JPS6128751B2 - - Google Patents

Info

Publication number
JPS6128751B2
JPS6128751B2 JP52014126A JP1412677A JPS6128751B2 JP S6128751 B2 JPS6128751 B2 JP S6128751B2 JP 52014126 A JP52014126 A JP 52014126A JP 1412677 A JP1412677 A JP 1412677A JP S6128751 B2 JPS6128751 B2 JP S6128751B2
Authority
JP
Japan
Prior art keywords
treatment
chromate
galvanized steel
stage
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52014126A
Other languages
Japanese (ja)
Other versions
JPS53100139A (en
Inventor
Masayoshi Yoshida
Mitsuo Azuma
Tatsuya Kanamaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1412677A priority Critical patent/JPS53100139A/en
Publication of JPS53100139A publication Critical patent/JPS53100139A/en
Publication of JPS6128751B2 publication Critical patent/JPS6128751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は主として、鉄〜亜鉛合金よりなる合金
化亜鉛めつき鋼板の耐食性、塗装性等を向上せし
めるための前処理方法に関するものである。更に
詳しくは合金化亜鉛めつき鋼板製造業者が商品と
して出荷するための合金化亜鉛めつき鋼板の前処
理方法に関するものである。 本発明は合金化亜鉛めつき鋼板に、先ずエツチ
ング性クロメート処理を行ない、次いで6価又は
6価と3価のクロムイオンを含有する有機物水溶
液を塗布して、合金化亜鉛めつき鋼板に2層皮膜
を形成せしめるものである。合金化亜鉛めつき鋼
板のめつき層の平均的組成は鉄5〜20%、亜鉛80
〜95%、アルミニウム0〜1%で、その他に鉛、
カドミウム、スズその他不可避的混合物を微量含
有する。合金化亜鉛めつき鋼板は、溶融亜鉛めつ
き装置において、溶融亜鉛浴から引き上げられた
鋼帯或いは鋼板を、ガス又は誘導加熱、抵抗加熱
などの電気的手段で加熱する事により、鋼板と亜
鉛溶融層との合金化反応が行なわしめて得ること
が出来る。めつき層が主として亜鉛より成る通常
の溶融亜鉛めつき鋼板と比較した場合に、、合金
化亜鉛めつき鋼板の特徴は、 (1) 見掛けの単位表面積に対する真の表面積が大
きい。 (2) めつき層の化学的活性度が亜鉛単独の場合よ
り小さいので耐食性が良く、又塗料樹脂中の有
機酸基と反応して、金属石けんを生成する事が
相対的に少ない。 (3) 溶接性にすぐれている。 事である。 これらのすぐれた特徴を活用して、合金化亜鉛
めつき鋼板の使用分野は逐次拡大している。 合金化亜鉛めつき鋼板は、通常塗装されて実用
に供されるが、クロメート処理を施して出荷され
た場合は、鋼板の成形過程でプレス油、防錆油な
どの油分が、通常、鋼板表面に付着するので、塗
装前工程でこれら付着油分を除去(脱脂)しなけ
ればならない。工業的に最も一般的に使用されて
いる脱脂剤は、苛性ソーダ、苛性カリ及びそれら
のケイ酸塩、リン酸塩等を主成分とし、それに少
量の界面活性剤を添加する場合もあるが、要はこ
れらアルカリ性の脱脂液が、脱脂工程でクロメー
ト処理を施した合金化亜鉛めつき鋼板に接触する
場合、表面のクロメート皮膜の一部を溶解する。
この結果塗装を施さない、所謂裸板としての耐食
性、及び塗装下地としての耐食性能、塗装性能が
劣化する。このために通常は脱脂後に再度クロメ
ート処理を施すか、又はリン酸塩処理を行なつて
この問題を解決している。クロメート処理を施さ
ない合金化亜鉛めつき鋼板は、そのままの状態又
は防錆油を塗布して出荷され、実用に供される脱
脂後にただちに塗装しても、かなりの塗料密着
性、塗装耐食性能を示すが、より高度の塗装性能
を得る場合には、通常、リン酸塩処理が行なわれ
る。 本発明はこのような合金化亜鉛めつき鋼板の需
要家における塗装前処理工程を簡略化(又は省
略)する事、及び更に高度の塗装性能を確保する
ための、製造業者側における前処理方法に関する
ものである。需要家側では省工程、公害防止の面
から、可能な限りの塗装前処理工程を省略する趨
勢にあり、実作業としてリン酸塩処理工程を昇略
する動きにある。又塗装工程において、目につか
ない部分、例えば袋構造の内側部、鋼板あわせ部
など、形状面から物理的に塗装が困難な部分で
は、塗装以前に鋼板表面に相当な耐食性を付与し
ておくことが望ましい。或いは容易に塗装は行な
えても、コスト面から塗装を省略したい部分又は
塗装膜厚を薄くしたい部分などは、塗装を施さな
い、即ち裸板での耐食性が十分確保されていれば
無塗装或いは低塗膜厚化で良い場合もある。 本発明は上記問題点を有利に解決したもので、
その性能上の特徴は、需要家で脱脂、水洗(湯
洗)を行ない、リン酸塩処理工程を省略して直ち
に塗装が可能で、その塗装性能は従来のリン酸塩
処理を施した合金化亜鉛めつき鋼板と比較して同
等又はそれ以上の性能を示し、特にメラミンアル
キド系統の塗料には格段にすぐれた性能を示す。
又裸板(無塗装板)の耐食性もJIS Z−2371規定
の塩水噴霧テストでも好性能を示すので、実用用
途によつては塗装をしなくても長期使用に充分で
ある。 本発明の技術上の要点は素材に合金化亜鉛めつ
き鋼板を使用し先ず第1段のクロメート処理に於
いて、合金化亜鉛鉄板に適したエツチング性クロ
メート処理を施し、過剰のクロメート液を除去し
た後、直ちに水溶性有機ポリマー等を含む非エツ
チング性クロメート処理液を塗布した後に常法に
従い乾燥することを特徴とするものである。次に
本発明にかかわる処理液の組成についてのべる。 エツチング性クロメート処理液についてはその
主成分は、(1)クロム酸又は重クロム酸乃至はそれ
らの塩、(2)フツ化物等のエツチング剤、(3)リン
酸、硫酸等の無機酸よりなつており、1.5以下の
PHさらに好ましくは1以下のPH値のものが良い。
PH値が1.5を越えれば被処理面のエツチング能力
が低下し、素地に強固に密着し良好な性状を示す
クロメート皮膜を得難い。第2段処理液は、(1)ク
ロム酸又は重クロム酸乃至はそれらの塩、(2)水溶
性有機物、(3)PH調整のための無機酸を主成分と
し、そのPHは1以上さらに好ましくは1.5以上で
ある。第2段処理液のクロム酸、又は重クロム酸
乃至それらの塩は処理液中において6価又は一部
3価のクロムイオンとなるものであつて、最初か
ら6価と3価の両イオン価を有する形で添加して
も、又は初めは6価のクロムイオンだけで、処理
液中で水溶性有機化合物により一部還元されて3
価となるように工夫しても差支えない。水溶性有
機物はポリアクリル酸、ポリビニルアルコール、
セルロースのヒドロキシエチルエーテル、スチレ
ンと無水マレイン酸の共重合物が適しており、6
価クロムイオンの還元剤としてはピロガロール、
アルデヒド類が好適である。なお、還元残渣は皮
膜中に共存析出しても不都合ではない。又PH調整
のための無機酸としてはリン酸、ホウ酸等が使用
可能である。リン酸類はあまり多量であると、合
金化亜鉛めつき鋼板に対するエツチング剤ともな
り、また水溶性有機ポリマー等の安定性を害する
ので、PH調整のために必要な最低濃度にとどめる
必要があり、処理液のPHとして1以上であること
が必要である。 第4図に本発明による処理方法のフローシート
を示す。亜鉛めつきラインの合金化処理炉1を出
たストリツプ3は、表面処理部2で処理される。
第5図は表面処理部2の詳細図で即ちストリツプ
3は第1段化成処理において、エツチング性クロ
メート処理液のスプレー4により塗布をうけ、ス
トリツプ2上に残つた過剰の処理液をゴムロール
5で除去されたのち、第2段目の化成処理におい
て水溶性有機ポリマー等を含む非エツチング性ク
ロメート処理液のスプレー6により塗布をうけ、
引き続きロール7でしぼり、乾燥装置8で熱風乾
燥される。 本処理方法では2種のクロメート処理液が処理
槽内で相互に混合することなく、従つて有機ポリ
マーの凝集沈殿によるトラブルを避けることがで
きる。1段目の処理後、ストリツプを乾燥するこ
となく、ロールしぼりのみで直ちに第2段目のク
ロメート処理を行えば、ストリツプ上で水溶性有
機ポリマーの凝集が起るが、この場合はストリツ
プ表面でクロメート皮膜の1部となるので、全く
不都合はない。 本発明はゼンジマー式、無酸化炉式、或いはホ
イーリング式などで代表される連続式溶融亜鉛め
つき装置の出側部分、即ち溶融めつき部以降の部
分で、めつき工程に連続して行なうのが、耐食
性、塗装性などの性能上及び製造コストの面から
最も有利である。設備上の理由などでインライン
の連続処理が出来ない場合には、1段目のエツチ
ング性クロメート処理をインラインで行ない、そ
こで得られた合金化亜鉛めつき鋼板をストリツプ
又は切板の状態にして別の設備により、2段目の
処理、即ち6価又は6価及び3価のクロムを含む
有機物水溶液を塗布してもよい。この場合、1段
目の処理皮膜の上に2段目の処理皮膜を均一にし
かも密着性良く形成せしめるには、雰囲気条件に
もよるが、1段目の処理が終了してから約48時間
以内に2段目の処理を行なう事が必要である。本
発明の最ものぞましい適応条件はインラインで1
段目および2段目の処理を連続的に行なう事であ
る。1段目のクロメート処理を行ない、クロメー
ト処理液が合金化亜鉛めつき鋼板上で流動状態に
ない程度或いは半乾燥の状態で2段目の処理を行
なうのがのぞましい。即ち1段目のクロメート皮
膜が十分の結晶水を保有する状態で2段目の処理
を施すことが重要である。 前述の如く第1段処理のあと、一度クロメート
皮膜を乾燥してから第2段処理を行なう事も可能
ではあるが、約48時間以上の間隔をおく時は、第
1表に示すごとく、塩水噴霧耐食性の低下がみら
れることがあるので、第2段目の非エツチング性
クロメート処理は、第1段目のエツチング性クロ
メート処理後48時間以内に行なうべきである。合
金化亜鉛めつき鋼板は合金生成過程に起因する多
孔質の表面積の大きい表面になつており、クロメ
ート処理液を多量吸蔵するに好適である。しかし
その表面は主として鉄〜亜鉛合金より成るため
に、亜鉛に比して反応性に乏しいので、エツチン
グ性の弱い例えばPH1.5以上のクロム酸単独のク
ロメート処理液を適用したのではめつき素地に強
固に密着する健全なクロメート皮膜を形成しにく
い。この難点を解決するには例えば特公昭44−
25625号に記載されたクロメート処理液の様に、
例えばリン酸、硝酸、塩酸、弗化物などの強力な
エツチング剤との併用が必要である。これらの強
力なエツチング剤を含むクロメート処理液は、水
溶性有機ポリマーが共存した場合、水溶性有機ポ
リマー等の安定性を著しく阻害し、酸化重合など
の好ましくない反応を生ぜしめ、水溶性有機ポリ
マー等に期待する効果を大巾に減殺し、はなはだ
しい場合には溶液の白濁化、又は樹脂分の沈殿が
生じる。本発明はクロメート処理後にクロム酸及
びクロム酸塩を含む有機物水溶液を塗布する事に
よりこの難点を解決したもので、この方法によつ
て水溶性有機物種類の選択範囲が大巾に拡大し、
後述の如く、水溶性樹脂に期待する効果範囲を拡
大できたものである。 第1表にエツチング性クロメート単独処理、水
溶性有機ポリマーを含有する非エツチング性クロ
メート単独処理、及びエツチング性クロメート処
理後水溶性有機ポリマー等を含有する非エツチン
グ性クロメート処理を行う本発明の処理を行つた
合金化亜鉛鉄板の耐食性、塗装密着性の試験結果
を示す。第1表で明らかなように2段処理による
複合効果がよくわかる。
The present invention mainly relates to a pretreatment method for improving the corrosion resistance, paintability, etc. of an alloyed galvanized steel sheet made of an iron-zinc alloy. More specifically, the present invention relates to a method for pre-treating galvannealed steel sheets for shipment as products by manufacturers of galvannealed steel sheets. In the present invention, an alloyed galvanized steel sheet is first subjected to an etching chromate treatment, and then an organic aqueous solution containing hexavalent chromium ions or hexavalent and trivalent chromium ions is applied to coat the alloyed galvanized steel sheet in two layers. It forms a film. The average composition of the plating layer of alloyed galvanized steel sheets is 5 to 20% iron and 80% zinc.
