JPS61287721A - Cold high-orientation multi-layer film and manufacture thereof - Google Patents
Cold high-orientation multi-layer film and manufacture thereofInfo
- Publication number
- JPS61287721A JPS61287721A JP14543286A JP14543286A JPS61287721A JP S61287721 A JPS61287721 A JP S61287721A JP 14543286 A JP14543286 A JP 14543286A JP 14543286 A JP14543286 A JP 14543286A JP S61287721 A JPS61287721 A JP S61287721A
- Authority
- JP
- Japan
- Prior art keywords
- copolymer
- film
- stretching
- temperature
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、主として、包装材料の用途に供する多層系の
高度延伸フィルム及びその製造に関する。DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates primarily to multilayer highly oriented films for use as packaging materials and their production.
具体的には、エチレン系共重合体を主成分とする樹脂を
含む層を少なくとも1層有し、他に、塩化ビニリデンを
主体とする共重合体を含む層が少なくとも1層と、低密
度ポリエチレン、ポリプロピレン、ナイロン、又はエチ
レン−酢酸ビニル共重合体ケン化物から選ばれる層が少
なくとも1層とからなる少なくとも3層を有し多層の高
度に延伸され、高度の配向が付与された高強度の冷間高
配向多層フィルム及び特定の低温で高延伸することによ
りか−る多層フィルムを製造する方法に関するものであ
る。Specifically, it has at least one layer containing a resin whose main component is an ethylene copolymer, at least one other layer containing a copolymer whose main component is vinylidene chloride, and a low-density polyethylene , polypropylene, nylon, or a saponified ethylene-vinyl acetate copolymer. The present invention relates to a highly oriented multilayer film and a method for producing such a multilayer film by highly stretching at a specific low temperature.
従来技術
フィルムによる包装方法には、それぞれフィルムの特性
を生かした各種の包装方法、例えば、袋状にシールする
方法、フィルムをツイストすることによる方法、熱を加
えることによる収縮方法、サランラップ(旭化成工業株
式会社製品名)に代表される密着ラップ法、ストレッチ
ラップ法、スキンパック法等、数多く・の方法が用いら
れ、それぞれに独自の包装、特性が要求され、一つの方
法ごとに、フィルムの基材、組成形状、特性等を適合さ
せたものを選び、包装されているのが現状である。Conventional packaging methods using film include various packaging methods that take advantage of the characteristics of the film, such as sealing into a bag, twisting the film, shrinking by applying heat, and Saran wrap (Asahi Kasei Corporation). A large number of methods are used, such as the tight wrap method, stretch wrap method, and skin pack method represented by Co., Ltd. (product name), and each method requires its own packaging and characteristics. Currently, products are selected and packaged with appropriate material, composition, shape, characteristics, etc.
それらの中で収縮方法とは延伸され配向がセットされた
フィルムの熱収縮性を利用し、予め被包装物をゆるく予
備包装例えばシールして、被包装物を囲った後、フィル
ムを熱風、赤外線、熱水、その他、熱媒体により加熱収
縮されて内容物をタイトに密着させる方法である。その
特徴は、包装物の外観が美しく商品価値を高め、内容物
を衛生的に保ちながら視覚及び触覚で品質を確認し得る
こと、異形物でも、複数個の商品でも1包みでタイトに
固定及び包装でき、振動衝撃などに対する保護性能がす
ぐれていること、等である。又、今スーパーマーケット
などに盛んに用いられているストレッチ包装方法に比較
して、包装スピードを上げること等ができる。Among them, the shrink method utilizes the heat-shrinkability of a film that has been stretched and set in orientation, and after loosely pre-wrapping, for example sealing, the object to be packaged and enclosing the object, the film is exposed to hot air or infrared rays. This method involves heating and shrinking the contents using hot water or other heat medium to tightly adhere the contents. Its features are that the appearance of the package is beautiful and increases the product value, that the quality of the contents can be confirmed visually and tactile while keeping the contents sanitary, and that even irregularly shaped items or multiple items can be tightly fixed in one package. It can be packaged and has excellent protection against vibrations and shocks. Furthermore, compared to the stretch wrapping method currently widely used in supermarkets and the like, the wrapping speed can be increased.
ストレッチ包装では包装できないような異形物、トレー
等の容器なしの包装もでき得る。又、よりタイトに包装
でき得る等の特徴があるが、フィルムが収縮するまで充
分加熱しなければならないのが欠点となっている。It is also possible to package irregularly shaped items that cannot be wrapped with stretch wrapping, such as trays, etc. without containers. It also has the advantage of being able to be packaged more tightly, but has the disadvantage of having to be heated sufficiently until the film shrinks.
上記欠点さえ解決すればストレッチ包装に比しフィルム
の使用面積、フィルムの省内厚化、包装スピード等、よ
りメリットのある包装方法とすることができる。If the above-mentioned drawbacks can be solved, it is possible to create a packaging method that has more advantages than stretch packaging in terms of the area of use of the film, reduced internal thickness of the film, packaging speed, etc.
発明の解決しようとする問題点
本発明はその用途を特に限定するものではないが、その
好ましい一用途例として以後収縮包装について説明する
。Problems to be Solved by the Invention Although the present invention does not particularly limit its use, shrink wrapping will be described below as a preferred example of its use.
高級収縮包装用フィルムとして現在最も多く使用されて
いるのは、可塑化ポリ塩化ビニル(以後PVCと言う)
の延伸フィルムである。これは比較的低温で高率の熱収
縮を起こし、広い加熱温度範囲で良好な収縮包装ができ
る大きな利点を有するためで、反面ヒートシール性、防
湿性に劣り、可塑剤による衛生上の問題、同経時劣化の
問題、熱線による溶断時、塩素系ガス等の有毒ガスを発
生し、又使用済みのフィルムを焼却する際の腐食性の有
毒ガス、又包装物を低温で保存する場合、寒冷地で取扱
う場合、耐寒性に劣る為、フィルムが硬くなり、脆くな
り、破れやすくなったりする等に問題を有する。Plasticized polyvinyl chloride (hereinafter referred to as PVC) is currently the most commonly used high-grade shrink wrapping film.
It is a stretched film. This is because it causes a high rate of heat shrinkage at relatively low temperatures and has the great advantage of being able to produce good shrink packaging over a wide heating temperature range.On the other hand, it has poor heat sealability and moisture resistance, and there are hygiene problems caused by plasticizers. The problem of deterioration over time, the generation of toxic gas such as chlorine gas when melted by heat rays, corrosive toxic gas when incinerating used film, and the problem of storing packages at low temperatures in cold regions. When handled in a cold environment, there are problems such as the film becoming hard, brittle, and easily torn due to its poor cold resistance.
そこで近年、ポリプロピレン系(以後PPと言う)の収
縮包装用フィルムが注目されてきたが収縮性がPVCフ
ィルムに比して劣るのが欠点である。PP系の延伸フィ
ルムは機械的性質、防湿性、ヒートシール性などの点で
優れており収縮包装フィルムとして優れたフィルムであ
る。Therefore, in recent years, polypropylene-based (hereinafter referred to as PP) films for shrink wrapping have attracted attention, but their drawback is that their shrinkability is inferior to that of PVC films. PP-based stretched films are excellent in terms of mechanical properties, moisture resistance, heat sealability, etc., and are excellent as shrink wrapping films.
又PVCに比べて、原料コスト、比重が小さい点に有利
である。しかしPPは軟化温度が高い結晶性高分子であ
り、且つ従来の延伸フィルムより高い加熱収縮温度を有
し、100℃前後の低温では、収縮率が小さい。その為
、収縮包装工程で高温に加熱しなければならなく、又加
熱温度の許容範囲が狭く、収縮率の温度依存度が急な為
、包装時の部分的な加熱むらが著しい収縮むらを生じて
“しわ”や“あばた”など実用上好ましくない欠点を生
じやすく、又これを防ぐ為充分加熱することは被包装物
の過加熱、フィルムの失透、溶融による穴開き、性能劣
化、シール部、エヤー抜き穴部の破れ等を発生する等の
大きな欠点になっている。又包装経時後応力がぬけて被
包装物がゆるみやすく、又包装後のフィルムは硬く、も
ろくなる欠点があった。Also, compared to PVC, it has advantages in terms of raw material cost and low specific gravity. However, PP is a crystalline polymer with a high softening temperature and a higher heating shrinkage temperature than conventional stretched films, and its shrinkage rate is small at low temperatures of around 100°C. Therefore, it is necessary to heat the product to a high temperature in the shrink packaging process, and the permissible range of heating temperature is narrow, and the shrinkage rate has a steep temperature dependence, so uneven heating in some areas during packaging can cause significant uneven shrinkage. It is easy to cause practical defects such as "wrinkles" and "pockmarks", and in order to prevent this, sufficient heating may cause overheating of the packaged material, devitrification of the film, holes due to melting, performance deterioration, and sealing parts. This has resulted in major drawbacks such as tearing of the air vent hole. Moreover, after packaging, the stress is released and the packaged item tends to loosen, and the film after packaging becomes hard and brittle.
又、従来のポリエチレン系のフィルムは、今まで分子に
充分な延伸配向を付与することができなく、従って、得
られたフィルムは熱収縮率特に熱収縮応力が小さく、又
収縮温度が高く、フィルムの強度、光学特性も悪く、包
装後の被包装物の結束力も低く、特殊な用途に厚みをよ
り厚くして、用いられている。In addition, conventional polyethylene films have not been able to impart sufficient stretching orientation to the molecules, and therefore, the obtained films have a low heat shrinkage rate, particularly a low heat shrinkage stress, and a high shrinkage temperature, making it difficult for the film to Its strength and optical properties are poor, and the cohesiveness of the packaged items after packaging is also low, so it is used in a thicker form for special purposes.
又ポリエチレン系のフィルムでも高エネルギー線を用い
て、架橋反応を分子に充分化せしめて高温で延伸したフ
ィルムは熱収縮率、熱収縮応力が大きく通常のポリエチ
レンに比して、透明性、光沢などの光学特性、耐熱性等
、諸特性に非常に優れた諸特性を有するが、しかし、高
温度領域で収縮するため劣化しやすく(特に光学特性が
大巾に)しかも温度に対し急激に収縮する等の加熱収縮
特性、高度の架橋のためヒートシールされにくい、引裂
抵抗性に劣り破れやすい等、又電熱線によるカットがで
き難い等のため、包装スピードが劣ってしまう等の欠点
を有する。以上のように収縮包装する場合の重要な特性
の一つとして低温で充分包装できることが望まれ特に生
鮮食品物を包装する時、等に必要とされる。In addition, even in polyethylene films, films that are stretched at high temperatures using high-energy rays to sufficiently cross-link the molecules have a higher heat shrinkage rate and heat shrinkage stress, and are less transparent and glossy than regular polyethylene. It has very excellent properties such as optical properties and heat resistance, but it contracts in high temperature ranges and is prone to deterioration (particularly when its optical properties are large), and it also shrinks rapidly with temperature. It has disadvantages such as poor heat-shrinking properties, high degree of crosslinking that makes it difficult to heat seal, poor tear resistance and easy tearing, and difficulty in cutting with heating wire, resulting in poor packaging speed. As mentioned above, one of the important characteristics of shrink wrapping is that it can be wrapped sufficiently at low temperatures, which is particularly required when packaging fresh foods.
以上のように、フィルムの収縮温度(実用的には20%
以上収縮することが必要)が高いか、又はそれが温度に
より急激に変化率が大きく収縮する場合は、特に包装品
の仕上りを良くするためには重合体の融点をはるかに越
える温度で、しかも非常に狭い条件内で包装しなければ
ならなく、フィルムの特性の低下の度合いが大きく問題
を有するものであった。As mentioned above, the shrinkage temperature of the film (practically 20%
If the shrinkage is high, or if the shrinkage rate is large and rapid depending on the temperature, it is necessary to use a temperature that far exceeds the melting point of the polymer, especially in order to improve the finish of the packaged product. The film had to be packaged under very narrow conditions, and the film properties were severely degraded, causing problems.
又、一方延伸フィルムの製法には、ポリプロピレンの場
合は一度押出し機、グイより溶融押出し急冷したチュー
ブ状原反を、150°〜160℃の高温に再加熱し、内
部に空気を導入することにより延伸する方法、又低密度
ポリエチレンの場合は、従来同様に二軸延伸し高度の延
伸配向をセットしようとすることは、加工時、破れてし
まいやすく、技術的に非常に困難なこととされている。On the other hand, in the case of polypropylene, the stretched film is produced by melt-extruding and quenching the tube-shaped raw material using an extruder, then reheating it to a high temperature of 150° to 160°C and introducing air inside. In the case of low-density polyethylene, the conventional method of biaxial stretching to set a high degree of stretching orientation is considered to be technically extremely difficult as it tends to tear during processing. There is.
そのために、インフレーション法によす例えば180〜
220℃の温度にて押出されてから適当に空気により冷
却させながら、即膨らまして所定のサイズのフィルムと
する方法が一般的である。For this purpose, for example, 180~
A common method is to extrude at a temperature of 220° C., then immediately expand it while cooling with air to form a film of a predetermined size.
