolymer: 10% by weight vinyl chloride copolymer; PVDC2: Vinylidene chloride copolymer and nialic acid copolymer. Moreover, unstretched streaks and the like occurred in the vertical direction, which did not work well. Moreover, the film was whitish, had poor optical properties, had a haze of 13%, and had a low tensile strength of 4.5 kg/+n+n2. In addition, although stretching was attempted at 85° C., the bubbles began to bend and were immediately punctured, making it impossible to continue stretching.

80〜66℃までは時々パンクするがほぼ延伸をするこ
とが出来、それ以下の30〜50℃では前述のごとく最
も安定に行なうことが出来、物性値も良かった。
At temperatures from 80 to 66°C, stretching was possible although there were occasional punctures, and below that temperature, from 30 to 50°C, the stretching was most stable as described above, and the physical properties were good.

又、市販の比dのフのルム、100℃でのフィルム、R
un No、 12でのフィルムを手でもむようにして
くり返し折曲げ試験をしだ後0□バリヤー性を測定する
と、Run No、 l 2のものはほとんど悪化しな
いのに比し比O及び100℃のフィルムは2.3倍に悪
化していた。これはバリヤ一層の耐ピンホール性が本例
の冷間高延伸フィルムが特に優れていることを示す。こ
れはバリヤ一層にも充分低温で延伸がセットされるため
と思われる。
Also, commercially available film with ratio d, film at 100°C, R
After repeatedly bending the film in Run No. 12 by hand and measuring its barrier properties, the film in Run No. 12 showed almost no deterioration, while the film at R.O. and 100°C. It was 2.3 times worse. This shows that the highly cold stretched film of this example has particularly excellent pinhole resistance in the barrier layer. This seems to be because the barrier layer is also stretched at a sufficiently low temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフィルムの収縮率と加熱処理温度との関係を示
し、第2図はフィルムの収縮応力と加熱処理温度の関係
を示す。(図中、1はRun Nα3のフィルム;3は
市販の可塑化PVCシュリンクフィルム;4は市販のP
Pシュリンクフィルム;5は市販の架橋ポリエチレンシ
ュリンクフィルム;6は前述の市販のバリヤーシュリン
クフィルム)三  宅  正  夫
FIG. 1 shows the relationship between film shrinkage rate and heat treatment temperature, and FIG. 2 shows the relationship between film shrinkage stress and heat treatment temperature. (In the figure, 1 is a Run Nα3 film; 3 is a commercially available plasticized PVC shrink film; 4 is a commercially available PVC shrink film;
P shrink film; 5 is a commercially available cross-linked polyethylene shrink film; 6 is the aforementioned commercially available barrier shrink film) Masao Miyake

Claims (8)