~95%, aluminum 0-1%, and lead,
Contains trace amounts of cadmium, tin and other unavoidable mixtures. Alloyed galvanized steel sheet is produced by heating the steel strip or steel sheet pulled up from the molten zinc bath using gas or electric means such as induction heating or resistance heating in a hot-dip galvanizing equipment. It can be obtained by carrying out an alloying reaction with the layer. When compared with normal hot-dip galvanized steel sheets whose plating layer mainly consists of zinc, the characteristics of alloyed galvanized steel sheets are: (1) The true surface area is large relative to the apparent unit surface area. (2) Since the chemical activity of the plating layer is lower than that of zinc alone, it has good corrosion resistance and is relatively less likely to react with organic acid groups in the paint resin to form metal soap. (3) Excellent weldability. That's a thing. Taking advantage of these excellent features, the fields of use of alloyed galvanized steel sheets are gradually expanding. Alloyed galvanized steel sheets are usually painted and put into practical use, but if they are shipped with chromate treatment, oils such as press oil and anti-corrosion oil are usually deposited on the steel sheet surface during the forming process. These adhered oils must be removed (degreased) in the pre-painting process. The degreasing agent most commonly used industrially has caustic soda, caustic potash, and their silicates, phosphates, etc. as the main ingredients, and a small amount of surfactant may be added to it, but the main point is When these alkaline degreasing liquids come into contact with an alloyed galvanized steel sheet that has been subjected to chromate treatment during the degreasing process, it dissolves a portion of the chromate film on the surface.
As a result, the corrosion resistance as a so-called bare board without painting, the corrosion resistance as a base for painting, and the painting performance deteriorate. To solve this problem, usually a chromate treatment is performed again after degreasing, or a phosphate treatment is performed. Alloyed galvanized steel sheets that are not subjected to chromate treatment are shipped as is or coated with anti-corrosion oil, and even if they are painted immediately after being degreased for practical use, they exhibit considerable paint adhesion and paint corrosion resistance. However, phosphate treatment is usually used to obtain higher coating performance. The present invention relates to simplifying (or omitting) the pre-painting process for consumers of such alloyed galvanized steel sheets, and to a pre-treatment method on the manufacturer's side to ensure even higher painting performance. It is something. On the consumer side, there is a trend to omit as much pre-painting treatment process as possible in order to save processes and prevent pollution, and there is a movement to promote the phosphate treatment process as an actual work. In addition, during the painting process, in areas that are physically difficult to paint due to the shape, such as the inside of the bag structure and the parts where the steel plates meet, which are not visible to the naked eye, it is necessary to give the steel plate surface considerable corrosion resistance before painting. is desirable. Alternatively, even if it is easy to paint, areas where it is desired to omit painting due to cost considerations or areas where the thickness of the coating film should be reduced should not be painted.In other words, if the corrosion resistance of the bare board is sufficiently ensured, it may be left unpainted or with a low coating thickness. In some cases, thickening the coating film may be sufficient. The present invention advantageously solves the above problems,
Its performance characteristics are that it can be painted immediately by the customer by degreasing and washing with water (hot water washing), and omitting the phosphate treatment process; It shows the same or better performance than galvanized steel sheets, and it shows particularly excellent performance for melamine alkyd paints.
In addition, the corrosion resistance of the bare board (unpainted board) also shows good performance in the salt spray test specified in JIS Z-2371, so it may be sufficient for long-term use without painting depending on the practical application. The technical point of the present invention is to use an alloyed galvanized steel plate as the material, and in the first stage of chromate treatment, an etching chromate treatment suitable for the alloyed galvanized iron plate is applied, and excess chromate solution is removed. After that, a non-etching chromate treatment solution containing a water-soluble organic polymer or the like is immediately applied, followed by drying according to a conventional method. Next, the composition of the processing liquid related to the present invention will be described. The main components of the etching chromate treatment solution are (1) chromic acid or dichromate or their salts, (2) etching agents such as fluorides, and (3) inorganic acids such as phosphoric acid and sulfuric acid. and less than 1.5
The pH value is more preferably 1 or less.
If the pH value exceeds 1.5, the etching ability of the surface to be treated decreases, making it difficult to obtain a chromate film that firmly adheres to the substrate and exhibits good properties. The second stage treatment liquid is mainly composed of (1) chromic acid or dichromic acid or their salts, (2) water-soluble organic substances, and (3) inorganic acids for pH adjustment, and has a pH of 1 or more. Preferably it is 1.5 or more. The chromic acid, dichromic acid, or their salts in the second-stage treatment liquid become hexavalent or partially trivalent chromium ions in the treatment liquid, and have both hexavalent and trivalent ion ions from the beginning. Even if it is added in a form with
There is no harm in devising ways to make it more affordable. Water-soluble organic substances include polyacrylic acid, polyvinyl alcohol,