この方法はきわめて安価に容易にフィルムを製造し得る
特徴があるが、分子間の流動が起こりやす(、延伸によ
って満足な分子配向をセットすることができない。又、
光学特性も大巾に劣る。従って熱収縮率、熱収縮応力が
小さく、高温側にあり、特殊な用途にフィルム厚みを増
加させてしか用いることができないものである。そのた
めに低密度ポリエチレンを成型した後、適当な条件下で
高エネルギー放射線を照射して部分的に架橋反応を生ぜ
しめてから、融点を越える高温(例えば140℃)に再
加熱し延伸することにより、分子間の流動を防ぎ充分な
分子配向をセットする方法等があるが低温収縮性の度合
は低く、裂けやすいフィルムとなってしまう。This method has the feature of being able to easily produce films at a very low cost, but it tends to cause intermolecular flow (and it is not possible to set a satisfactory molecular orientation by stretching).
The optical properties are also inferior to those of large cloth. Therefore, the heat shrinkage rate and heat shrinkage stress are low and on the high temperature side, and it can only be used for special purposes by increasing the film thickness. For this purpose, after molding low-density polyethylene, it is irradiated with high-energy radiation under appropriate conditions to cause a partial crosslinking reaction, and then reheated to a high temperature exceeding its melting point (for example, 140°C) and stretched. Although there are methods of preventing intermolecular flow and setting sufficient molecular orientation, the degree of low-temperature shrinkability is low and the film tends to tear easily.
又、最近、これらのフィルムの欠点を改良すべく、いく
つかの試みが、なされている。例えば特公昭45−26
99号公報ではエチレン−酢酸ビニル共重合体とアイオ
ノマー樹脂との混合組成を用い、例えば100℃で延伸
することにより、加熱時流動特性を改良して、延伸フィ
ルムを得る方法がある。この方法では、強度も本発明の
フィルムより低いレベル(引張強度4.2 kg/ m
m2)で、光学特性に劣るものとなる。又収縮後の光学
特性は大きく悪化する傾向にある。又特公昭46−40
75号公報では特定のエチレン−プロピレン共重合体を
用いて延伸する方法等があるが、PvC系フィルムに比
して、光学特性、加熱収縮特性、強度等、又加工性とも
まだ充分ではない。Also, recently, several attempts have been made to improve the shortcomings of these films. For example, special public service
No. 99 discloses a method of obtaining a stretched film by using a mixed composition of an ethylene-vinyl acetate copolymer and an ionomer resin and stretching the film at, for example, 100° C. to improve flow characteristics upon heating. With this method, the strength was also lower than that of the film of the present invention (tensile strength 4.2 kg/m
m2), the optical properties are inferior. Furthermore, the optical properties after shrinkage tend to deteriorate significantly. Also special public service 1977-40
No. 75 discloses a method of stretching using a specific ethylene-propylene copolymer, but the optical properties, heat shrinkage properties, strength, etc., and processability are still insufficient compared to PvC films.
又、新しい包装用フィルムとして、各種多様の複合の多
層系フィルムが知られている。Furthermore, various types of composite multilayer films are known as new packaging films.
最近は、要求特性の高度化により、ますます複合化の方
向になる。例えば、無延伸に近いフィルム又は延伸した
フィルムに他樹脂を溶融ラミネートしたもの等がある。Recently, due to the increasing sophistication of required characteristics, the trend is towards more and more complexities. For example, there are films that are almost unstretched or films that are stretched and melt-laminated with other resins.
例えば、無延伸のキャスト法によるポリプロピレン(C
,PPと言われている)又は延伸したポリプロピレン(
0,PP )に他樹脂を熔融ラミネートしてヒートシー
ル性を改良したフィルム又は塩化ビニリデン系ラテック
スをコーティングして、バリヤー性能を付与したフィル
ム(Kコートフィルムと言われている)等、用途ごとに
多種多様なフィルム及び組合せが選ばれている。For example, polypropylene (C
, PP) or stretched polypropylene (
0, PP) film with other resins melt-laminated to improve heat-sealability, or film coated with vinylidene chloride latex to provide barrier properties (referred to as K-coated film), depending on the application. A wide variety of films and combinations have been selected.
又、一方、多種類の樹脂を各々別々の押出機でシ容融し
て、多層ダイを用いて、その内部で合流、融合して押出
し冷却してフィルム及びシートする共押出フィルムが一
般に知られている。On the other hand, coextrusion films are generally known in which various resins are melted in separate extruders, merged and fused inside the die, extruded, and cooled to form a film or sheet. ing.
しかし、いずれも多層を構成する各層とも、高度に延伸
されたフィルムを得るには、各樹脂ごとに最適の押出条
件、延伸条件等が異なり、製造時に偏肉、タテすじ、パ
ンク、破れ、各層の剥離、界面荒れによる白化などの不
良現象が発生し、又、目的の特性のフィルムとは異なっ
てしまい、これらの欠点解決は令名非常に困難なことと
されている。However, in order to obtain a highly stretched film for each of the layers that make up the multilayer, the optimal extrusion conditions, stretching conditions, etc. are different for each resin. Defects such as peeling and whitening due to interface roughness occur, and the desired characteristics of the film differ, making it extremely difficult to resolve these defects.
問題点を解決するための手段
本発明者等はこれらのフィルム及び製法の欠点を更に改
良すべく研究を進めたところ、加熱収縮特性、特に低温
での加熱収縮率、加熱収縮応力、及び加熱収縮特性の温
度依存度の広さ、光学特性、フィルムのシール性、強度
等を同時に大巾に改良した優れたフィルム及び、それ等
の安価で加工性の優れた特定の製造方法を見いだした。Means for Solving the Problems The inventors conducted research to further improve the shortcomings of these films and manufacturing methods, and found that the heat shrinkage properties, particularly the heat shrinkage rate at low temperatures, heat shrinkage stress, and heat shrinkage We have discovered an excellent film that simultaneously greatly improves the temperature dependence of properties, optical properties, film sealability, strength, etc., as well as a specific method for producing the same at low cost and with excellent processability.
すなわち、本発明は、3種以上の重合体層よりなる多層
高延伸フィルムにおいて、一層が下記共重合体(A)〜
(C)より選ばれた少なくとも1種の共重合体:
(A) ビニルエステル単量体とエチレンとの共重合
体;
(B) 脂肪族不飽和カルボン酸、脂肪族不飽和カル
ボン酸アルキルエステルより選ばれる単量体とエチレン
との共重合体;
(C) 前記共重合体(B)から誘導されたアイオノ
マー系共重合体;
を主体として含み、他層は塩化ビニリデンを主体とする
共重合体を含み、別の他層が上記共重合体(A)〜(C
)より選ばれた少なくとも1種の共重合体であって且つ
上記一層とは別の共重合体、ナイロン、エチレン−酢酸
ビニル共重合体ケン化物、低密度ポリエチレン、結晶性
ポリプロピレンから選ばれる少なくとも1種の重合体を
含み、その引張強度が5kg/++++n2以上であり
、及び収縮勾配が2.0以下であることを特徴とする冷
間高延伸多層フィルムを提供する。また、その製法に関
するものである。That is, the present invention provides a multilayer highly stretched film comprising three or more types of polymer layers, in which one layer comprises the following copolymers (A) to
At least one copolymer selected from (C): (A) copolymer of vinyl ester monomer and ethylene; (B) aliphatic unsaturated carboxylic acid, aliphatic unsaturated carboxylic acid alkyl ester A copolymer of a selected monomer and ethylene; (C) an ionomer copolymer derived from the copolymer (B); the other layer is a copolymer mainly composed of vinylidene chloride. , and another layer contains the above copolymers (A) to (C
) at least one copolymer selected from the group consisting of at least one copolymer selected from the group consisting of a copolymer other than the above single layer, nylon, saponified ethylene-vinyl acetate copolymer, low-density polyethylene, and crystalline polypropylene. The present invention provides a cold highly stretched multilayer film containing a variety of polymers, having a tensile strength of 5 kg/++++n2 or more, and a shrinkage slope of 2.0 or less. It also relates to its manufacturing method.
本発明の複合フィルムは、上記層を設け、特定の条件下
で冷間延伸することにより、令名にない高度な延伸配向
と優れた性質を、上記レジンの組合せ層間又は他種レジ
ンによる層間との相乗効果により発揮させ得る点に特徴
がある。The composite film of the present invention has the above-mentioned layers and is cold-stretched under specific conditions, thereby achieving a high degree of stretch orientation and excellent properties that are not found in other brands. It is characterized by the fact that it can be exerted by the synergistic effect of the two.
該共重合体の内、異種同志、又それ以外の他種レジンと
組合わせることにより、それら単体のレジンによる延伸
条件を越えた、つまりそれら単独では達成することの出
来ない条件下で、例えばより低温の条件下で、非常に安
定に、特に高度の延伸配向が各層均一に付与され、強度
、透明性、その他諸特性に特に優れたフィルムが得られ
る。By combining the copolymers with different types of copolymers or with other types of resins, stretching conditions exceeding those of the single resins, that is, conditions that cannot be achieved alone, can be achieved, e.g. Under low-temperature conditions, a particularly high degree of stretch orientation is uniformly imparted to each layer in a very stable manner, and a film with particularly excellent strength, transparency, and other properties can be obtained.
本発明のフィルムは、各種包装用フィルムとして、特に
限定はしないが、収縮性フィルムとしても、良好な性質
を有し、特に光学特性、強度、ヒートシール強度、ガス
バリヤ−特性に優れた、低温収縮特性、収縮応答性(ス
ピード)等に優れたフィルムとすることが出来る。The film of the present invention has good properties as a shrinkable film, although it is not particularly limited, as a variety of packaging films. In particular, it has excellent optical properties, strength, heat seal strength, and gas barrier properties, and is shrinkable at low temperatures. A film with excellent characteristics, shrinkage response (speed), etc. can be obtained.
本発明の高延伸フィルムは、前記のそれぞれの重合体を
、少なくとも3層含む多層グイ等により、例えばチュー
ブ状に押出し、この押出し成型物を例えば液状冷媒等に
より急冷固化した後、必要により加熱して、80℃以下
の延伸温度で面積延伸倍率3〜30倍に冷間延伸するこ
とにより製造することができる。The highly stretched film of the present invention is produced by extruding each of the above-mentioned polymers into a tube shape, for example, using a multilayer gouer containing at least three layers, and then rapidly cooling and solidifying the extruded product using, for example, a liquid refrigerant, and then heating it if necessary. It can be produced by cold stretching at a stretching temperature of 80° C. or lower and an area stretching ratio of 3 to 30 times.
本発明に用いることのできる共重合体の一つ(A)は、
ビニルエステル単量体とエチレンの共重合体である。該
単量体の含量は、好ましくは3〜13モル%である。こ
の共重合体の代表例は、エチレン−酢酸ビニル共重合体
であり、特に酢酸ビニル含量が3.5〜12モル%でメ
ルトインデックス0.2〜6であるものが好ましい。更
に好ましくは、酢酸ビニル含量が4.0〜11モル%で
、メルトインデックスが0.2〜4である。One of the copolymers (A) that can be used in the present invention is
It is a copolymer of vinyl ester monomer and ethylene. The content of the monomer is preferably 3 to 13 mol%. A typical example of this copolymer is an ethylene-vinyl acetate copolymer, and particularly preferred is one having a vinyl acetate content of 3.5 to 12 mol % and a melt index of 0.2 to 6. More preferably, the vinyl acetate content is 4.0 to 11 mol% and the melt index is 0.2 to 4.
他の共重合体(B)は、脂肪族不飽和カルボン酸及び/
又は該カルボン酸アルキルエステル等の単量体とエチレ
ンとの共重合体である。該単量体の含量は、同様に、3
〜13モル%、好ましくは3〜12モル%であり、更に
好ましくは4.0〜11モル%である。これ等にはアク
リル酸、アクリル酸エステノペメクアクリル酸、メタア
クリル酸エステル等よりなる群から選ばれた少なくとも
1種の単量体とエチレンとの共重合体がある。Other copolymers (B) include aliphatic unsaturated carboxylic acids and/or
Or it is a copolymer of a monomer such as the carboxylic acid alkyl ester and ethylene. The content of the monomer is similarly 3
It is 13 mol% to 13 mol%, preferably 3 to 12 mol%, and more preferably 4.0 to 11 mol%. These include copolymers of ethylene and at least one monomer selected from the group consisting of acrylic acid, esters of acrylic acid, esters of acrylic acid, esters of methacrylic acid, and the like.
共重合体(C)とは、上述のエチレン−メタアクリル酸
共重合体、エチレン−アクリル酸共重合体、エチレン−
メタアクリル酸エステル共重合体及びエチレン−アクリ
ル酸エステル共重合体等の一部分以上ケン化した重合体
より選ばれる共重合体の少なくとも一部を、例えばNa
” 、Zn”、Mg”、他等の金属性イオンによりイオ
ン結合化せしめたものである。この内用途により好まし
いものは、エチレン−メタアクリル酸エステノペエチレ
ンーアクリル酸エステル共重合体の部分ケン化物の少な
くとも1部分をイオン結合化したアイオノマーである。The copolymer (C) refers to the above-mentioned ethylene-methacrylic acid copolymer, ethylene-acrylic acid copolymer, ethylene-
At least a part of the copolymer selected from partially or more saponified polymers such as methacrylic ester copolymer and ethylene-acrylic ester copolymer is
", Zn", Mg", etc. are ionically bonded with metallic ions such as ", Zn", Mg", etc. Of these, the most preferable ones are ethylene-methacrylic acid ester copolymer, ethylene-acrylic ester copolymer. It is an ionomer in which at least a portion of a saponified substance is ionically bonded.