【特許請求の範囲】[Claims] (1)3種以上の重合体層よりなる多層高延伸フィルム
において、一層が下記共重合体(A)〜(C)より選ば
れた少なくとも1種の共重合体: (A)ビニルエステル単量体とエチレンとの共重合体; (B)脂肪族不飽和カルボン酸、脂肪族不飽和カルボン
酸アルキルエステルより選ばれる単量体とエチレンとの
共重合体; (C)前記共重合体(B)から誘導されたアイオノマー
系共重合体 を主体として含み、他層がナイロン、エチレン−酢酸ビ
ニル共重合体ケン化物から選ばれる少なくとも1種の重
合体を含み、別の他の層が上記重合体(A)〜(C)よ
り選ばれた少なくとも1種の共重合体であって且つ上記
一層とは別の共重合体、結晶性ポリプロピレンから選ば
れる少なくとも1種の共重合体を含み、その引張強度が
5kg/mm^2以上であり、及び収縮勾配が2.0以
下であることを特徴とする冷間高延伸多層フィルム。
(1) In a multilayer highly stretched film consisting of three or more types of polymer layers, one layer is at least one type of copolymer selected from the following copolymers (A) to (C): (A) Vinyl ester monomer (B) A copolymer of ethylene and a monomer selected from aliphatic unsaturated carboxylic acids and aliphatic unsaturated carboxylic acid alkyl esters; (C) The above copolymer (B) ), another layer contains at least one polymer selected from nylon and saponified ethylene-vinyl acetate copolymer, and another layer contains the above polymer. At least one copolymer selected from (A) to (C), which is different from the above single layer, and at least one copolymer selected from crystalline polypropylene, and whose tensile strength A cold highly stretched multilayer film having a strength of 5 kg/mm^2 or more and a shrinkage gradient of 2.0 or less.
(2)下記共重合体(A)〜(C)より選ばれた少なく
とも1種の共重合体: (A)ビニルエステル単量体とエチレンとの共重合体; (B)脂肪族不飽和カルボン酸、脂肪族不飽和カルボン
酸・アルキルエステルより選ばれる単量体とエチレンと
の共重合体; (C)前記共重合体(B)から誘導されたアイオノマー
系共重合体 を主体として含み、他層がナイロン、エチレン−酢酸ビ
ニル共重合体ケン化物から選ばれる少なくとも1種の重
合体を含み、別の他の層が上記重合体(A)〜(C)よ
り選ばれた少なくとも1種の共重合体であって、且つ上
記一層とは別の共重合体、結晶性ポリプロピレンから選
ばれる少なくとも1種の重合体を含む多層溶融状原反を
押出し、れを液状冷媒により急冷固化せしめて多層原反
とし、得られた原反をそのまま又は80℃以下の延伸温
度で延伸を延伸開始部と加熱部とを実質上隔離すること
を目的とした整流接触ガイドを用いフィルム表面に同伴
する流体及びその境膜を周方向に少なくとも不連続的に
接触除去しながら面積延伸倍率3〜30倍に冷間延伸す
ることを特徴とする多層高延伸フィルムの製造方法。
(2) At least one copolymer selected from the following copolymers (A) to (C): (A) Copolymer of vinyl ester monomer and ethylene; (B) Aliphatic unsaturated carboxyl A copolymer of ethylene and a monomer selected from acids, aliphatic unsaturated carboxylic acids and alkyl esters; (C) Mainly containing an ionomer copolymer derived from the copolymer (B), and others. The layer contains at least one polymer selected from nylon and saponified ethylene-vinyl acetate copolymer, and the other layer contains at least one copolymer selected from the above polymers (A) to (C). A multilayer molten raw fabric containing at least one polymer selected from a copolymer and crystalline polypropylene other than the above-mentioned single layer is extruded, and then rapidly cooled and solidified with a liquid refrigerant to obtain a multilayered raw fabric. The obtained original film is stretched as it is or at a stretching temperature of 80° C. or less using a rectifying contact guide designed to substantially isolate the stretching start part and the heating part. A method for producing a multilayer highly stretched film, which comprises cold stretching to an areal stretching ratio of 3 to 30 times while contacting and removing the film at least discontinuously in the circumferential direction.
(3)多層原反を主たる重合体の結晶融点以下に加熱す
る特許請求の範囲第(2)項記載の方法。
(3) The method according to claim (2), in which the multilayer original fabric is heated to a temperature below the crystalline melting point of the main polymer.
(4)多層原反を、延伸温度20〜70℃で延伸する特
許請求の範囲第(2)項記載の方法。
(4) The method according to claim (2), wherein the multilayer original fabric is stretched at a stretching temperature of 20 to 70°C.
(5)多層原反を、主たる重合体のVicat軟化点以
下で延伸する特許請求の範囲第(2)項記載の方法。
(5) The method according to claim (2), wherein the multilayer original fabric is stretched at a temperature below the Vicat softening point of the main polymer.
(6)多層原反がチューブ状原反であり横方向の延伸倍
率が2〜7倍で延伸する特許請求の範囲第(2)項記載
の方法。
(6) The method according to claim (2), wherein the multilayer original fabric is a tubular original fabric and is stretched at a transverse stretching ratio of 2 to 7 times.
(7)延伸が面積延伸倍率7〜20倍で且つ横方向の延
伸倍率が2〜5倍である特許請求の範囲第(2)項記載
の方法。
(7) The method according to claim (2), wherein the stretching is carried out at an area stretch ratio of 7 to 20 times and a transverse direction stretch ratio of 2 to 5 times.
(8)延伸を延伸終了部で延伸開始部より少なくとも5
℃低い温度差をもうけて行なう特許請求の範囲第(2)
項記載の方法。
(8) Stretch at least 5 times more at the end of stretching than at the beginning of stretching.
Claim No. (2) which is performed by creating a temperature difference that is as low as ℃
The method described in section.
JP14543186A 1986-06-21 1986-06-21 Cold high-orientation multi-layer film and manufacture thereof Granted JPS61287720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14543186A JPS61287720A (en) 1986-06-21 1986-06-21 Cold high-orientation multi-layer film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14543186A JPS61287720A (en) 1986-06-21 1986-06-21 Cold high-orientation multi-layer film and manufacture thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15288379A Division JPS5675857A (en) 1979-11-28 1979-11-28 Cold high extending multilayer film and its manufacture