Hydroxyethyl ether of cellulose, copolymers of styrene and maleic anhydride are suitable;
As a reducing agent for valent chromium ions, pyrogallol,
Aldehydes are preferred. Note that it is not inconvenient even if the reduction residue co-precipitates in the film. In addition, phosphoric acid, boric acid, etc. can be used as inorganic acids for pH adjustment. If too much phosphoric acid is used, it can act as an etching agent for alloyed galvanized steel sheets and impair the stability of water-soluble organic polymers, etc. Therefore, it is necessary to keep the concentration to the minimum necessary for pH adjustment. It is necessary that the pH of the liquid is 1 or more. FIG. 4 shows a flow sheet of the treatment method according to the present invention. The strip 3 leaving the alloying furnace 1 of the galvanizing line is treated in a surface treatment section 2.
FIG. 5 is a detailed view of the surface treatment section 2. In the first stage chemical conversion treatment, the strip 3 is coated with an etching chromate treatment liquid by a spray 4, and the excess treatment liquid remaining on the strip 2 is removed by a rubber roll 5. After being removed, in the second stage chemical conversion treatment, it is applied with a spray 6 of a non-etching chromate treatment solution containing a water-soluble organic polymer, etc.
Subsequently, it is squeezed with a roll 7 and dried with hot air in a drying device 8. In this treatment method, the two types of chromate treatment solutions do not mix with each other in the treatment tank, and therefore troubles caused by agglomeration and precipitation of organic polymers can be avoided. If the second stage chromate treatment is performed immediately after the first stage treatment by simply squeezing the strip without drying it, the water-soluble organic polymer will agglomerate on the strip; Since it becomes part of the chromate film, there is no problem at all. The present invention is a continuous galvanizing process that is carried out continuously in the plating process at the outlet side of a continuous hot-dip galvanizing apparatus such as the Sendzimer type, non-oxidation furnace type, or Wheeling type, that is, the part after the hot-dip galvanizing part. However, it is the most advantageous in terms of performance such as corrosion resistance and paintability, and manufacturing cost. If continuous in-line processing is not possible due to equipment reasons, the first stage of etching chromate treatment is carried out in-line, and the alloyed galvanized steel sheet obtained is separated into strips or cut plates. The second stage treatment, that is, application of an organic aqueous solution containing hexavalent chromium or hexavalent and trivalent chromium may be performed using the above equipment. In this case, in order to form the second-stage treated film uniformly and with good adhesion on the first-stage treated film, it takes about 48 hours after the first-stage treatment is completed, depending on the atmospheric conditions. It is necessary to perform the second stage of processing within the next few days. The most desirable application condition of the present invention is inline 1
This means that the processing in the first and second stages is performed continuously. It is preferable to carry out the first chromate treatment and then carry out the second step when the chromate treatment solution is not in a fluid state on the alloyed galvanized steel sheet or is in a semi-dry state. That is, it is important to carry out the second stage treatment in a state where the first stage chromate film retains sufficient crystal water. As mentioned above, it is possible to dry the chromate film after the first stage treatment and then perform the second stage treatment, but if the interval is longer than 48 hours, use salt water as shown in Table 1. The second non-etching chromate treatment should be performed within 48 hours after the first etchable chromate treatment as a reduction in spray corrosion resistance may be observed. Alloyed galvanized steel sheets have a porous surface with a large surface area due to the alloy formation process, and are suitable for storing a large amount of chromate treatment solution. However, since the surface is mainly composed of an iron-zinc alloy, it has less reactivity than zinc, so applying a chromate treatment solution with weak etching properties, such as chromic acid alone with a pH of 1.5 or higher, will cause the plating substrate to deteriorate. It is difficult to form a healthy chromate film that firmly adheres to the surface. To solve this difficulty, for example,
Like the chromate treatment solution described in No. 25625,
For example, it is necessary to use a strong etching agent such as phosphoric acid, nitric acid, hydrochloric acid, or fluoride. When chromate treatment solutions containing these strong etching agents coexist with water-soluble organic polymers, they can significantly inhibit the stability of the water-soluble organic polymers, cause undesirable reactions such as oxidative polymerization, and degrade the water-soluble organic polymers. In severe cases, the solution may become cloudy or the resin may precipitate. The present invention solves this problem by applying an organic aqueous solution containing chromate and chromate after chromate treatment, and this method greatly expands the selection range of water-soluble organic substances.
As will be described later, the range of effects expected from water-soluble resins has been expanded. Table 1 shows the treatments of the present invention, including etching chromate treatment alone, non-etching chromate treatment containing a water-soluble organic polymer alone, and etching chromate treatment followed by non-etching chromate treatment containing a water-soluble organic polymer, etc. The results of tests on corrosion resistance and paint adhesion of alloyed galvanized iron sheets are shown below. As is clear from Table 1, the combined effect of the two-stage treatment can be clearly seen.