本発明では該共重合体(A)〜(C)から選ばれる任意
の混合体を用いることもできる。In the present invention, any mixture selected from the copolymers (A) to (C) can also be used.
上記のエチレン以外の単量体の含量が3モル%以下の共
重合体では冷間延伸性が良くなく、相乗効果が期特出来
難くなり、延伸中にパンクしやすくなったりする。又、
表層の場合はシール性、光学特性、内層の場合は強度、
層間接着性等に問題を有するようになる。反対に、13
モル%以上では、共重合体(A)、(B)の場合特にフ
ィルムの弾性率が低下し、耐熱性が低下する傾向になる
。A copolymer containing 3 mol% or less of a monomer other than ethylene does not have good cold stretchability, makes it difficult to achieve a synergistic effect, and tends to be punctured during stretching. or,
For the surface layer, sealability, optical properties, for the inner layer, strength,
Problems arise in interlayer adhesion and the like. On the contrary, 13
If the amount exceeds mol%, the elastic modulus of the film tends to decrease, particularly in the case of copolymers (A) and (B), and the heat resistance tends to decrease.
又、表層の場合フィルムの面どおしがブロッキングする
傾向がある。更に又、ゴム的性質が強くなり冷間延伸が
セットされに<<、常温で配向及び寸法が変化しやすい
ので、強度的にも劣ってくる等の傾向を示すため、多層
における相乗効果も低下する。In addition, in the case of the surface layer, there is a tendency for blocking between the surfaces of the film. Furthermore, as the rubber properties become stronger and cold stretching is set, the orientation and dimensions tend to change at room temperature, which tends to result in poor strength, and the synergistic effect in multilayers also decreases. do.
共重合体(C)の場合はゴム的性質に関し上記の限りで
はないが、やはり延伸性が低下する。共重合体(C)の
内で部分エステル結合を有したアイオノマー樹脂は延伸
性が良く、表層とした場合も柔軟性を有していて用途に
より好ましい場合がある。In the case of the copolymer (C), although the rubber properties are not limited to those mentioned above, the stretchability is still reduced. Among copolymers (C), ionomer resins having partial ester bonds have good stretchability and have flexibility even when used as a surface layer, and may be preferable depending on the intended use.
又、本発明では前述の重合体組成物に他に適当な重合体
を混合してもよい。その時該共重合体は好ましくは50
重量%以上、より好ましくは60重量%以上更に好まし
くは70重量%以上である。Further, in the present invention, other suitable polymers may be mixed with the above-mentioned polymer composition. The copolymer then preferably has a
It is at least 60% by weight, more preferably at least 60% by weight, and even more preferably at least 70% by weight.
例えば、該共重合体(C)にナイロン系樹脂等、例えば
、ナイロン6−66系共重合体等を混合して用いてもよ
い。又、他の適当な樹脂で、冷間延伸性を阻害しない種
類のものであれば用いることができる。混合して用いる
場合は冷間延伸の特徴として、相溶性のよい種類のもの
は勿論、やや悪い種類のものでも延伸時に両者が相乗的
に延伸され、緒特性の低下(特に光学特性の低下、更に
収縮後の光学特性の低下)が少ない場合が多いばかりか
、逆に特性のよい点が相乗的に発揮される場合が多いの
は驚くべきことである。この関係は延伸の温度が上昇す
る程急速になくなり、逆に悪い点が発現されるようにな
る。すなわち、本発明の特定の延伸条件下つまり80℃
以下(例えば軟化点以下の35℃)の温度で低温延伸す
れば優れた特性のフィルムが得られる。For example, the copolymer (C) may be mixed with a nylon resin or the like, such as a nylon 6-66 copolymer. Further, other suitable resins may be used as long as they do not inhibit cold stretchability. When used as a mixture, cold stretching is characterized by the fact that not only those with good compatibility but also those with slightly poor compatibility are stretched synergistically during stretching, resulting in a decrease in optical properties (in particular, a decrease in optical properties). Furthermore, it is surprising that not only is there often little decrease in optical properties (after shrinkage), but on the contrary, good properties are often exhibited synergistically. This relationship disappears more rapidly as the stretching temperature increases, and on the contrary, bad points begin to appear. That is, under the specific stretching conditions of the present invention, that is, 80°C
A film with excellent properties can be obtained by low-temperature stretching at a temperature below (for example, 35° C. below the softening point).
本発明では、前述共重合体、又は共重合体を主体とする
層を有した多層原反に高エネルギー線を照射し該共重合
体が沸騰キシレン不溶ゲル0〜70重量%、メルトイン
デックス2以下に処理した後、冷間延伸してもよい。こ
の場合冷間延伸性は改良される場合があり、又緒特性特
に耐熱性等が向上し用途により更に好ましくなることが
ある。In the present invention, the above copolymer or a multilayer original fabric having a layer mainly composed of the copolymer is irradiated with high energy rays, and the copolymer is boiled as a xylene-insoluble gel of 0 to 70% by weight, with a melt index of 2 or less. After the treatment, cold stretching may be performed. In this case, the cold stretchability may be improved, and the web properties, particularly heat resistance, etc. may be improved, making it more desirable depending on the application.
この好ましい範囲は該不溶ゲル0.5〜50重量%、メ
ルトインデックス0.5以下である。更に好ましくは、
ゲル3〜30重量%、メルトインデックス0.07以下
である。不溶ゲルが上記の量よりも多いと成型品の伸び
、強度の低下、劣化が起こり特にフィルムとした場合の
ヒートシール特性の悪化、例えばシールされなくなる、
熱線により切断出来なくなる、破れやすくなる等の問題
を有するようになり、場合によって上記の程度が好まし
い。The preferred range is 0.5 to 50% by weight of the insoluble gel and a melt index of 0.5 or less. More preferably,
The gel is 3 to 30% by weight, and the melt index is 0.07 or less. If the amount of insoluble gel is more than the above amount, the molded product will elongate, its strength will decrease, and it will deteriorate, especially when it is made into a film, the heat sealing properties will deteriorate, for example, it will not be sealed.
This results in problems such as the inability to cut with hot wire and the tendency to tear, so depending on the case, the above-mentioned degree is preferable.
本発明の多層フィルムにおいて、上記共重合体同志の異
種レジン間で多層を構成する場合は必要な要件により層
構成を決定すれば良いが、その内でも各共重合体(A)
、(B)のグループに対しくC)のグループを多層とし
て組合わせる場合、特に共重合体(C)を表層にした時
に好ましい場合が多い。それは共重合体(C)は一般に
イオン結合のために硬い表層を形成する。他に、シール
性、光学特性に右いてもより適しているからである。次
に共重合体を含む層以外の他種レジンよりなる層と組合
わせる他層のレジンの例としては、ポリ塩化ビニリデン
を主体とした重合体(PDCと略する)、を含む層が少
なくとも1層と、及び又はナイロン(Nyと略する)、
結晶性ポリプロピレン(PPと略する)、エチレン−酢
酸ビニル共重合体ケン化重合体(SEVAと略する)、
又は他の混合重合体(例えば、結晶性ポリブテン−1)
等から選ばれる少なくとも1層である。特にPDCを中
間層とした場合バリヤー性、同耐ピンホール性が本発明
より高温度での延伸で得たものの場合に比し改良させう
る事が判明した。各層の厚み構成としての該共重合体層
の比率は、特に限定しなく下限は、例えば共重合体(C
)を表層にした場合、他層として(A)、(B)等を配
した場合又は他に冷間延伸性の良い樹脂を用いた場合に
は一般に10%以上である該共重合体層同志で多層とす
る場合は、その限りではないが、該共重合体を含む層以
外の他の層を含む場合はその該共重合体層の全層に対す
る比率は好ましくは少なくとも30%以上、より好まし
くは、少なくとも50%以上の厚みである層の組合せ方
は3層構造以上の場合が考えられるが好ましくはそれ以
上がよい。之等は例えば(該共重合体(A)、(B)、
(C)を単にASB、Cと略すると)5層の場合は、C
/B/PVDC/B/C,C/A/PDC/A/C,A
/B/PVDC/B/ASC/PB−1/PVDC/P
B−1/C,PP/PB/PDC/B/C5Ny /C
/PDC/A/C,等がある。In the multilayer film of the present invention, when forming a multilayer between different resins of the above-mentioned copolymers, the layer structure may be determined depending on the necessary requirements, but among them, each copolymer (A)
, when group C) is combined with group C) as a multilayer, it is often preferable to use copolymer (C) as the surface layer. The copolymer (C) generally forms a hard surface layer due to ionic bonds. This is also because it is more suitable in terms of sealability and optical properties. Next, as an example of a resin layer that is combined with a layer made of a resin other than the layer containing the copolymer, at least one layer containing a polymer mainly composed of polyvinylidene chloride (abbreviated as PDC) may be used. and/or nylon (abbreviated as Ny),
Crystalline polypropylene (abbreviated as PP), saponified ethylene-vinyl acetate copolymer (abbreviated as SEVA),
or other mixed polymers (e.g. crystalline polybutene-1)
At least one layer selected from the following. In particular, it has been found that when PDC is used as an intermediate layer, the barrier properties and pinhole resistance can be improved compared to those obtained by stretching at a high temperature according to the present invention. The ratio of the copolymer layer as a thickness structure of each layer is not particularly limited, and the lower limit is, for example, copolymer (C
) is used as the surface layer, when (A), (B), etc. are arranged as other layers, or when other resins with good cold stretchability are used, the copolymer layers generally have a content of 10% or more. Although this is not limited to the case of a multi-layer structure, if a layer other than the layer containing the copolymer is included, the ratio of the copolymer layer to the total layer is preferably at least 30%, more preferably at least 30%. The combination of layers having a thickness of at least 50% may be three or more layers, but preferably three or more layers. For example, (the copolymers (A), (B),
(C) is simply abbreviated as ASB, C) In the case of 5 layers, C
/B/PVDC/B/C,C/A/PDC/A/C,A
/B/PVDC/B/ASC/PB-1/PVDC/P
B-1/C, PP/PB/PDC/B/C5Ny/C
/PDC/A/C, etc.
これらは表面の硬度、シール性、光学特性等を改良する
ため又はフィルムの腰強さ、包装時の機械適性、又機械
的強度等を改良するために有効であり、又高機能で高価
な他種レジンはこの層を特に薄くし、延伸加工性も向上
させる等の手段をとれば都合が良い。These are effective for improving surface hardness, sealing properties, optical properties, etc., or for improving film stiffness, mechanical suitability for packaging, mechanical strength, etc., and are highly functional and expensive. For the seed resin, it is convenient if measures such as making this layer particularly thin and improving stretching processability are taken.
本発明のフィルムは冷間延伸の仕方、つまり二軸延伸以
外に、タテあるいはヨコの一軸延伸できるが、好ましく
はバブル状に二軸に延伸するのがより優れた緒特性のも
のが得られる。The film of the present invention can be cold-stretched, that is, in addition to biaxial stretching, it can be uniaxially stretched vertically or horizontally, but it is preferable to biaxially stretch in a bubble shape to obtain better stretch properties.
本発明のフィルムは、その光学特性〔ヘイズ値(AST
M−DI 003−52)]が一般に3.0%以下で好
ましくは2,0%である。これはその製法より特徴づけ
られる値であり、本発明の組成の急冷した性質を全く損
うことなく、加工、又主体となる組成物の融点以下、更
に好ましくは軟化点以下の領域でも低温でバブル状で安
定に延伸することができるため特に透明になるものであ
る。又、収縮フィルムとした場合の収縮後のヘイズは、
例えば20〜40%収縮させてもほとんど悪化しないが
、他のフィルムは大巾に悪化するものが多い(例えば、
PPは2.8%が6.5%に、架橋PEフィルムは2.
5%が4.8%に)。この値は20%収縮後で好ましく
は4.0%以下であり、より好ましくは3.0%以下で
ある。The film of the present invention has optical properties [haze value (AST
M-DI 003-52)] is generally below 3.0%, preferably 2.0%. This is a value that is characterized by its manufacturing method, and can be processed at low temperatures even below the melting point of the main composition, more preferably below the softening point, without impairing the quenched properties of the composition of the present invention. It is especially transparent because it can be stably stretched in a bubble shape. In addition, when used as a shrink film, the haze after shrinkage is
For example, shrinkage of 20 to 40% causes almost no deterioration, but many other films deteriorate significantly (for example,
PP is reduced from 2.8% to 6.5%, and crosslinked PE film is reduced to 2.5%.
5% to 4.8%). This value is preferably 4.0% or less, more preferably 3.0% or less after 20% shrinkage.