Publications (2)

Publication Number Publication Date
JPS61287720A true JPS61287720A (en) 1986-12-18
JPH0349741B2 JPH0349741B2 (en) 1991-07-30

Family

ID=15385085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14543186A Granted JPS61287720A (en) 1986-06-21 1986-06-21 Cold high-orientation multi-layer film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61287720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414032A (en) * 1987-07-08 1989-01-18 Gunze Kk Multi-layer shrink film
JPH01120339A (en) * 1987-11-05 1989-05-12 Asahi Chem Ind Co Ltd Heat shrinkable film for packing and preparation thereof
CN102794966A (en) * 2012-08-06 2012-11-28 北京康得新复合材料股份有限公司 Glue-free bidirectional stretching polypropylene film used for paper-plastic composite and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414032A (en) * 1987-07-08 1989-01-18 Gunze Kk Multi-layer shrink film
JPH01120339A (en) * 1987-11-05 1989-05-12 Asahi Chem Ind Co Ltd Heat shrinkable film for packing and preparation thereof
JPH0533896B2 (en) * 1987-11-05 1993-05-20 Asahi Chemical Ind
CN102794966A (en) * 2012-08-06 2012-11-28 北京康得新复合材料股份有限公司 Glue-free bidirectional stretching polypropylene film used for paper-plastic composite and preparation method thereof

Also Published As

Publication number Publication date
JPH0349741B2 (en) 1991-07-30

Similar Documents

Publication Publication Date Title
US4469753A (en) Cold drawn high-orientation multilayered film and process for manufacture of said film
JP3118473B2 (en) Blends of polypropylene and ethylene copolymers and films made from the blends
US4619859A (en) Highly-oriented stretchable multilayer film and process for producing the same
US4615922A (en) Oriented polymeric film
US4557780A (en) Method of making an oriented polymeric film
JPH058356A (en) Shrinkable/stretchable multilayered film
FR2525956A1 (en) COLD STRETCH FILM AND METHOD OF MANUFACTURING THE SAME
JPH0380627B2 (en)
JPS63224945A (en) Thermoplastic multilayer barriering packaging film and bags manufactured from said film
JPS6040988B2 (en) Low temperature heat shrinkable multilayer barrier film
JPS6410182B2 (en)
JPH0147311B2 (en)
JPS6233946B2 (en)
JPS58175635A (en) Highly stretched multilayered film and manufacture thereof
JP3071244B2 (en) High transparency and high gloss oriented film
JPS61287720A (en) Cold high-orientation multi-layer film and manufacture thereof
JPS58102762A (en) Low-temperature heat-shrinkable multilayer barrier film and its manufacture
JPS6227981B2 (en)
JPH0441902B2 (en)
JPH11105222A (en) Heat-shrinkable multilayered film
JPH0546304B2 (en)
JPS6142620B2 (en)
JPS61287721A (en) Cold high-orientation multi-layer film and manufacture thereof
JPH0341347B2 (en)
JPS6141308B2 (en)