【表】 クロメート処理後に6価又は6価及び3価のク
ロムを含有する有機物水溶液を塗布する事によ
り、耐食性に関してはクロメート処理の塗布むら
(クロメート付着量のバラツキ)の悪影響を是正
し、又可撓性のある樹脂皮膜が形成するので、曲
げ、絞り、張り出し等の加工による耐食性低下を
軽減することができる。更にこの樹脂皮膜は下地
のクロメート皮膜の熱影響による劣化(主として
クロメート皮膜の脱水反応による)を抑制し、例
えば無塗装板の150℃ 20分の加熱処理による耐
食性の低下は第1図に示す如く、僅少である。ま
たこの樹脂皮膜はアルカリ溶液による脱脂に対し
て第2図に示す如く、下地のクロメート皮膜を保
護するに十分な抵抗力を有し、第3図に示す様
に、アルカリ脱脂による耐食性劣化が従来のクロ
メート処理法に比して小さい。 又塗料密着性に関しては樹脂皮膜の性状を、そ
の上に塗布する塗料とのなじみ性に適合する選択
を行なう事により、著しく向上せしめる事が可能
で、従来合金化亜鉛めつき鋼板の難点であつたメ
ラミンアルキド型塗料との密着性を飛躍的に向上
せしめる事も出来た。 なお合金化亜鉛めつき鋼板に最初の(1段目
の)クロメート処理を行なわずに直接6価クロム
又は6価及び3価のクロムを含有する有機ポリマ
ー等の水溶液を塗布するのみでは、前述したよう
に合金化亜鉛めつき鋼板は亜鉛に比して反応性が
乏しいのでめつき素地に強固に密着する建全なク
ロメート皮膜が形成し難く、従つて耐食性その他
の性能が十分ではない。 本発明は第1段階で例えば特公昭44−26525号
によるクロメート処理を施し、次いで第2段階で
6価又は6価と3価のクロムを含む水溶性有機ポ
リマーを施す2段処理によつて各段階の処理のす
ぐれた性能を引き出すのに成功したものである。
即ち、本発明では2段処理する事により、あらか
じめ強固で建全なクロメート皮膜を反応形成せし
め、その上に6価又は6価と3価のクロムを含む
有機物を含む皮膜を重複させることにより耐食
性、塗装密着性等の性能を飛躍的に向上せしめた
ものである。 1段目のクロメート皮膜量は、皮膜中のクロム
量として5〜200mg/m2が適当である。皮膜量が5
mg/m2以下であれば、1段目のクロメート処理の
効果が無くなり、200mg/m2を越えても皮膜の耐食
性の向上は、皮膜量200mg/m2に比して殆んど無視
出来る程度で、性能上の効果は期待できない。む
しろ合金化亜鉛めつき鋼板の皮膜量200mg/m2以上
表面に均一に1段で塗布する事は技術的にも難か
しく、クロメート皮膜厚のバラツキによる耐食性
のバラツキ及びクロメート汚れを生じやすく実用
的でない事が判明した。 2段目の6価又は6価及び3価のクロムを含む
有機物からなる皮膜量は、皮膜中のクロム量とし
て5〜200mg/m2が適当であり、その理由は1段目
のクロメート処理の場合と同様である。 本発明の利点は詳述した通りであるが、その他
にクロメート処理を2段に分けて行なう事によ
り、皮膜厚が均一で皮膜表面外観の良く、しかも
クロムとしての付着量の多い処理皮膜を容易に得
られる特徴も有することである。 次に本発明にかかわる処理浴組成について述べ
る。先ずエツチング性クロメート処理浴組成であ
るが、皮膜形成段階で、被処理材表面のアノード
部において、亜鉛、鉄の溶解または酸化が生じ、
カソード部において6価クロムイオンの還元がお
こなわれ、表面に3価及び6価のクロムを主体と
するクロメート皮膜が生成する。 合金化亜鉛めつき鋼板亜鉛めつき鋼板に比して
化学的活性度が小さいので、亜鉛及び鉄のアノー
ド溶解を一層促進せしめるとともに、アノード酸
化による不動態化を防止するためにリン酸、硫
酸、硝酸、塩酸、弗酸等の種類及びその塩類(含
錯塩)を単独或いは混合したものを6価クロム、
例えば無水クロム酸を主体とする溶液に添加して
いる。本発明の1段目のクロメート処理工程に適
用するクロメート処理浴組成もこれらと同様で、
例えば特公昭44−26525号に記載されている処理
浴及び処理条件がそのまま適用できる。即ち、例
えばCrO315g/、K2TiF64g/、H3PO410c.c./
より成るクロメート液も好適である。 次に6価又は6価及び3価のクロムを含有する
有機物水溶液についてクロム濃度は(Cr量換
算)0.5〜30g/の範囲が良い。0.5g/以下は
クロム添加効果がなく30g/以上は被処理板の
着色が著しく、また液の安定性が損なわれる。ク
ロム源としては無水クロム酸、クロム酸の硫酸
塩、硝酸塩、アンモニウム塩、ナトリウム又はカ
リウムのクロム酸塩、重クロム酸塩等が適当であ
り、有機物共存下の安定性を特に重要視する場合
にはアンモニウム塩、重クロム酸塩などが最も適
している。水溶性有機物としてはポリアクリル
酸、ポリビニルアルコール、セルロースのヒドロ
キシエチルエーテル、スチレンと無水マレイン酸
の共重合物、又6価クロムイオンの還元剤として
はアルデヒド類、ピロガロール等が適当で、その
添加割合は0.5〜30g/が適当である。30g/
をこえると溶液に被処理面に均一に塗布する事が
難かしく、またその具体的な性能向上も特に認め
られない。 更に塗布皮膜のブロツキング現象が著しくなる
ので、乾燥設備が膨大になり実用的でない。なお
6価クロム及び3価クロムを含有する有機物水溶
液組成物として、例えばアロジンNR−2(商品
名、日本ペイント(株)製)が市販されており、その
まま本発明に使用できる。ちなみにアロジンNR
−2はクロム酸の一部をピロガロールで3価のク
ロム酸に還元し、これにセルロースのヒドロキシ
エチルエーテルを添加したPH1.7〜2.0の水溶性有
機物水溶液である。 以上、本発明に使用する処理浴成分について述
べたが、本発明の要点は個々の薬品組成の規定に
あるのではなく、1段目で合金化亜鉛めつき鋼板
に制約条件のない最も適した強固なクロメート処
理を施し、次いで2段目で、1段目処理浴組成に
よる制約条件のない、最も合目的な有機物水溶液
を選定し、これに若干量のクロム化合物を添加し
た処理浴で処理する事により、1段目及び2段目
の処理の個々の効果及びその相乗効果を具現した
事にある。 次に本発明の具体的方法であるが、1段目のク
ロメート処理液は浸漬またはスプレー法で合金化
亜鉛めつき鋼板(鋼帯)上に塗布し、ロールまた
はエアーナイフなどで余剰液を絞るか、またはロ
ールヒーターで塗布しても良い。鋼板および/ま
たは処理液を好ましくは40℃〜80℃に加温する。
塗布後乾燥するかまたは濡れたままでも皮膜形成
反応が十分進んだ後、2段目の6価又は6価及び
3価のクロムを含有する有機物水溶液を浸漬また
はスプレーで塗布し、ロール又はエアーナイフで
余剰液を絞るかあるいはロールコーターで塗布し
ても良い。浴温は常温〜60℃が適当である。60℃
を越えると浴の安定性の点で長期連続使用に問題
を生じる場合がある。低温側では特に温度の限定
はないが、後の乾燥工程を容易にするためには浴
温の高い方が有利である。なお塗布後乾燥する。 以上、合金化亜鉛めつき鋼板の表面処理法につ
いて詳述したが、本発明はめつき層が主として亜
鉛よりなる亜鉛めつき鋼板にも当然適用出来る。
その場合、亜鉛めつき鋼板表面は合金化亜鉛めつ
き鋼板よりもクロメート処理液に対する反応性が
大きいので、亜鉛めつき鋼板に適した、強力なエ
ツチング剤を含有しない公知のクロメート処理
液、例えば無水クロム酸単独浴、無水クロム酸〜
弗化物浴を1段目のクロメート処理に適用し、次
いで前述の如く、6価又は6価及び3価のクロム
を含有する有機物水溶液を塗布すれば良い。 以下に本発明による実施例を示す。 実施例 1 Fe9.5〜10%、Zn90〜90.5%、Al 0.25%をめつ
き層の主成分とする合金化亜鉛めつき鋼板を、無
水クロム酸15g/、K2TiF64g/、H3PO410
c.c./よりなる水溶液(浴温50℃)に約0.5秒浸漬
後ゴムロールで絞り、過剰のクロメート処理液を
除去後60℃〜65℃の熱風で乾燥した。(この段階
でのクロメート皮膜中のクロム量は73.6mg/m2
あつた)次いで6価及び3価のクロムを含有する
有機物水溶液としてアロジンNR−2(商品名、
日本ペイント(株)製)を処理面に滴下し、ゴムロー
ルで過剰の液を除去後60〜65℃の熱風で乾燥した
ものを試験に供した。 実施例 2 亜鉛めつき鋼板をクロメート処理として
CrO3:16g/、Na2SiF6:1g/よりなる水溶
液(浴温50℃)に約1秒間浸漬後、過剰のクロメ
ート処理液をゴムロールで絞り除去した後60〜65
℃の熱風で乾燥した。次いで実施例1に示すアロ
ジンNR−2を同条件で処理したものを試験に供
した。尚1段目処理時のクロム付着量は65.5mg/
m2であつた。 実施例 3 実施例1に於いてクロメート処理後、ゴムロー
ルで過剰のクロメート処理液を除去後、ドライア
ーで乾燥する事なくアロジンNR−2を適用し
た。尚1段目処理時のクロム付着量は23.6mg/m2
であつた。 実施例 4 実施例1と同一条件で第1段クロメート処理
し、乾燥まで行つた。この段階でのクロム付着量
は70.0mg/m2であつた。 次いで有機物水溶液として、ポリアクリル酸1
g/、ホルマリンで一部還元された無水クロム
酸2g/を含み十分なる撹拌をしつつリン酸で
PH2.0に調整した水溶液(当溶液の全クロムに占
める6価クロムの割合:69重量%)を処理面にス
プレー塗布し、ゴムロールで過剰の液を除去後60
〜65℃の熱風で乾燥したものを試験に供した。 実施例 5 実施例1と同一条件でクロメート処理、乾燥ま
で行つた。この段階のクロム付着量は8.5mg/m2
あつた。 次いで水溶性有機ポリマーとして、ポリビニル
アルコール20g/、ホルマリンで一部還元され
た無クロム酸10g/を含み十分なる撹拌をしつ
つリン酸でPH2.5に調整した水溶液(当溶液の全
クロムに占める6価クロムの割合:80重量%)を
処理面にスプレー塗布しゴムロールで過剰の液を
除去したものを試験に供した。 実施例 6 実施例1と同一条件でクロメート処理、乾燥ま
で行つた。この段階のクロム付着量は56.5mg/m2
であつた。 次いで水溶性有機ポリマーとしてヒドロキシエ
チルセルローズ0.5g/、ホルマリンで一部還元
された無水クロム酸1g/を含み十分なる撹拌
をしつつリン酸でPH2.0に調整した水溶液(当溶
液の全クロムに占める6価クロムの割合:50重量
%)を処理面にスプレー塗布しゴムロールで過剰
の液を除去後60〜65℃の熱風で乾燥したものを試
験に供した。 実施例 7 Fe9.5〜10%、Zn90〜95%、Al 0.25%をめつ
き層の主成分とする合金化亜鉛めつき鋼板を無水
クロム酸15g/、Na2SiF64g/、H3PO410c.c./
よりなる水溶液(浴温60℃)に約1秒間浸漬
後、ゴムロールで絞り、過剰のクロメート処理液
を除去後60〜65℃の熱風で乾燥した。この段階で
のクロム付着量は103.2mg/m2であつた。 次いで水溶性有機ポリマーとしてポリアクリル
酸0.5g/、ポリビニルアルコール1.5g/、ヒ
ドロキシエチルセルロース0.3g/、
(NH42Cr2O720g/、Cr(NO33・9H2O3g/
を含み、十分なる撹拌をしつつリン酸でPH2.8に
調整した水溶液を処理面にスプレー塗布し、ゴム
ロールで過剰の液を除去後60〜65℃の熱風で乾燥
したものを試験に供した。 比較例 実施例1に示す合金化亜鉛めつき鋼板に同条件
で1段目のクロメート処理のみを施した。 試験方法 供試材は予めリドリン#75.1%60℃1分間スプ
レー脱脂し以下に試験に供する。 裸耐食性試験:JIS Z−2371に準拠した塩水噴霧
試験において、5面積%白錆発生時間をもつて
評価する。 塗料密着性試験:アクリル系塗料またはメラミン
系塗料を25μ塗装し、塗装板を40℃の温水中に
144時間浸漬したのち、以下の試験を行う。 ゴバン目エリクセン:ゴバン目2m/mエリクセ
ン6m/m張出し 衝 撃:1Kg×40cm 1/2″ 折曲げ:4T 以上の物性試験後セロテープ剥離し 全面塗膜剥離を1、全く塗膜損傷のない場合を
10とし、10段階区分評価を行つた。 塗装耐食性試験:アクリル系塗料またはメラミン
系塗料を各25μ塗装し、塗装板に素地に達する
クロスカツトを入れた後、JIS Z−2371に準拠
した塩水噴霧試験を240時間行つた後クロスカ
ツト部をセロテープ剥離する。全面塗膜剥離を
1、全く塗膜損傷のない場合を10とし、10段階
区分評価を行つた。 試験結果を第2表に示す。このように本発明方
法によれば優れた結果が得られた。
[Table] By applying an organic aqueous solution containing hexavalent or hexavalent and trivalent chromium after chromate treatment, the negative effects of uneven coating of chromate treatment (variations in the amount of chromate deposited) can be corrected, and the corrosion resistance can be improved. Since a flexible resin film is formed, deterioration in corrosion resistance due to processing such as bending, drawing, and overhanging can be reduced. Furthermore, this resin film suppresses the deterioration of the underlying chromate film due to thermal effects (mainly due to the dehydration reaction of the chromate film). , is very small. In addition, this resin film has sufficient resistance to degreasing with an alkaline solution to protect the underlying chromate film, as shown in Figure 2, and as shown in Figure 3, corrosion resistance deteriorates due to alkaline degreasing. It is smaller than the chromate treatment method. In addition, paint adhesion can be significantly improved by selecting the properties of the resin film that match the compatibility with the paint applied on top of it, which has been a problem with conventional alloyed galvanized steel sheets. It was also possible to dramatically improve the adhesion with melamine alkyd type paints. It should be noted that simply applying an aqueous solution of hexavalent chromium or an organic polymer containing hexavalent and trivalent chromium directly to an alloyed galvanized steel sheet without performing the first (first stage) chromate treatment will not result in the above-mentioned problems. As alloyed galvanized steel sheets have poor reactivity compared to zinc, it is difficult to form a solid chromate film that firmly adheres to the plating base, and therefore corrosion resistance and other properties are insufficient. The present invention involves a two-stage treatment in which a chromate treatment is performed in the first step, for example, according to Japanese Patent Publication No. 44-26525, and then a water-soluble organic polymer containing hexavalent or hexavalent and trivalent chromium is applied in the second step. This has succeeded in bringing out the superior performance of step-by-step processing.