又、低温収縮性とは収縮包装フィルムとして用いる場合
に必要な性質の一つであり、フィルムを各温度条1件で
処理した時の加熱収縮率で表わされる値の内、20%又
は40%収縮する(以後タテとヨコの平均収縮率で表わ
される)に必要な温度で表わされ、この値が低い程、低
温収縮特性を有することを意味する。又、通常収縮フィ
ルムとして必要な収縮率は、包装方法によっても異なる
が、20%以上好ましくは40%以上必要である。具体
的にはフィルムから切取った正方形の試験片に規定寸法
のタテ、ヨコの標線を入れ、収縮中に自分自身又は他の
物に粘着しないようにタルクなどの粉末をまぶし所定の
温度の熱風で5分間処理し、加熱収縮させた後の各方向
それぞれの寸法の変化率で表わした値をタテ、ヨコの平
均した値で加熱収縮率を表わすものであり、この値を各
温度で測定し、グラフ化して、20%又は40%の加熱
収縮率で表わされる温度をそれぞれ20%、40%収縮
温度という。In addition, low-temperature shrinkability is one of the properties necessary when used as a shrink packaging film, and it is 20% or 40% of the value expressed by the heat shrinkage rate when the film is treated under one temperature condition. It is expressed as the temperature required for shrinkage (hereinafter expressed as the average shrinkage rate in length and width), and the lower this value is, the better the low-temperature shrinkage characteristics are. The shrinkage rate required for a shrink film usually varies depending on the packaging method, but is usually 20% or more, preferably 40% or more. Specifically, a square test piece cut from a film is marked with vertical and horizontal markings of specified dimensions, and the test piece is coated with powder such as talc to prevent it from sticking to itself or other objects during shrinkage. The heat shrinkage rate is the average value of the vertical and horizontal values expressed as the change rate of dimensions in each direction after heat shrinkage after being treated with hot air for 5 minutes, and this value is measured at each temperature. However, when graphed, the temperatures expressed by a heat shrinkage rate of 20% or 40% are referred to as 20% and 40% shrinkage temperatures, respectively.
本発明によるフィルム中、収縮包装用に用いる場合では
、この値が低く、例えば後述市販の収縮用ポリプロピレ
ンフィルムが20%値で120℃、40%値で134℃
であるのに比し、例えば実施例I No、 1のように
20%で49℃、40%で72℃と低い値の特性を有す
る。この程度は20%値で表わし85℃以下、好ましく
は75℃以下、更に好ましくは70℃以下である。この
値は延伸の温度程度、組成、層組合せ等によって二次的
に影響されるが、本発明の冷間延伸の大きな特徴の一つ
として低いレベルにある。この値が高いと、実用時にか
なりの高温中に、長時間隔さないと熱収縮を生じないこ
とになり、ヒーターの熱量を大きくしなければならなく
、又包装作業の速度も遅くなる。又被包装物に熱が伝わ
り、特に熱により危険な品物、変質変形してしまう様な
品物、特に繊維類、生鮮食品類には好ましくない。又収
縮カーブが高温で急に立ち上るような傾向のフィルムは
包装時の収縮温度付近のごくわずかな変動に対する収縮
率の変化が大きいため、予め緩く包装して収縮トンネル
内を通過させた場合にフィルムに当たる熱風の温度が全
体に少し低すぎると収縮不足でぴったりとフィツトした
包装に仕上らず、又、少し温度が高いと溶融してフィル
ムに孔があく、又は失透して光学的ムラを生じせしめる
等のような事態となり、又被包装物に接触している所と
しない所ではフィルム温度が異なってくるのは常識であ
り、この時みにくいあばた状の収縮ムラを生じせしめ、
著しく商品価値を損うこととなる。When the film according to the present invention is used for shrink wrapping, this value is low; for example, the commercially available shrinkable polypropylene film mentioned below has a temperature of 120°C at 20% value and 134°C at 40% value.
In comparison, for example, as in Example I No. 1, it has characteristics as low as 49° C. at 20% and 72° C. at 40%. This degree is expressed as a 20% value and is 85°C or lower, preferably 75°C or lower, and more preferably 70°C or lower. This value is secondarily influenced by the stretching temperature, composition, layer combination, etc., but it is at a low level as one of the major features of the cold stretching of the present invention. If this value is high, thermal shrinkage will not occur until a long period of time at a considerably high temperature in practical use, requiring a large amount of heat from the heater and slowing down the packaging process. In addition, heat is transmitted to the packaged items, which is particularly undesirable for dangerous items or items that may be altered or deformed by heat, especially textiles and fresh foods. In addition, for films whose shrinkage curve tends to rise suddenly at high temperatures, the shrinkage rate changes greatly in response to very small changes around the shrinkage temperature during packaging, so if the film is loosely wrapped in advance and passed through a shrink tunnel, If the overall temperature of the hot air that hits the film is too low, the package will not shrink properly due to insufficient shrinkage, and if the temperature is too high, it will melt and cause holes or devitrification in the film, resulting in optical unevenness. It is common knowledge that the temperature of the film differs between areas that are in contact with the packaged item and those that are not, which can lead to unsightly pock-like shrinkage unevenness.
This will significantly reduce the product value.
又、この温度が高いと収縮後の光学特性のみならず強度
等の機械物性が大巾に低下してしまう。Furthermore, if this temperature is high, not only the optical properties after shrinkage but also the mechanical properties such as strength will be significantly reduced.
又シール部、エヤー抜き穴より破れてしまう等の欠点を
生じることとなる。Further, there may be problems such as the seal portion or the air vent hole being torn.
又、この値があまり極端に低い場合には、ロール状に巻
かれたフィルムが常温で寸法変化してしまい好ましくな
い。市販の可塑化収縮包装用PvCフィルムは、この値
が20%収縮で58℃、40%で83℃であり、低温収
縮性で温度に対してなだらかな好ましい収縮特性を有す
る。Moreover, if this value is too extremely low, the dimensions of the film wound into a roll may change at room temperature, which is not preferable. The commercially available PvC film for plasticized shrink packaging has this value of 58° C. at 20% shrinkage and 83° C. at 40% shrinkage, and has favorable shrinkage characteristics with low temperature shrinkage and gentleness with respect to temperature.
充分冷間で高配向した他の特徴の一つとしての収縮カー
ブのなだらかさを表わす値として収縮率20%と60%
間の対応温度でカーブの傾きを表わすと、つまり収縮勾
配=(60−20)/Δt(%/1)で表わすと本発明
のフィルムは2.0以下好ましくは1.5以下、より好
ましくは1.3以下である。又、収縮率が小さく60%
近くで飽和となる場合又はそれ以下の場合は20〜40
%間の収縮勾配とする。二軸延伸の場合、いずれもタテ
、ヨコの平均値でこの値を表わし、以後他の特性も同様
とする。但し、−軸延伸の場合はこの限りではなく主と
して延伸をかけた方向の値とする。Shrinkage rates of 20% and 60% are values that represent the smoothness of the shrinkage curve, which is one of the other characteristics of sufficiently cold and highly oriented.
If the slope of the curve is expressed at the corresponding temperature between, that is, the shrinkage slope = (60-20)/Δt (%/1), the film of the present invention has a slope of 2.0 or less, preferably 1.5 or less, more preferably 1.5 or less. It is 1.3 or less. In addition, the shrinkage rate is small at 60%.
20-40 if near saturation or below
Let the shrinkage gradient be between %. In the case of biaxial stretching, this value is expressed as the average value of the vertical and horizontal directions, and the same applies to other properties hereinafter. However, in the case of -axis stretching, this is not the case, and the value is mainly in the direction of stretching.
他の特徴としてフィルムを構成する主体となる連合体の
Vicat軟化点での収縮率(以後Vicat収縮率と
いう)が少なくとも15%以上、好ましくは20%以上
、更に好ましくは25%以上である。Another characteristic is that the shrinkage rate at the Vicat softening point (hereinafter referred to as Vicat shrinkage rate) of the main association forming the film is at least 15% or more, preferably 20% or more, and more preferably 25% or more.
Vicat軟化点はASTM−Di 525 (荷重1
kg)で測定される値である。この値が低いと、実用的
に収縮する場合低温収縮性に不′足することとなり包装
温度を大巾に上昇しなければならない。そうすると、フ
ィルムが大きく軟化し、収縮する応力も大巾に低下し、
又融点以上の温度に長時間さらされることになり、均一
なシワのない包装ができなく、又緒特性の低下をまぬが
れない結果となる。Vicat softening point is ASTM-Di 525 (load 1
kg). If this value is low, low-temperature shrinkability is insufficient for practical shrinkage, and the packaging temperature must be significantly increased. This will greatly soften the film and reduce the shrinkage stress to a large extent.
In addition, the product is exposed to temperatures above the melting point for a long period of time, making it impossible to package it uniformly and without wrinkles, and resulting in an unavoidable deterioration in string properties.
更に他の特徴として、フィルムを構成する主とした重合
体の結晶融点の温度までにおいてすでに充分収縮するこ
とが必要で、本発明のフィルムはこれを充分満足するも
のである。この値が低いと、包装時その温度以上に充分
さらさなければ包装できない。この値は(mp収縮率と
いう)、好ましくは25%以上、より好ましくは30%
以上、更に好ましくは35%以上、最も好ましくは40
%以上である。Another feature is that the film must already shrink sufficiently up to the crystal melting point of the main polymer constituting the film, and the film of the present invention fully satisfies this requirement. If this value is low, the product cannot be packaged unless it is sufficiently exposed to temperatures above that temperature during packaging. This value (referred to as mp shrinkage rate) is preferably 25% or more, more preferably 30%
or more, more preferably 35% or more, most preferably 40% or more
% or more.
令名、可塑化PVC以外のフィルムで、この様な収縮率
特性で且つ強度のあるフィルムは、いまだかって市販さ
れていない。A film other than plasticized PVC with such shrinkage characteristics and strength has never been commercially available.
本発明のフィルムはこれ以上の特性レベルを達成したも
のであり、令名にないフィルムである。The film of the present invention has achieved a level of properties higher than this and is a film that is unprecedented.
又収縮時の加熱収縮応力は、収縮包装用フィルムとして
用いる場合に加熱収縮率とともに、加熱収縮特性の中で
重要な特性の一つであり、例えば後述のように加熱収縮
率が高くても収縮時の応力が極度に低ければ包装中及び
包装後の被包装物にフィツトせず、且つ結束力がでず、
収縮包装用フィルムとしては全く用をなさない。In addition, heat shrinkage stress during shrinkage is one of the important properties in heat shrinkage characteristics, along with heat shrinkage rate, when used as a shrink packaging film.For example, as described below, even if the heat shrinkage rate is high, If the stress at the time is extremely low, it will not fit the packaged items during and after packaging, and it will not have binding force.
It is completely useless as a shrink wrapping film.
又、少しの程度でも物を結束する力が不足の場合は、厚
みの厚いフィルムを用いてカバーしなければならず、不
経済であり、不都合である。本発明のフィルムの特徴と
して通常この値のピーク値は、最低50g/n++n2
以上で、更には、100g/+yun2以上、より好ま
しくは150g/mm2以上である。市販のポリエチレ
ンの収縮フィルムではこの値が10g/mm2以下5g
/mm2程度であり、用途が限定される。本発明のフィ
ルムは例えばRunNo、1のように210g/m+n
2もある。通常本発明のフィルムは、この値が100〜
400g/mI[12程度と充分高いレベルを有するも
のである。Furthermore, if the binding force is insufficient even to a small extent, it is necessary to cover the objects with a thick film, which is uneconomical and inconvenient. As a feature of the film of the present invention, the peak value of this value is usually at least 50 g/n++n2.
Above, it is more preferably 100 g/+yun2 or more, more preferably 150 g/mm2 or more. For commercially available polyethylene shrink film, this value is 10g/mm2 or less, 5g.
/mm2, and its uses are limited. The film of the present invention has a run number of 210 g/m+n, such as Run No. 1.
There are also 2. Usually, the film of the present invention has this value of 100 to
It has a sufficiently high level of about 400 g/mI [12].
又、この収縮応力が低温収縮性フィルムでは、収縮率の
変化に相応する近いレベルの温度から発揮されなければ
意味がなく、その温度依存性曲線が(タテ、ヨコの平均
値で表わす)収縮率温度曲線とよくバランスがとれてい
なければならない。In addition, for low-temperature shrinkable films, this shrinkage stress has no meaning unless it is exerted from a temperature close to the level corresponding to the change in shrinkage rate, and the temperature dependence curve (expressed as the average value of vertical and horizontal values) is meaningless. It must be well balanced with the temperature curve.
又高温域まで広がっていた方が好ましい場合もある。こ
の応力のピーク値の温度は90℃以下、好ましくは80
℃以下である。In some cases, it may be preferable for the temperature to extend to a high temperature range. The temperature at the peak value of this stress is 90°C or less, preferably 80°C or less.
below ℃.
更に本発明は、その製法から引張り強さが特に強いと同
時に破断伸びが大きいことが特徴であり、最低5kg/
mm2の破断強度(JIS−71702の方法により測
定された値)を有し、好ましくは7kg/1TIII]
2以上の値を有するものであり、その時の伸びも100
%以上、好ましくは150%以上、更に好ましくは20
0%以上であり、又更にそのこにyは破断強度(kg/
+n+n2) 、Xは破断伸び(%)とする。Furthermore, the present invention is characterized by its particularly high tensile strength and high elongation at break due to its manufacturing method, with a minimum of 5 kg/
mm2 breaking strength (value measured by the method of JIS-71702), preferably 7 kg/1TIII]
It has a value of 2 or more, and the elongation at that time is also 100
% or more, preferably 150% or more, more preferably 20% or more
0% or more, where y is the breaking strength (kg/
+n+n2), X is elongation at break (%).