That is, in the present invention, by performing a two-stage treatment, a strong and robust chromate film is reacted in advance, and then a film containing an organic material containing hexavalent or hexavalent and trivalent chromium is overlapped to improve corrosion resistance. , which has dramatically improved performance such as paint adhesion. The amount of chromate film in the first stage is suitably 5 to 200 mg/m 2 as the amount of chromium in the film. Film amount is 5
If the amount is less than mg/ m2 , the effect of the first stage chromate treatment will be lost, and even if it exceeds 200mg/ m2 , the improvement in corrosion resistance of the coating can be almost ignored compared to the coating amount of 200mg/ m2 . However, no effect on performance can be expected. Rather, it is technically difficult to uniformly coat the surface of an alloyed galvanized steel sheet with a coating amount of 200mg/m2 or more in one step, and it is easy to cause variations in corrosion resistance and chromate stains due to variations in the chromate coating thickness, making it impractical. It turned out that it wasn't. The amount of chromium in the second stage consisting of organic substances containing hexavalent or hexavalent and trivalent chromium is appropriate for the amount of chromium in the film, and the reason for this is that the chromate treatment in the first stage Same as in case. The advantages of the present invention are as described in detail, but in addition, by performing the chromate treatment in two stages, it is easy to produce a treated film with a uniform film thickness, good film surface appearance, and a large amount of chromium deposited. It also has the characteristics that can be obtained. Next, the composition of the processing bath related to the present invention will be described. First, regarding the etching chromate treatment bath composition, during the film formation stage, dissolution or oxidation of zinc and iron occurs at the anode portion of the surface of the treated material.
At the cathode, hexavalent chromium ions are reduced, and a chromate film mainly composed of trivalent and hexavalent chromium is formed on the surface. Alloyed galvanized steel sheet Since the chemical activity is lower than that of galvanized steel sheet, phosphoric acid, sulfuric acid, Types of nitric acid, hydrochloric acid, hydrofluoric acid, etc., and their salts (complex salts), singly or in combination, are used as hexavalent chromium,
For example, it is added to a solution mainly consisting of chromic anhydride. The chromate treatment bath composition applied to the first chromate treatment step of the present invention is also similar to these,
For example, the treatment bath and treatment conditions described in Japanese Patent Publication No. 44-26525 can be applied as is. That is, for example, CrO 3 15g/, K 2 TiF 6 4g/, H 3 PO 4 10c.c./
Also suitable are chromate solutions consisting of: Next, for an organic aqueous solution containing hexavalent chromium or hexavalent and trivalent chromium, the chromium concentration (in terms of Cr amount) is preferably in the range of 0.5 to 30 g/. If the amount is less than 0.5 g, there will be no effect of adding chromium, and if it is more than 30 g, the plate to be treated will be significantly colored and the stability of the solution will be impaired. As a chromium source, chromic anhydride, chromic acid sulfate, nitrate, ammonium salt, sodium or potassium chromate, dichromate, etc. are suitable, and when stability in the presence of organic matter is particularly important. Ammonium salts, dichromates, etc. are most suitable. Suitable water-soluble organic substances include polyacrylic acid, polyvinyl alcohol, cellulose hydroxyethyl ether, copolymers of styrene and maleic anhydride, and aldehydes, pyrogallol, etc. are suitable as reducing agents for hexavalent chromium ions, and their addition ratios A suitable amount is 0.5 to 30 g/. 30g/
If it exceeds 100%, it is difficult to uniformly apply the solution to the surface to be treated, and no specific improvement in performance can be observed. Furthermore, since the blocking phenomenon of the applied film becomes significant, the drying equipment becomes enormous and is not practical. As an organic aqueous solution composition containing hexavalent chromium and trivalent chromium, for example, Alodine NR-2 (trade name, manufactured by Nippon Paint Co., Ltd.) is commercially available and can be used as is in the present invention. By the way, Alodine NR
-2 is an aqueous solution of a water-soluble organic substance with a pH of 1.7 to 2.0, in which a portion of chromic acid is reduced to trivalent chromic acid with pyrogallol, and cellulose hydroxyethyl ether is added thereto. The treatment bath components used in the present invention have been described above, but the point of the present invention is not in specifying individual chemical compositions, but in determining the most suitable chemical composition for alloyed galvanized steel sheets without any constraints in the first stage. A strong chromate treatment is performed, and then in the second stage, the most appropriate organic aqueous solution is selected without any constraints imposed by the first stage treatment bath composition, and treated with a treatment bath to which a small amount of chromium compound is added. As a result, the individual effects of the first and second stage processing as well as their synergistic effects have been realized. Next, in a specific method of the present invention, the first-stage chromate treatment solution is applied onto an alloyed galvanized steel plate (steel strip) by dipping or spraying, and the excess solution is squeezed out using a roll or air knife. Alternatively, it may be applied using a roll heater. The steel plate and/or the treatment liquid are preferably heated to 40°C to 80°C.
After the film is dried after application, or after the film formation reaction has progressed sufficiently even if it is wet, a second stage organic aqueous solution containing hexavalent or hexavalent and trivalent chromium is applied by dipping or spraying, and then applied with a roll or air knife. The excess liquid may be squeezed out or applied using a roll coater. The appropriate bath temperature is room temperature to 60°C. 60℃