この様に引張り強度が強く、伸びがあると、フィルムが
タフであり破れにくいことを意味し、包装物の保護フィ
ルムとして非常に有利になり、フィルムの厚みを節約で
きる。Such high tensile strength and elongation mean that the film is tough and resistant to tearing, making it very advantageous as a protective film for packages and saving on film thickness.
本発明のフィルムは、例えば後述するRun No、1
5の様に破断強度14.5 kg/ mm2、伸び21
0%のレベルのものである。通常配向により強度を上げ
ると伸びが極度に低下する傾向にあり、例えば市販の充
分架橋(沸騰キシレン不溶ゲル67%)し高温で延伸し
たフィルムでは強度8kg/mm2で伸びが45%であ
り破れやすい。又、落錐衝撃強度(ダート強度という)
ASTM−DI 709−67に準じて測定され、通常
の方法では破れず測定でき難いため特にミサイルヘッド
にミゾ−エッヂ部をもうけフィルムを引裂きやすくした
シャープな特殊ヘッドを使用した値で表わし、本フィル
ムはこの値が特に強い点に特徴がある。例えば収縮PV
CSPPフィルムが16kg−cm、 8kg−cmで
あるのにRun No、 15では実に32 kg−C
m以上くいずれも17μ換算)と低密度P’E市販の重
装の100〜150μ厚みのものに相当する程の値を有
する。この値は一般に15kg−Cm以上、好iしくは
20 kg−cmである(但し、以後17μ換算とする
)。 この様に引張強度が強く、伸びがあるとフィルム
がタフであり破れにくいことを意味し、包装物の保護用
フィルム、スキンパック等用フィルム等として非常に有
利になり、フィルムの厚みを節約できる。フィルム厚み
は限定しないが、通常5〜200μ、好ましくは8〜1
00μである。The film of the present invention is, for example, Run No. 1, which will be described later.
5, breaking strength 14.5 kg/mm2, elongation 21
It is at a level of 0%. Normally, when the strength is increased by orientation, the elongation tends to decrease extremely. For example, a commercially available film that is fully crosslinked (67% boiling xylene insoluble gel) and stretched at high temperature has a strength of 8 kg/mm2 and an elongation of 45%, making it easy to tear. . Also, falling cone impact strength (referred to as dart strength)
It is measured according to ASTM-DI 709-67, and because it is difficult to measure without tearing with normal methods, it is expressed as a value using a sharp special head with a grooved edge on the missile head to make it easier to tear the film. is characterized in that this value is particularly strong. For example, contraction PV
Although the CSPP film is 16 kg-cm and 8 kg-cm, Run No. 15 is actually 32 kg-C.
m or more (all calculated in terms of 17μ), which is comparable to low-density P'E commercially available heavy packaging with a thickness of 100 to 150μ. This value is generally 15 kg-cm or more, preferably 20 kg-cm (hereinafter converted to 17 μm). High tensile strength and elongation mean that the film is tough and difficult to tear, making it very advantageous as a protective film for packages, a film for skin packs, etc., and it can save on film thickness. . The film thickness is not limited, but is usually 5 to 200μ, preferably 8 to 1
It is 00μ.
用途は収縮フィルムに限定するものではなくクフネスを
利用した産業用フィルムとして一般に利用できるもので
ある。The application is not limited to shrinkage films, but can generally be used as industrial films using Kufunesu.
次に本発明の高延伸フィルムの製造方法の好ましい一例
について詳細に説明する。Next, a preferred example of the method for producing a highly stretched film of the present invention will be described in detail.
本発明の方法は前述の各共重合体を加熱混合熔融し、多
層環状グイより押出し、液状冷媒により急冷固化せしめ
た充分偏肉の少ないチューブ状原反とし、これを即その
まま、又は必要により高エネルギー線で処理した後、常
温でそのまま又は多少加熱し、80℃以下の延伸温度で
面積延伸倍率5倍〜30倍で冷間延伸する(尚、ここで
いう延伸温度とは延伸開始点の温度を表わす)。ここで
延伸は延伸開始部と加熱部とを実質上隔離することを目
的とした整流接触ガイドを用いフィルム表面に同伴する
流体及びその境膜を周方向に少なくとも不連続的に接触
除去しながら行う。The method of the present invention involves heating, mixing, and melting the above-mentioned copolymers, extruding them through a multilayer annular gouer, and rapidly cooling and solidifying them with a liquid refrigerant to obtain a tube-shaped original fabric with sufficiently small thickness deviation. After treatment with energy rays, it is left as it is at room temperature or heated slightly, and then cold stretched at a stretching temperature of 80°C or less and an area stretching ratio of 5 to 30 times (the stretching temperature here refers to the temperature at the starting point of stretching). ). Here, the stretching is carried out using a rectifying contact guide designed to substantially isolate the stretching start part and the heating part, while at least discontinuously contacting and removing the fluid accompanying the film surface and its film in the circumferential direction. .
以下好ましい実施態様について説明するが、これに限定
されるものではない。Preferred embodiments will be described below, but the present invention is not limited thereto.
押出しは、充分偏肉及び熱、時間履歴を与えることの少
ない多層環状グイから150〜280℃の押出温度でも
って押出し周囲を液状冷媒で均一に急冷固化せしめ、充
分均一(外形的にも内部的にも)なチューブ状原反とす
る。この原反は必要によっては高エネルギー線により前
処理されてもよく、例えば電子線、ガンマ線、紫外線等
により、例えば電子線で1〜10メガラツドの線量で前
述の処理をすればよい。過度の処理はかえって諸特性に
よくない結果をもたらす。Extrusion is carried out by using a multilayer annular goo, which does not give sufficient unevenness in thickness, heat, or time history, at an extrusion temperature of 150 to 280°C, and uniformly quenching and solidifying the surrounding area with a liquid refrigerant. (also) into a tube-shaped raw material. This raw fabric may be pretreated with high-energy radiation, for example, with electron beams, gamma rays, ultraviolet rays, etc., for example, at a dose of 1 to 10 megarads. Excessive treatment may actually have negative effects on various properties.
次に、延伸はそのままの常温で、又は都合により加熱す
るが、この時主体となる重合体の主結晶が、又好ましく
は各層をなす重合体の主結晶が溶融する温度(DSC法
によるピーク値で20℃/分のスキャンスピードで測定
)以下にすることが必要で、この理由は一度溶融した結
晶は実用的に昇温、降温するスピードが速い時はどヒス
テレシス効果により融点よりかなり低い温度の結晶化温
度で結晶化するため充分な冷間配向を付与でき難くなる
ためである。例えば、アイオノマー樹脂ではこの傾向は
特に大きく、エチレン−メタアクリル酸よりなるNa架
橋タイプのメタアクリル酸含景: 5.4モル%、メル
トインデックス:1.3、密度0.942g/am3の
ものは20℃/分のスキャンスピード(実際の成膜スピ
ードはもっと速い)では融点100℃のピークが、結晶
化する温度が50℃にピゴクを有する場合もあるが、し
かし結晶化度の低い場合はこの限りではない。Next, the stretching is carried out at room temperature as it is, or by heating if necessary, at a temperature at which the main crystals of the main polymer, and preferably the main crystals of the polymers forming each layer, melt (the peak value determined by the DSC method). (measured at a scanning speed of 20°C/min).The reason for this is that once a crystal is melted, when the temperature rises and falls at a fast rate, the hysteresis effect causes the crystal to reach a temperature considerably lower than its melting point. This is because the crystallization occurs at the crystallization temperature, making it difficult to provide sufficient cold orientation. For example, this tendency is particularly strong in ionomer resins, and the Na-crosslinked type methacrylic acid content: 5.4 mol%, melt index: 1.3, density 0.942 g/am3 made of ethylene-methacrylic acid is At a scanning speed of 20°C/min (the actual film formation speed is much faster), the peak at the melting point of 100°C may have a peak at the crystallization temperature of 50°C, but if the crystallinity is low, this Not as long.
本発明で一般に延伸は80℃以下、好ましくは20〜7
0℃、より好ましくは20〜60℃のごく低温で、又同
時に、更に好ましくは重合体のVicat軟化点以下で
延伸するのが好ましい。すなわち、Vicat軟化点よ
り10℃以下、更に好ましくは15℃以下、の温度です
るのがよい。フィルムの特性は加工安定性のゆるす限り
低温で延伸するのが好ましく、前述上限温度以上での延
伸は急激に諸特性が悪化すると同時に延伸安定性も悪化
し、偏肉、バルブのゆれ等不均一現象が発生するように
なる。特性的には本発明でいう低温収縮性、収縮勾配等
が悪化し、光学特性、強度、伸び又はその他バリヤー性
フィルムの場合の耐ピンホール性等の特性も大巾に低下
するようになる。加熱及び延伸中のバルブはエヤーリン
グ等により温調した空気を吹かせながら均一に、できる
だけ表層部の空気流れを均一に制御しながら行う方が好
ましい。原反の加熱温度は、延伸開始部の温度より20
℃を越えない温度にするのが好ましい。又延伸開始部と
延伸終了部で少なくとも5℃、好ましくは10℃の温度
差をもうけて延伸を行うのが好ましい場合が多い。In the present invention, the stretching is generally 80°C or less, preferably 20 to 7
It is preferred to stretch at a very low temperature of 0°C, more preferably 20-60°C, and at the same time, more preferably below the Vicat softening point of the polymer. That is, the temperature is preferably 10° C. or lower, more preferably 15° C. or lower than the Vicat softening point. It is preferable to stretch the film properties at as low a temperature as possible for processing stability.Stretching at temperatures above the above-mentioned upper limit will rapidly deteriorate various properties and also worsen stretching stability, resulting in non-uniformity such as uneven thickness and valve wobbling. The phenomenon begins to occur. In terms of properties, the low-temperature shrinkability, shrinkage gradient, etc. referred to in the present invention deteriorate, and the optical properties, strength, elongation, and other properties such as pinhole resistance in the case of barrier films also deteriorate significantly. During heating and stretching, it is preferable to uniformly blow air whose temperature is controlled by an air ring or the like, and to control the air flow in the surface layer as uniformly as possible. The heating temperature of the original fabric is 20° below the temperature at the start of stretching.
Preferably, the temperature does not exceed °C. Further, it is often preferable to conduct the stretching with a temperature difference of at least 5° C., preferably 10° C., between the stretching start point and the stretching end point.
表層部の空気流れを制御する一方法として、加熱部と延
伸開始部とを実質上隔離することを目的とした整流接触
ガイドを用いフィルムの表面に同伴する流体(気体)及
びその境膜を周方向に不連続的に接触除去し加熱部と延
伸開始部及び冷却部との相互作用による不均一性を除く
方法があり、この方法は、延伸開始部、延伸部、延伸終
了域でも同様に用いられ得る。バルブ内の内圧は高く、
例えば10 (]−5000mm水柱圧下(H2C)(
200μで100mmφの原反ベースで)の高圧下で充
分高延伸するのが好ましく、より好ましくは200〜2
000mm (H2C)である。One way to control the air flow in the surface layer is to use a rectifying contact guide, which is designed to substantially isolate the heating area and the stretching start area, to control the fluid (gas) entrained on the surface of the film and its surrounding film. There is a method of discontinuous contact removal in the direction to remove non-uniformity due to interaction between the heating section, the stretching start section, and the cooling section. This method can also be used in the stretching start section, stretching section, and stretching end region. It can be done. The internal pressure inside the valve is high;
For example, 10 (] - 5000 mm water column pressure (H2C) (
It is preferable to stretch sufficiently under a high pressure of 200μ and 100mmφ, more preferably 200 to 2
000mm (H2C).
又、延伸倍率は面積延伸倍率で5〜30倍、好ましくは
面積延伸倍率が5〜30倍で且つ横方向の延伸倍率が2
〜7倍である。より好ましくは前者が7〜20倍で、且
つ後者が2〜5倍である。Further, the stretching ratio is 5 to 30 times in area stretching ratio, preferably 5 to 30 times in area stretching ratio, and 2 times in transverse direction.
~7 times. More preferably, the former is 7 to 20 times, and the latter is 2 to 5 times.
この時、前述した様に充分均一な原反を作ることが重要
であり、例えば原反の偏肉が原反厚みに対して±10%
程度又はそれ以上だと延伸中パンクしてしまいうまく延
伸できない場合がある。原反の偏肉は好ましくは±5%
以下、更に好ましくは±2%以下がよい。延伸の程度は
送りニップロールと引取リニップロールのスピード比に
よるタテ方向の延伸比を決定するとあとはバブル内に空
気を封入しバブルの延伸終了点近く(白化寸前)まで延
伸し横方向の膨張が止まる程度とするのが最も安定に延
伸を実施するに良い方法である。又、原反バブルは内圧
と径との関係上50mm径程度以上、好ましくは100
mm径以上装置の許す限り大型サイズが好都合である。At this time, as mentioned above, it is important to make a sufficiently uniform raw fabric. For example, the uneven thickness of the raw fabric is ±10% of the thickness of the raw fabric.
If the thickness is above or below this level, punctures may occur during stretching, resulting in poor stretching. Uneven thickness of raw fabric is preferably ±5%
It is more preferably ±2% or less. The degree of stretching is determined by the speed ratio of the feed nip roll and the take-off linip roll, and the stretching ratio in the vertical direction is determined.Then, air is sealed in the bubble and the bubble is stretched until it reaches the end point of stretching (just before whitening), and the expansion in the lateral direction stops. The most stable method is to stretch at a certain level. In addition, the raw fabric bubble has a diameter of about 50 mm or more, preferably 100 mm or more due to the relationship between internal pressure and diameter.
It is convenient to use a large size with a diameter of mm or more as long as the device allows.
又、得られたフィルムの物性上、できるだけバブルの安
定性の許す限り充分冷間の方が好ましいが、実際には、
安定性とのバランス(パンクしない様に)でその時の組
成により多少調整し延伸温度を決定すればよい。In addition, in view of the physical properties of the obtained film, it is preferable to keep the film sufficiently cold as long as the stability of the bubbles allows, but in reality,
The stretching temperature may be determined by making some adjustments depending on the composition at the time, in balance with stability (avoiding punctures).
本発明の方法により得られたフィルムは、前述の通りの
優れた物性を有するものであると同時に延伸後のフィル
ムの偏肉が非常に少なく±5%程度以下である場合が多
い。これは高−バブル内圧により強い伸張力がフィルム
に付与されるため文通常のような加熱冷却の熱履歴が特
に少なく均一で安定性が良いためと思われる。光学特性
(ヘイズ、グロスとも)は原反の段階で多少悪く見えて
も本発明の方法による冷間延伸後には非常に良くなる特
徴がある。又前述のごとき多層にする事により、単層の
時よりも加工の安定性は大巾に向上しより均一な高度な
製品が出来るものである。The film obtained by the method of the present invention has excellent physical properties as described above, and at the same time, the thickness deviation of the film after stretching is very small, often about ±5% or less. This is thought to be because the high bubble internal pressure imparts a strong tensile force to the film, so that the thermal history of heating and cooling as in the case of ordinary textiles is particularly small, resulting in uniformity and good stability. Even if the optical properties (both haze and gloss) appear somewhat poor at the raw stage, they become much better after cold stretching by the method of the present invention. Furthermore, by using multiple layers as described above, processing stability is greatly improved compared to when using a single layer, and more uniform and sophisticated products can be produced.
以上に比して、通常の融点以上に加熱した延伸法では、
この様なことはなく、光学特性を良くしようとするには
逆に延伸の温度をより上昇してゆかなければならなく、
ますます配向はかかりにくくなってしまい強度も低くな
る傾向にある場合が多い。In comparison to the above, in the stretching method in which heating is performed above the normal melting point,
This does not happen, and in order to improve the optical properties, it is necessary to increase the stretching temperature.
In many cases, orientation becomes increasingly difficult and strength tends to decrease.
又、融点前後±5〜10℃の温度でも同様なことが言え
光学特性は更に好ましい結果とはならないばかりか加う
るに混合組成では特に原反が下女もろい温度条件になり
パンクし高特性を付与でき難い。Moreover, the same thing can be said at temperatures of ±5 to 10°C around the melting point, and not only will the optical properties not be even more favorable, but in addition, in the case of mixed compositions, the temperature conditions will make the original fabric particularly brittle, resulting in punctures and high properties. Difficult to grant.
本発明の後述の実施例の如く極低温で、例えば31℃で
本発明で言う延伸がうまく達成される事は、令名になく
、特定の該共重合体を含む例えば多層チューブを用いて
、均一な急冷原反を用いる事、特定の延伸方法等の条件
を満たす事等の相乗効果により、初めて達成されるもの
である。It is not in the name of the present invention that the stretching referred to in the present invention can be successfully achieved at a cryogenic temperature, for example, 31° C., as in the later-described examples of the present invention, but by using, for example, a multilayer tube containing the specific copolymer, This is achieved for the first time through the synergistic effect of using a uniformly quenched original fabric and satisfying conditions such as a specific stretching method.
例えば、PP単体層の場合は140〜160℃程度の非
常に狭い範囲下で、しかも延伸は困難で、微妙な条件下
でのみ、連続延伸が達成され、それ以下ではパンクして
延伸出来なく、又それ以上では白化した弱く劣ったフィ
ルムが得られなく、又、それ以下の80℃近辺、ましで
は上記例の場合の様に、例えば32℃では全く延伸を達
成出来難い、この点は驚くべき事である。For example, in the case of a single PP layer, continuous stretching is achieved only under a very narrow range of about 140 to 160°C, which is difficult and delicate, and below which it cannot be stretched due to punctures. Moreover, if the temperature is higher than that, a whitened, weak and inferior film cannot be obtained, and if the temperature is lower than that, around 80°C, let alone, as in the case of the above example, 32°C, it is difficult to achieve stretching at all, which is surprising. That's a thing.
又、その得られた特性も単体層の場合に比し強度、光学
特性等、低温収縮性、シール性、引裂強度、衝撃強度ら
に優れたものとなり通常の延伸以上の高延伸のレベルに
なる。In addition, the properties obtained are superior to those of a single layer in terms of strength, optical properties, low-temperature shrinkability, sealing properties, tear strength, impact strength, etc., and the level of stretching is higher than that of normal stretching. .
尚、本発明のフィルムは延伸した後で、自由に例えばオ
ンライン、巻取後等に熱処理を行い、常温近くで保管す
る場合、例えばロール状に巻いた時寸法変化しロールが
くずれるのを防ぐための安定化処理ができ、常温での収
縮する成分をカットしたりすることができる。又その処
理の程度によっては他の物性を落さないで低温で収縮す
る成分を自由にコントロールすることができる。更に、
二軸に延伸したフィルムを用いて配向をタテ、ヨコに移
動させたりすることも自由にできる。In addition, after the film of the present invention has been stretched, it can be freely heat-treated, for example, on-line, after winding, etc., and when stored near room temperature, for example, to prevent dimensional changes and collapse of the roll when it is wound into a roll. It can be stabilized and components that shrink at room temperature can be cut. Furthermore, depending on the degree of treatment, components that shrink at low temperatures can be freely controlled without degrading other physical properties. Furthermore,
It is also possible to freely move the orientation vertically or horizontally using a biaxially stretched film.
実施例
実験例1
酢酸ビニル基含量:5.5モル%、メルトインデックス
:0.6、結晶融点(以後mpと省略する)788℃、
Vicat軟化点72℃のエチレン−酢酸ビニル共重合
体(a、)と、エチレン−メタアクリル酸共重合体Na
タイプアイオマー樹脂二メタアクリル酸含量6.6モル
%、メルトインデックス1.0、中和度25%、mp8
3℃、Vicat 64℃(C1)とを2台の押出機
を用い、前者は径35a+mL/D=30のスクリュー
を有する押出機で後者は径40mmでL/D=30のス
クリューを有する押出機で、シリンダ一部最高温度24
0℃でそれぞれ可塑化熔融し15 mmのスリットを有
する100mm径の2種3層環状グイより押出し、グイ
先端から10cmのところで水の均一に出る水冷リング
で急冷して径100munで第1層(外層)、第2層(
中間層)、第3層(内層)各々構成で表1の各厚みの原
反を得た。いずれも偏肉(周方向)は±2%以下であっ
た。これらの原反を2対の送りニップロールと引取りニ
ップロールの間に通してこの間で熱風により37℃に加
熱しそのまま内部に空気を入れ、前述した整流接触ガイ
ドを用いて連続的に膨張させて、はぼタテ345倍、ヨ
コ3.5倍に延伸して、延伸終了域を15℃の冷風の吹
き出るエヤーリングにて冷却し、デフレーク−で折りた
たみ、ニップロールで引き取って耳部を縦方向にスリッ
トして2枚のフィルムに分け、それぞれ一定の張力で巻
き取って各厚みの所定のフィルムを得た。Examples Experimental Example 1 Vinyl acetate group content: 5.5 mol%, melt index: 0.6, crystal melting point (hereinafter abbreviated as mp) 788°C,
Vicat ethylene-vinyl acetate copolymer (a,) with a softening point of 72°C and ethylene-methacrylic acid copolymer Na
Type Iomer resin dimethacrylic acid content 6.6 mol%, melt index 1.0, neutralization degree 25%, mp8
3°C and Vicat 64°C (C1) using two extruders, the former having a screw with a diameter of 35a + mL/D = 30, and the latter having a screw with a diameter of 40 mm and L/D = 30. So, the maximum temperature of part of the cylinder is 24
They were each plasticized and melted at 0°C, extruded through a 100 mm diameter two-type, three-layer annular goo with a 15 mm slit, and quenched with a water-cooling ring that uniformly discharged water 10 cm from the end of the goo to form the first layer (100 mm in diameter). outer layer), second layer (
Raw fabrics having the respective thicknesses shown in Table 1 were obtained with each composition of the intermediate layer) and the third layer (inner layer). In all cases, the thickness deviation (circumferential direction) was ±2% or less. These raw fabrics are passed between two pairs of feed nip rolls and take-up nip rolls, heated to 37°C by hot air between them, air is admitted inside, and continuously expanded using the aforementioned rectifying contact guide. Stretch it 345 times vertically and 3.5 times horizontally, cool the stretched area with an air ring blowing cold air at 15℃, fold it with a deflake, pull it with nip rolls, and slit the edges vertically. The film was divided into two films and each film was wound up with a constant tension to obtain a film of each thickness.
表2には得られたフィルムを比較例である市販の3種類
のフィルムと比較して緒特性値を記述しである。Table 2 describes the characteristic values of the obtained film in comparison with three commercially available films serving as comparative examples.
表 1
*但しmp及びVicat収縮率はいずれも主体層とし
て層比率の高い方の樹脂で表わした。Table 1 *However, both mp and Vicat shrinkage rates are expressed using the resin with a higher layer ratio as the main layer.
比較サンプル0は市販のPVCシュリンク・フィルム、
○は同PPシュリンク・フィルム、0は同架橋ポリエチ
レン・シュリンク・フィルム。Comparative sample 0 is a commercially available PVC shrink film,
○ indicates the same PP shrink film, 0 indicates the same crosslinked polyethylene shrink film.
得られたフィルムはいずれも優れた特性を示し比較例の
、O1Oフィルム以上の特性を有するものであちた。又
出来た各種フィルムを収縮用途用フィルムとしてキュウ
リ、4本市販のL型シーラーにより包みを90℃の熱風
が出る市販のトンネルを1秒間通過させることにより、
タイトでシワもなくフィツトし包装仕上りが良く、収縮
後の光学特性の悪化もなく、美麗に収縮包装ができるも
のであった。又、収縮包装時の熱風温度トンネル内の滞
留時間を変化させて試験してみた結果、低温側から広い
温度、スピード範囲で良好に包装できる結果が得られた
。All of the obtained films showed excellent properties and had properties superior to that of the O1O film of the comparative example. In addition, the resulting various films were used as shrinkage films for cucumbers, and the packages were wrapped using a commercially available L-shaped sealer and passed through a commercially available tunnel that emitted hot air at 90°C for 1 second.
It was a tight, wrinkle-free fit, had a good packaging finish, and had no deterioration in optical properties after shrinkage, allowing for beautiful shrink wrapping. Further, as a result of testing by varying the residence time in the hot air temperature tunnel during shrink wrapping, results were obtained that the wrapping could be performed well over a wide temperature and speed range starting from the low temperature side.
以上に比して市販のポリプロピレン収縮フィルムは12
0℃でもほとんど収縮しなくサンプルにシワを残したま
まであり、同条件下熱風温度を上げて18,0℃で5秒
間通過しなくては十分な収縮ができなく、これより上げ
ても、又滞留時間を長くしても、フィルムに穴がおいて
破れたり、フィルムが失透したりして、適正温度範囲が
非常に狭いものであったが、本サンプルのフィルムはフ
ィルムの光学特性は収縮後も殆んど変化がなく例えばR
un Nα2は40%収縮後で0.7%であった。又市
販のPVC収縮フィルムは同条件ではまだ収縮不足で、
シワが残り、温度条件を160℃で4秒間とする必要が
あった。又収縮曲線では同じレベルでもPVCより応答
性がより早いことが判明した。フィルムの強度、伸び、
加熱収縮特性は、二軸延伸の場合は縦、横ともバランス
がとれた特性を示しているので以後縦、横の平均値で表
わすこ □ととする。Compared to the above, commercially available polypropylene shrink film has 12
Even at 0℃, there is almost no shrinkage and wrinkles remain on the sample, and under the same conditions, the hot air temperature must be increased and the temperature is passed for 5 seconds at 18.0℃ to achieve sufficient shrinkage. Even if the residence time was extended, the film would have holes and breakage, and the film would become devitrified, so the appropriate temperature range was very narrow, but the optical properties of the film in this sample did not shrink. There is almost no change after that, for example, R
un Nα2 was 0.7% after 40% contraction. Also, commercially available PVC shrink film still does not shrink enough under the same conditions.