Exceeding this may cause problems with long-term continuous use in terms of bath stability. Although there is no particular limitation on the temperature on the low temperature side, a higher bath temperature is advantageous in order to facilitate the subsequent drying step. Please dry after application. Although the surface treatment method for alloyed galvanized steel sheets has been described in detail above, the present invention can of course also be applied to galvanized steel sheets in which the plating layer is mainly made of zinc.
In that case, since the surface of the galvanized steel sheet is more reactive to the chromate treatment solution than the galvanized steel sheet, a known chromate treatment solution suitable for the galvanized steel sheet that does not contain strong etching agents, such as anhydrous Chromic acid single bath, chromic acid anhydride ~
A fluoride bath may be applied to the first stage chromate treatment, and then, as described above, an organic aqueous solution containing hexavalent or hexavalent and trivalent chromium may be applied. Examples according to the present invention are shown below. Example 1 An alloyed galvanized steel sheet whose main components are Fe9.5~10%, Zn90~90.5%, and Al 0.25% was coated with chromic anhydride 15g/, K 2 TiF 6 4g/, H 3 PO 4 10
The sample was immersed in an aqueous solution of cc/ (bath temperature 50°C) for about 0.5 seconds, squeezed with a rubber roll to remove excess chromate treatment solution, and dried with hot air at 60°C to 65°C. (The amount of chromium in the chromate film at this stage was 73.6 mg/ m2 ) Next, an organic aqueous solution containing hexavalent and trivalent chromium was prepared using Allozin NR-2 (trade name,
(manufactured by Nippon Paint Co., Ltd.) was dropped onto the treated surface, excess liquid was removed with a rubber roll, and the product was dried with hot air at 60 to 65°C and used for testing. Example 2 Chromate treatment of galvanized steel sheet
After immersing for about 1 second in an aqueous solution (bath temperature 50°C) consisting of CrO 3 : 16 g/, Na 2 SiF 6 : 1 g/, excess chromate treatment solution was squeezed out with a rubber roll, and then 60 to 65
Dry with hot air at ℃. Next, Allozin NR-2 shown in Example 1 was treated under the same conditions and subjected to a test. The amount of chromium deposited during the first stage treatment was 65.5mg/
It was m2 . Example 3 After the chromate treatment in Example 1, excess chromate treatment solution was removed using a rubber roll, and then Allozin NR-2 was applied without drying with a dryer. The amount of chromium deposited during the first stage treatment was 23.6 mg/m 2
It was hot. Example 4 The first stage chromate treatment was carried out under the same conditions as in Example 1, including drying. The amount of chromium deposited at this stage was 70.0 mg/m 2 . Next, as an organic aqueous solution, polyacrylic acid 1
g/, containing 2 g/ of chromic anhydride partially reduced with formalin, and phosphoric acid with sufficient stirring.
Spray an aqueous solution adjusted to pH 2.0 (ratio of hexavalent chromium to total chromium in this solution: 69% by weight) to the treated surface, remove excess liquid with a rubber roll, and then
The samples were dried with hot air at ~65°C and used for testing. Example 5 Chromate treatment and drying were carried out under the same conditions as in Example 1. The amount of chromium deposited at this stage was 8.5 mg/m 2 . Next, as a water-soluble organic polymer, an aqueous solution containing 20 g of polyvinyl alcohol and 10 g of achromic acid partially reduced with formalin and adjusted to pH 2.5 with phosphoric acid with sufficient stirring (accounting for the total chromium in this solution) The treated surface was spray-coated with 80% by weight of hexavalent chromium, and the excess liquid was removed using a rubber roll. Example 6 Chromate treatment and drying were performed under the same conditions as in Example 1. The amount of chromium deposited at this stage is 56.5mg/m 2
It was hot. Next, an aqueous solution containing 0.5 g of hydroxyethyl cellulose as a water-soluble organic polymer and 1 g of chromic anhydride partially reduced with formalin and adjusted to pH 2.0 with phosphoric acid with sufficient stirring (total chromium in this solution) was added. The treated surface was spray-coated with 50% by weight of hexavalent chromium, the excess liquid was removed with a rubber roll, and then dried with hot air at 60 to 65° C., and then tested. Example 7 An alloyed galvanized steel sheet whose main components are Fe9.5~10%, Zn90~95%, and Al 0.25% was treated with chromic anhydride 15g/, Na 2 SiF 6 4g/, H 3 PO 4 10c.c./
After being immersed in an aqueous solution (bath temperature: 60°C) for about 1 second, the sample was squeezed with a rubber roll to remove excess chromate treatment solution, and then dried with hot air at 60 to 65°C. The amount of chromium deposited at this stage was 103.2 mg/m 2 . Next, as water-soluble organic polymers, polyacrylic acid 0.5g/, polyvinyl alcohol 1.5g/, hydroxyethyl cellulose 0.3g/,
(NH 4 ) 2 Cr 2 O 7 20g/, Cr(NO 3 ) 3・9H 2 O3g/
An aqueous solution containing 100% phosphoric acid and adjusted to pH 2.8 with phosphoric acid was sprayed onto the treated surface with sufficient stirring, excess liquid was removed with a rubber roll, and the solution was dried with hot air at 60 to 65°C and used for testing. . Comparative Example The alloyed galvanized steel sheet shown in Example 1 was subjected to only the first chromate treatment under the same conditions. Test method The test material was degreased in advance by spraying with Ridrin #75.1 at 60°C for 1 minute and then subjected to the following test. Bare corrosion resistance test: In a salt spray test based on JIS Z-2371, evaluation is performed based on the 5 area % white rust generation time. Paint adhesion test: Apply 25μ of acrylic paint or melamine paint and place the painted board in warm water at 40℃.
After soaking for 144 hours, perform the following tests. Goban Erichsen: Goban 2m/m Erichsen 6m/m Overhang Impact: 1Kg x 40cm 1/2″ Bending: After physical property test of 4T or more, cellophane tape is peeled off. 1 if the entire paint film is peeled off, and there is no damage to the paint film at all. of
10, and a 10-level classification evaluation was performed. Paint corrosion resistance test: After applying 25μ of each acrylic paint or melamine paint and making cross cuts that reach the substrate on the painted board, conduct a salt spray test in accordance with JIS Z-2371 for 240 hours, and then remove the cross cuts with cellophane tape. do. Evaluation was performed on a 10-point scale, with 1 being complete peeling of the paint film and 10 being no damage to the paint film at all. The test results are shown in Table 2. As described above, excellent results were obtained using the method of the present invention.