Wrinkles remained, and it was necessary to set the temperature condition to 160° C. for 4 seconds. It was also found that the shrinkage curve showed faster response than PVC even at the same level. Film strength, elongation,
In the case of biaxial stretching, the heat shrinkage properties show well-balanced properties in both the longitudinal and transverse directions, so they will be expressed as the average value in the longitudinal and transverse directions.
又、比較例としてRun Nα2の原反を用い延伸温度
92℃で延伸を試みようとした場合、延伸中の首部がく
ねり、非常に不安定ですぐパンクしてしまい、うまく延
伸することが出来なかった(比較例Run No、 1
)。このフィルムの小片のヘイズを測定してみると6
.8%と高い値を有する透明性の悪いフィルムであった
。又収縮応力値も40g/mm2と低いものであった。In addition, as a comparative example, when trying to stretch the original fabric of Run Nα2 at a stretching temperature of 92°C, the neck part was bent during stretching, and it was very unstable and easily punctured, making it impossible to stretch it successfully. (Comparative example Run No. 1
). When I measured the haze of a small piece of this film, it was 6.
.. It was a film with poor transparency having a high value of 8%. The shrinkage stress value was also as low as 40 g/mm2.
延伸温度を135℃とした時ようやくバブルが連続的に
形成された。このフィルムはヘイズ値5.9%で低温収
縮性はなく収縮勾配4.8で、20%収縮率は89℃で
Vicat収縮率は14%であり、収縮応力は12g/
mm2で引張強度は3.5 kg / mm2同伸び4
90%でありとても高配向のフィルムといえるものでは
なかった。RunNo、3の原反を用いて85℃の延伸
温度で延伸しようとしたが延伸中のバブルが不安定でパ
ンクしやすかった。又光学特性も悪くヘイズ値8.5%
であり、引張強度も4、3 kg / mm2と低く低
温収縮性の低いフィルムであった。Bubbles were continuously formed only when the stretching temperature was set to 135°C. This film has a haze value of 5.9%, no low temperature shrinkage, a shrinkage slope of 4.8, a 20% shrinkage rate of 89°C, a Vicat shrinkage rate of 14%, and a shrinkage stress of 12 g/
Tensile strength in mm2 is 3.5 kg / mm2 elongation 4
It was 90% and could not be called a highly oriented film. An attempt was made to stretch the original fabric of Run No. 3 at a stretching temperature of 85° C., but the bubbles during stretching were unstable and easily punctured. Also, the optical properties are poor, with a haze value of 8.5%.
The film had a low tensile strength of 4.3 kg/mm2 and low low-temperature shrinkability.
実験例2
実験例1と同様な方法で、3台の押出機、3種3層グイ
、3種5層ダイをそれぞれ用いて表3の各組成よりなる
層の組合せで原反を得た。Run Nα11.12の原
反はエネルギー線として電子線を照射した後、その他の
原反はそのまま後述のような延伸温度で冷間延伸を行な
いフィルムを得た。Experimental Example 2 In the same manner as in Experimental Example 1, original fabrics were obtained using the combinations of layers having the compositions shown in Table 3 using three extruders, three types of three-layer die, and three types of five-layer die. After the raw fabric of Run Nα11.12 was irradiated with an electron beam as an energy beam, the other raw fabrics were subjected to cold stretching at a stretching temperature as described below to obtain a film.
これらのフィルムの特性を表4に示す。The properties of these films are shown in Table 4.
ここで
al、cl は前出
C2はエチレン−酢酸ビニル共重合体(酢ビニル基含量
ご6.7モル%、メルトインデックス:1.2、mp:
83℃、
Vicat : 63℃);
blはエチレン−アクリA酸二チル共重合体くアクリル
酸基台1: 5.8モル%、メルトインデックス:2.
0、mp:
82℃、Vicat : 67℃);b2はエチレン
−メチルメタアクリル酸エステル共重合体の部分ケン化
物(メチ
ルメタアクリル酸エステル基含量=
7、0モル%、メルトインデックス:5、mp:84℃
、vicat : 64℃);C2はエステル−メチ
ルメタアクリル酸エステル共重合体の部分ケン化(40
%)重合体よりなるアイオマー樹脂(Na
タイプ)(メタアクリル酸及び同エス
テル基含量ニア、0モル%、メルトインデックス:1.
0、mp:90℃、
Vicat 56℃);
PE は低密度ポリエチレン(密度: 0.917g
/cm3、メルトインデックス0.4、mp+108℃
、Vicat : 90℃);PB、は結晶性ポリブ
テン−1(密度: 0.905g/Cm3、ブテン−1
〜97モル%、mp:ti7、Vicat : 10
8℃);PP は結晶性ポリプロピレン(密度0.8
8g/cm3、プロピレン:97モル%でエチレンでモ
デファイしたもの、メル
トフローレート=6.0、mp:150℃、Vicat
: 145℃);
EPEはエチレン−αオレフイン共重合エラストマー(
αオレフィンがプロピレン
で15モル%、エチリデンノルボルネ
ン2重量%をランダム共重合、メルト
インデックス0.45密度0.88g/Cm3) :
Ny+はナイロン6.66共重合体;
S E V A +iエチレン55モル%の酢酸ビニル
との共重合体(EVA)でケン化度9
8%のもの
* 1 ) ?Mradの電子線照射処理で31層はG
elが48重量%、
* 2 ) 8Mradの電子線照射処理で02、’)
2層はそれぞれGelが45重量%、25重量%
延伸する時の温度はRunNo、6〜12でそれぞれ4
6.33.51.31.39.35.42℃でヨコ延伸
比はほぼ:3〜4倍、タテ延伸比は2.8〜4倍であり
いずれも安定に延伸することが出来た。得られたフィル
ムはいずれも優れた特性、特に光学特性、強度特性にす
ぐれたものであった。Here, al, cl are the above-mentioned C2 is an ethylene-vinyl acetate copolymer (6.7 mol% based on vinyl acetate group content, melt index: 1.2, mp:
83°C, Vicat: 63°C); bl is ethylene-dityl acrylate copolymer, acrylic acid base 1: 5.8 mol%, melt index: 2.
0, mp: 82°C, Vicat: 67°C); b2 is a partially saponified product of ethylene-methyl methacrylate copolymer (methyl methacrylate group content = 7, 0 mol%, melt index: 5, mp :84℃
, vicat: 64°C); C2 is partially saponified ester-methyl methacrylate copolymer (40°C);
%) Iomer resin (Na type) consisting of a polymer (methacrylic acid and ester group content near, 0 mol%, melt index: 1.
0, mp: 90°C, Vicat 56°C); PE is low density polyethylene (density: 0.917g
/cm3, melt index 0.4, mp+108℃
, Vicat: 90°C); PB is crystalline polybutene-1 (density: 0.905 g/Cm3, butene-1
~97 mol%, mp: ti7, Vicat: 10
8℃); PP is crystalline polypropylene (density 0.8℃); PP is crystalline polypropylene (density 0.8
8 g/cm3, propylene: 97 mol% modified with ethylene, melt flow rate = 6.0, mp: 150°C, Vicat
: 145°C); EPE is an ethylene-α-olefin copolymer elastomer (
α-olefin is a random copolymerization of 15 mol% propylene and 2% by weight ethylidenenorbornene, melt index 0.45 density 0.88 g/Cm3): Ny+ is nylon 6.66 copolymer; SE V A +i ethylene 55 mol % vinyl acetate copolymer (EVA) with a degree of saponification of 98%*1)? The 31st layer is G by Mrad's electron beam irradiation treatment.
el is 48% by weight, *2) 02,') by 8 Mrad electron beam irradiation treatment
The two layers each contain 45% by weight and 25% by weight of Gel.The temperature during stretching was 4 for Run No. 6 to 12, respectively.
At 6.33.51.31.39.35.42°C, the horizontal stretching ratio was approximately 3 to 4 times, and the vertical stretching ratio was 2.8 to 4 times, and stable stretching was possible in both cases. All of the obtained films had excellent properties, particularly excellent optical properties and strength properties.
RunNo、6.7について実施例1と同様ににんじん
3本で実用包装テストを行なった結果80℃の熱風で0
.8秒間処理するだけで非常にすぐれた光学特性で、仕
上がりの良い包装品が出来た。又、前述市販のωpvc
、■PP10架橋PEの各サンプルとRunNIIL6
のフィルムについてそれぞれの適する収縮温度でタテ、
ヨコの平均寸法で20.40.60%収縮後のヘイズ値
を調べた結妥■PVC1,9,2,0,2,3%、■P
Pで2.8.6.5.11.0%、0架橋P E 2.
5.4.8.6.5%と、いずれも大きく悪化するもの
が多いが、RunNo、6では0.7、)、8.0.9
%と優れた値を示した。Regarding Run No. 6.7, we conducted a practical packaging test using 3 carrots in the same way as in Example 1, and as a result, 0 with hot air at 80°C.
.. After just 8 seconds of processing, a packaged product with excellent optical properties and a good finish was produced. In addition, the commercially available ωpvc mentioned above
, ■Each sample of PP10 crosslinked PE and RunNIIL6
vertically at the appropriate shrinkage temperature for each film.
Conclusion of examining the haze value after shrinking by 20.40.60% in the average horizontal dimension ■PVC1, 9, 2, 0, 2, 3%, ■P
2.8.6.5.11.0% with P, 0 crosslinked P E 2.
5.4.8.6.5%, all of which are greatly deteriorated in many cases, but Run No. 6 is 0.7,), 8.0.9
It showed an excellent value of %.
又RunNo、6の原反を用いて各延伸温度でテストし
た結果85〜90℃ではバブルが不安定でパンりしやす
く、光学特性、低温収縮性、強度とも悪く、ヘイズ7.
6%、20%収縮率84℃、引張強度3.9 kg /
mm2であった。延伸性は40〜60℃程度が安定性
及びフィルムの光学特性等、緒特性とも好ましいもので
あった。In addition, tests were conducted at various stretching temperatures using the original fabric of Run No. 6. At 85 to 90°C, bubbles were unstable and prone to puncture, the optical properties, low-temperature shrinkability, and strength were poor, and the haze was 7.
6%, 20% shrinkage rate 84℃, tensile strength 3.9 kg/
It was mm2. Stretchability of about 40 to 60° C. was preferable in terms of stability, film optical properties, and other properties.
実施例1
実験例2と同様な方法にて次表の表5の組合せで原反を
得て、RunNo、13.14.18.19の延伸温度
32.35.40.55℃で安定にフィルムを得た。こ
のものの特性を表6に示す。Example 1 A raw film was obtained using the combinations shown in Table 5 in the same manner as in Experimental Example 2, and the film was stably formed at a stretching temperature of 32.35.40.55°C with Run No. 13.14.18.19. I got it. The properties of this product are shown in Table 6.
表 5
ここに
a l、 C2,NVI、 PPt PBt、 b2
ttM$PDCI は塩化ビニリデン共重合体:塩化ビ
ニルを10重量%共重合した
もの主体;
P D C2は塩化ビニリデン共重合体ニアクリル酸を
共重合したちの;
b3はエチレン−メタアクリル酸共重合体(メタアクリ
ル酸基含量ニア、0モル
%メルトインデックス5、mp:
83℃、Vicat : 62℃)
*) 比のは市販の肉色装用バリヤーシュリンクバック
でバリヤ一層は塩化ビニリデン系フィルムで約10μ、
外層は16μのEVA、内層はは照射EVA系で36μ
のフィルム。Table 5 here a l, C2, NVI, PPt PBt, b2
ttM$PDCI is a vinylidene chloride copolymer: a 10% by weight copolymer of vinyl chloride; PDC2 is a vinylidene chloride copolymer copolymerized with nialic acid; b3 is an ethylene-methacrylic acid copolymer (Methacrylic acid group content near, 0 mol% melt index 5, mp: 83°C, Vicat: 62°C)
The outer layer is 16μ EVA, and the inner layer is 36μ irradiated EVA.
film.
各Run No、のサンプルとも比較凭ンプルより光学
特性、低温収縮性、収縮応力特性、引張強度、衝撃強度
、とも優れたものであり、又バリヤー特性も優れていた
。実用テストとして3kgの加工肉を真空包装した後8
0℃の温水のシャワー中に3 sec間通し、処理する
事によりタイトにシュリンクした保存性の良い包装物が
得られた。The samples of each Run No. had better optical properties, low-temperature shrinkability, shrinkage stress properties, tensile strength, and impact strength than the comparative samples, and also had better barrier properties. After vacuum packaging 3 kg of processed meat as a practical test, 8
By placing the package in a hot water shower at 0° C. for 3 seconds, a tightly shrinkable package with good shelf life was obtained.
RunNα21として第1〜5層をc2+Ny、の混合
比80/20重量比を第1.5層としく中間層)第3層
PDCI、第2.4層をC2としてそれぞれの厚み化第
1〜5層の順に100150/100150/150(
μ)として、同法で47℃で延伸した結果安定に延伸が
行なえヘイズ:1.1%、20%収縮温度:58℃、収
縮勾配: L 1 、Vicat収縮率=38%、最大
収縮率79%収縮応カニ250g/m+n2、引張強度
: 15. Okg/mm2、同伸度210%、落錐強
度90 kg−cm以上、02バリヤー性: 25cc
/m2・24hr−atmの50μのフィルムを得た。As RunNα21, the 1st to 5th layers are C2+Ny, the mixing ratio is 80/20, the weight ratio is the 1.5th layer, the middle layer is PDCI, the 2.4th layer is C2, and the thicknesses of the 1st to 5th layers are respectively increased. 100150/100150/150 (in order of layers)
μ), the same method was used to stretch at 47°C, resulting in stable stretching. Haze: 1.1%, 20% shrinkage temperature: 58°C, shrinkage slope: L 1 , Vicat shrinkage rate = 38%, maximum shrinkage rate 79 % shrinkage 250g/m+n2, tensile strength: 15. Okg/mm2, elongation 210%, falling strength 90 kg-cm or more, 02 barrier property: 25cc
A 50μ film of /m2·24hr-atm was obtained.
このフィルムを同様に実用包装した結果、同様に優れた
包装結果を得た。As a result of practical packaging of this film, similarly excellent packaging results were obtained.
Run No、 22として、No、 13の原反及び
No、 14の原反に電子線により5 Mradのエネ
ルギー線照射を行なってalがGel 6重量%、C
2がGelIO重量%にメルトインデックス0.05以
下に低度の架橋処理をした。この時この程度の処理では
第2層及び第3層の分解はほとんど見られなかった。As Run No. 22, the original fabric No. 13 and the original fabric No. 14 were irradiated with an energy beam of 5 Mrad using an electron beam, and Al was 6% by weight of Gel and C.
No. 2 was subjected to a low degree of crosslinking treatment to give a melt index of 0.05 or less to GelIO weight %. At this time, with this level of treatment, almost no decomposition of the second and third layers was observed.
この原反をそれぞれ同様な条件で延伸し、安定にフィル
ムが得られた。そのフィルムは処理前と似た特性をしめ
した。但し引張強度、衝撃強度は20%程度向上してい
た。This original fabric was stretched under the same conditions, and a stable film was obtained. The film exhibited properties similar to those before treatment. However, the tensile strength and impact strength were improved by about 20%.
比較例として、Run No、 13.14の原反を用
いて100℃で延伸を試みたがパンクして延伸が長時間
連続せず、しかもタテ方向に未延伸のスジ等が発生して
うまくゆかなかった。又そのフィルムも白っぽく光学特
性も悪くヘイズ13%で強度も引張強度4.5 kg/
mm2、と低いフィルムであった。As a comparative example, we tried stretching at 100°C using a raw fabric with Run No. 13.14, but the stretching did not continue for a long time due to punctures, and unstretched streaks appeared in the vertical direction, so it was not successful. There wasn't. Also, the film was whitish and had poor optical properties, haze of 13%, and tensile strength of 4.5 kg/
It was a film with a low thickness of mm2.
又85℃で延伸を試みたがバブルのくねりが発生してす
ぐパンクしてしまい延伸を連続させることが出来なかっ
た。80〜66℃までは時々パンクするがほぼ延伸をす
ることが出来、それ以下の30〜50℃では前述のごと
く最も安定に行なうことが出来、物性値も良かった。又
、市販の比■のフフィルム、100℃でのフィルム、R
un No、 l 3.14でのフィルムを手でもむよ
うにしてくり返し折曲げ試験をしだ後02バリヤー性を
測定すると、Run No、 13.14のものはほと
んど悪化しないのに比しの及び100℃のフィルムは2
.3倍に悪化していた。これはバリヤ一層の耐ピンホー
ル性が本例の冷間高延伸フィルムが特に優れていること
を示す。これはバリヤ一層にも充分低温で延伸がセット
されるためと思われる。Further, although stretching was attempted at 85° C., bubble bending occurred and the film was immediately punctured, making it impossible to continue stretching. At temperatures from 80 to 66°C, stretching was possible although there were occasional punctures, and below that temperature, from 30 to 50°C, the stretching was most stable as described above, and the physical properties were good. In addition, commercially available film of ratio ①, film at 100°C,
When the 02 barrier property was measured after repeatedly bending the film in Run No. 3.14 by hand-wrapping it, it was found that the film in Run No. 13.14 showed almost no deterioration; The film is 2
.. It was three times worse. This shows that the highly cold stretched film of this example has particularly excellent pinhole resistance in the barrier layer. This seems to be because the barrier layer is also stretched at a sufficiently low temperature.
第1図はフィルムの収縮率と加熱処理温度との関係を示
し、第2図はフィルムの収縮応力と加熱処理温度の関係
を示す。(図中、1はRun Nα3のフィルム:2は
Run Nα14のフィルム;3は市販の可塑化PVC
シュリンクフィルム;4は市販のPPシュリンクフィル
ム;5は市販の架橋ポリエチレンシュリンクフィルム:
6は前述の市販のバリヤーシュリンクフィルム)FIG. 1 shows the relationship between film shrinkage rate and heat treatment temperature, and FIG. 2 shows the relationship between film shrinkage stress and heat treatment temperature. (In the figure, 1 is a film of Run Nα3; 2 is a film of Run Nα14; 3 is a commercially available plasticized PVC
Shrink film; 4 is a commercially available PP shrink film; 5 is a commercially available crosslinked polyethylene shrink film:
6 is the commercially available barrier shrink film mentioned above)
Claims (8)
において、一層が下記共重合体(A)〜(C)より選ば
れた少なくとも1種の共重合体: (A)ビニルエステル単量体とエチレンとの共重合体; (B)脂肪族不飽和カルボン酸、脂肪族不飽和カルボン
酸アルキルエステルより選ばれる単量体とエチレンとの
共重合体; (C)前記共重合体(B)から誘導されたアイオノマー
系共重合体。 を主体として含み、他層は塩化ビニリデンを主体とする
共重合体を含み、別の他層が上記共重合体(A)〜(C
)より選ばれた少なくとも1種の共重合体であって且つ
上記一層とは別の共重合体、ナイロン、エチレン−酢酸
ビニル共重合体ケン化物、低密度ポリエチレン、結晶性
ポリプロピレンより選ばれる少なくとも1種の重合体を
含み、その引張強度が5kg/mm^2以上であり、及
び収縮勾配が2.0以下であることを特徴とする冷間高
延伸多層フィルム。(1) In a multilayer highly stretched film consisting of three or more types of polymer layers, one layer is at least one type of copolymer selected from the following copolymers (A) to (C): (A) Vinyl ester monomer (B) A copolymer of ethylene and a monomer selected from aliphatic unsaturated carboxylic acids and aliphatic unsaturated carboxylic acid alkyl esters; (C) The above copolymer (B) ) is an ionomeric copolymer derived from , another layer contains a copolymer mainly composed of vinylidene chloride, and another layer contains the above copolymers (A) to (C
) at least one copolymer selected from a copolymer other than the above single layer, nylon, saponified ethylene-vinyl acetate copolymer, low-density polyethylene, and crystalline polypropylene. 1. A cold highly stretched multilayer film comprising a certain polymer, having a tensile strength of 5 kg/mm^2 or more, and a shrinkage gradient of 2.0 or less.
くとも1種の共重合体: (A)ビニルエステル単量体とエチレンとの共重合体; (B)脂肪族不飽和カルボン酸、脂肪族不飽和カルボン
酸、アルキルエステルより選ばれる単量体とエチレンと
の共重合体; (C)前記共重合体(B)から誘導されたアイオノマー
系共重合体。 を主体として含み、他層は塩化ビニリデンを主体とする
共重合体を含み、別の他層が上記共重合体(A)〜(C
)より選ばれた少なくとも1種の共重合体であって且つ
上記一層とは別の共重合体、ナイロン、エチレン−酢酸
ビニル共重合体ケン化物、低密度ポリエチレン、結晶性
ポリプロピレンから選ばれる少なくとも1種の重合体を
含む多層溶融状原反を押出し、これを液状冷媒により急
冷固化せしめて多層原反とし、得られた原反をそのまま
又は80℃以下の延伸温度で延伸を延伸開始部と加熱部
とを実質上隔離することを目的とした整流接触ガイドを
用いフィルム表面に同伴する流体及びその境膜を周方向
に少なくとも不連続的に接触除去しながら面積延伸倍率
3〜30倍に冷間延伸することを特徴とする多層高延伸
フィルムの製造方法。(2) At least one copolymer selected from the following copolymer groups (A) to (C): (A) Copolymer of vinyl ester monomer and ethylene; (B) Aliphatic unsaturated A copolymer of ethylene and a monomer selected from carboxylic acids, aliphatic unsaturated carboxylic acids, and alkyl esters; (C) An ionomeric copolymer derived from the copolymer (B). , another layer contains a copolymer mainly composed of vinylidene chloride, and another layer contains the above copolymers (A) to (C
) at least one copolymer selected from the group consisting of at least one copolymer selected from the group consisting of a copolymer other than the above single layer, nylon, saponified ethylene-vinyl acetate copolymer, low-density polyethylene, and crystalline polypropylene. A multilayer molten original fabric containing a seed polymer is extruded, and this is rapidly cooled and solidified using a liquid refrigerant to form a multilayered original fabric, and the obtained original fabric is stretched as it is or at a stretching temperature of 80°C or less by heating with the stretching start part. Using a rectifying contact guide for the purpose of substantially isolating the film surface, the film is cold-stretched at an area stretching ratio of 3 to 30 times while contacting and removing the fluid entrained on the film surface and its film at least discontinuously in the circumferential direction. A method for producing a multilayer highly stretched film, which comprises stretching.
る特許請求の範囲第(2)項記載の方法。(3) The method according to claim (2), in which the multilayer original fabric is heated to a temperature below the crystalline melting point of the main polymer.
許請求の範囲第(2)項記載の方法。(4) The method according to claim (2), wherein the multilayer original fabric is stretched at a stretching temperature of 20 to 70°C.
下で延伸する特許請求の範囲第(2)項、第(3)項又
は第(4)項記載の方法。(5) The method according to claim (2), (3) or (4), wherein the multilayer original fabric is stretched at a temperature below the Vicat softening point of the main polymer.
率が2〜7倍で延伸する特許請求の範囲第(2)項記載
の方法。(6) The method according to claim (2), wherein the multilayer original fabric is a tubular original fabric and is stretched at a transverse stretching ratio of 2 to 7 times.
伸倍率が2〜5倍である特許請求の範囲第(2)項また
は第(6)項記載の方法。(7) The method according to claim (2) or (6), wherein the stretching is carried out at an area stretch ratio of 7 to 20 times and a transverse direction stretch ratio of 2 to 5 times.
℃低い温度差をもうけて行なう特許請求の範囲第(2)
項記載の方法。(8) Stretch at least 5 times more at the end of stretching than at the beginning of stretching.
Claim No. (2) which is performed by creating a temperature difference that is as low as ℃
The method described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14543286A JPS61287721A (en) | 1986-06-21 | 1986-06-21 | Cold high-orientation multi-layer film and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14543286A JPS61287721A (en) | 1986-06-21 | 1986-06-21 | Cold high-orientation multi-layer film and manufacture thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15288379A Division JPS5675857A (en) | 1979-11-28 | 1979-11-28 | Cold high extending multilayer film and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61287721A true JPS61287721A (en) | 1986-12-18 |
JPH0349742B2 JPH0349742B2 (en) | 1991-07-30 |
Family
ID=15385108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14543286A Granted JPS61287721A (en) | 1986-06-21 | 1986-06-21 | Cold high-orientation multi-layer film and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61287721A (en) |
-
1986
- 1986-06-21 JP JP14543286A patent/JPS61287721A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0349742B2 (en) | 1991-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4469753A (en) | Cold drawn high-orientation multilayered film and process for manufacture of said film | |
JP3118473B2 (en) | Blends of polypropylene and ethylene copolymers and films made from the blends | |
US4615922A (en) | Oriented polymeric film | |
US4557780A (en) | Method of making an oriented polymeric film | |
US4277578A (en) | Composition for drawn film, cold drawn film made of said composition and process for manufacture of said film | |
JPS6079932A (en) | High-orientation stretchable multi-layer film and manufacture thereof | |
JPH058356A (en) | Shrinkable/stretchable multilayered film | |
US4336212A (en) | Composition for drawn film, cold drawn film made of said composition and process for manufacture of said film | |
JPH021014B2 (en) | ||
JPS63262242A (en) | Film having low shrinkage energy | |
JPS64216B2 (en) | ||
JPS625791B2 (en) | ||
JPS6040988B2 (en) | Low temperature heat shrinkable multilayer barrier film | |
JPS6097847A (en) | Heat-shrinkable laminated film | |
JPH0147311B2 (en) | ||
JPS6233946B2 (en) | ||
JP2023158008A (en) | Biaxially oriented polypropylene-based resin film, and package using the same | |
JPH0214898B2 (en) | ||
JP3071244B2 (en) | High transparency and high gloss oriented film | |
JPS58102762A (en) | Low-temperature heat-shrinkable multilayer barrier film and its manufacture | |
JPS6227981B2 (en) | ||
JPS61287720A (en) | Cold high-orientation multi-layer film and manufacture thereof | |
JPH11105222A (en) | Heat-shrinkable multilayered film | |
JPS61287721A (en) | Cold high-orientation multi-layer film and manufacture thereof | |
JPH0441902B2 (en) |