【表】 尚本発明は合金化処理しない亜鉛めつき鋼板に
適用しても耐食性、塗装性にすぐれた結果が得ら
れるので、本発明思想の適用範囲に包含されるも
のである。
[Table] Note that even when the present invention is applied to galvanized steel sheets that are not subjected to alloying treatment, excellent results in corrosion resistance and paintability can be obtained, so that the present invention is included within the scope of application of the idea of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、加熱処理と耐食性の関係を示す説明
図表、第2図は、脱脂によるクロム溶出を示す説
明図表、第3図は、脱脂による耐食性変化を示す
説明図表、第4図は、本発明方法を実施する場合
の装置説明図、第5図は、第4図の表面処理部の
詳細図である。
Fig. 1 is an explanatory chart showing the relationship between heat treatment and corrosion resistance, Fig. 2 is an explanatory chart showing chromium elution due to degreasing, Fig. 3 is an explanatory chart showing changes in corrosion resistance due to degreasing, and Fig. 4 is an explanatory chart showing the relationship between heat treatment and corrosion resistance. FIG. 5, which is an explanatory diagram of the apparatus for carrying out the method of the invention, is a detailed view of the surface treatment section shown in FIG. 4.

Claims (1)

【特許請求の範囲】[Claims] 1 合金化亜鉛めつき鋼板にCr量にして5〜200
mg/m2のPH1.5以下のエツチング性クロメート処理
液を施し、次いでピロガロール、アルデヒド類の
1種又は2種を用いて6価のクロムを1部3価ク
ロムに還元した溶液又は6価のクロム酸溶液にポ
リアクリル酸、ポリビニルアルコール、セルロー
スのヒドロキシエチルエーテル、スチレンと無水
マレイン酸の共重合物の1種又は2種以上の組み
合せの水溶性有機物水溶液を添加した溶液をCr
量にして5〜200mg/m2塗布することを特徴とする
合金化亜鉛めつき鋼板の表面処理方法。
1 Alloyed galvanized steel sheet with Cr content of 5 to 200
mg/m 2 of an etching chromate treatment solution with a pH of 1.5 or less, and then a solution in which a part of hexavalent chromium is reduced to trivalent chromium using pyrogallol, one or two of aldehydes, or a solution of hexavalent chromium A solution in which an aqueous solution of a water-soluble organic substance of one or more of polyacrylic acid, polyvinyl alcohol, cellulose hydroxyethyl ether, and a copolymer of styrene and maleic anhydride is added to a chromic acid solution is Cr.
A method for surface treatment of an alloyed galvanized steel sheet, characterized in that the coating is applied in an amount of 5 to 200 mg/ m2 .
JP1412677A 1977-02-14 1977-02-14 Surface treating method for alloyed zinc plated steel sheet Granted JPS53100139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1412677A JPS53100139A (en) 1977-02-14 1977-02-14 Surface treating method for alloyed zinc plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1412677A JPS53100139A (en) 1977-02-14 1977-02-14 Surface treating method for alloyed zinc plated steel sheet

Publications (2)

Publication Number Publication Date
JPS53100139A JPS53100139A (en) 1978-09-01
JPS6128751B2 true JPS6128751B2 (en) 1986-07-02

Family

ID=11852420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1412677A Granted JPS53100139A (en) 1977-02-14 1977-02-14 Surface treating method for alloyed zinc plated steel sheet

Country Status (1)

Country Link
JP (1) JPS53100139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147754A (en) * 1986-12-10 1988-06-20 Hamada Insatsuki Seizosho:Kk Terminal treatment method for roll paper and its device
JPH05330178A (en) * 1992-06-02 1993-12-14 Matsushita Electric Ind Co Ltd Winding type printing paper having paper guide

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2487383A1 (en) * 1980-07-28 1982-01-29 Teksid Spa LONG-LIFE THIN-SHEET FOR AUTOMOTIVE BODYWORK AND METHOD FOR MANUFACTURING THE SAME
JPS6020466B2 (en) * 1982-04-24 1985-05-22 川崎製鉄株式会社 Chromate aqueous treatment liquid for zinc/nickel alloy coated steel sheets
JPS60141877A (en) * 1983-12-29 1985-07-26 Nippon Paint Co Ltd Pretreatment of metallic material before coating
JPH07113153B2 (en) * 1988-02-29 1995-12-06 新日本製鐵株式会社 Chromated plated steel sheet and method for producing the same
JP2005103890A (en) * 2003-09-30 2005-04-21 Furukawa Sky Kk Fluoroplastic resin pracoated metal sheet excellent in antistaining properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147754A (en) * 1986-12-10 1988-06-20 Hamada Insatsuki Seizosho:Kk Terminal treatment method for roll paper and its device
JPH05330178A (en) * 1992-06-02 1993-12-14 Matsushita Electric Ind Co Ltd Winding type printing paper having paper guide

Also Published As

Publication number Publication date
JPS53100139A (en) 1978-09-01

Similar Documents

Publication Publication Date Title
JPH0419313B2 (en)
EP0038122A1 (en) Forming corrosion-resistant coatings upon the surfaces of metals, especially zinc
JPS5811515B2 (en) Composition for forming a zinc phosphate film on metal surfaces
JPH10505881A (en) Rinse-free phosphate treatment method
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
JP3139795B2 (en) Metal surface treatment agent for composite film formation
JPS6128751B2 (en)
TW498111B (en) Phosphate-treated galvanized steel sheet excellent in corrosion resistance and paintability
JPH0148870B2 (en)
US4174980A (en) Melamine-formaldehyde and tannin treatment of metal surfaces
JP3737168B2 (en) Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability
GB2335930A (en) Anticorrosive treatment composition containing trivalent chromium
JPS6158552B2 (en)
JPH08982B2 (en) Metal chromating method
JPS63270480A (en) Organic composite chromate treatment for plated steel sheet
JPS5914552B2 (en) Metal surface treatment method that provides high corrosion resistance
JP2002060959A (en) Galvanized steel sheet excellent in corrosion resistance and adhesive strength of coating, chemically treating solution and chemical conversion treating method
JP2002371371A (en) Phosphate treated galvanized steel sheet superior in front and back discrimination properties
JPH0432576A (en) Solution for zinc phosphate chemical conversion treatment
JPS62278297A (en) Method for chromating metal-surface-treated steel sheet
JPS5818435B2 (en) Surface treatment method for zinc or galvanized steel sheet
JPS5931872A (en) Method for chromating zinc coated steel material
JP2000064054A (en) Coating type phosphate treated steel sheet excellent in lubricity and coating material adhesion, and its production
JPH11152588A (en) Composition for forming rust preventive protective coating for metal and its formation
JP2697485B2 (en) Manufacturing method of high corrosion resistant galvannealed steel sheet