JPS61287452A - Production of lamellar catalyst - Google Patents

Production of lamellar catalyst

Info

Publication number
JPS61287452A
JPS61287452A JP60130289A JP13028985A JPS61287452A JP S61287452 A JPS61287452 A JP S61287452A JP 60130289 A JP60130289 A JP 60130289A JP 13028985 A JP13028985 A JP 13028985A JP S61287452 A JPS61287452 A JP S61287452A
Authority
JP
Japan
Prior art keywords
catalyst
slurry
support
plate
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60130289A
Other languages
Japanese (ja)
Inventor
Yuji Horii
堀井 雄二
Ryuichi Fukusato
福里 隆一
Mamoru Aoki
守 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60130289A priority Critical patent/JPS61287452A/en
Publication of JPS61287452A publication Critical patent/JPS61287452A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a lamellar catalyst having a uniform thickness distribution by extruding coaxially a slurry contg. a catalyst and a carrier or the like on a supporter such as a pipe and a rod, drying it to make a ring-shaped green body and opening it to make a lamellar shape. CONSTITUTION:In relation to a lamellar catalyst used for a reforming type fuel cell or the like, both a slurry 11 contg. a catalyst, a carrier and an aid catalyst, if necessary, and a supporter 12 such as a pipe and a rod are inserted into a vessel or an extruder provided with a mouthpiece having a prescribed shape and this supporter 12 is coaxially extruded from the mouthpiece having the prescribed shape together with the slurry 11 while sticking the slurry 11 on the supporter 12. A ring-shaped green body is obtained by heating the ring- shaped slurry on the supporter 12 and a lamellar green body is obtained by opening it in the extrusion direction on the supporter 12 and developing it. In such a way, the lamellar catalyst having a regular thickness distribution in accordance with the mouthpiece shape is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、板状触媒の製造方法に関し、例えば、リフオ
ーミング式燃料電池において、リフオーミング触媒とし
て好適に用いることができる均一な板状性を有する板状
触媒の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a plate-shaped catalyst, which has uniform plate-like properties that can be suitably used as a reforming catalyst in, for example, a reforming fuel cell. The present invention relates to a method for producing a plate-shaped catalyst.

(従来の技術) 近年、電解質として溶融炭酸塩を用いて、高温で作動さ
せる溶融炭酸塩型燃料電池が、高い発電効率を有するう
えに、利用可能な燃料の種類が多いこと、白金等のよう
な貴金属触媒を必要としないこと、高温作動させるため
に質の高い排熱が回収されること等のために、注目を集
めており、実用化が進められている。
(Prior art) In recent years, molten carbonate fuel cells, which use molten carbonate as an electrolyte and operate at high temperatures, have high power generation efficiency and can be used with many types of fuel, such as platinum. It is attracting attention because it does not require a precious metal catalyst, and high-quality waste heat is recovered for high-temperature operation, and its practical application is progressing.

このような溶融炭酸塩型燃料電池においては、従来、溶
融炭酸塩を含む電解質板を挟んで正極板と負極板が積層
されて単電池が構成され、この単電池が集電板とセパレ
ータとを介して多数積層されて燃料電池が構成されてい
る。セパレータ及び/又は電極板には、燃料ガス又は酸
化剤ガスの通路としての溝が設けられることがあり、燃
料ガスとしては例えば水素及び/又は−酸化炭素が、ま
た、酸化剤としては、例えば空気と炭酸ガスとが供給さ
れて、電極にてそれぞれ所定の電気化学的反応が行なわ
れる。
Conventionally, in such molten carbonate fuel cells, a single cell is constructed by stacking a positive electrode plate and a negative electrode plate with an electrolyte plate containing molten carbonate in between, and this single cell is made up of a current collector plate and a separator. A fuel cell is constructed by stacking a large number of them with each other in between. The separator and/or the electrode plate may be provided with grooves as passages for fuel gas or oxidizing gas, the fuel gas being e.g. hydrogen and/or carbon oxide, and the oxidizing agent being e.g. air. and carbon dioxide gas are supplied, and predetermined electrochemical reactions are performed at the electrodes, respectively.

しかし、燃料として、水素及び/又は−酸化炭素以外の
もの、例えば、メタン等のL N Gやメタノール等を
用いる場合は、これらの燃料は予めリフオーミングによ
って、水素及び/又は−酸化炭素に変換される。このよ
うなリフオーミングには、外部リフオーミング方弐と内
部リフオーミング方式とが知られている。
However, when using something other than hydrogen and/or -carbon oxide as a fuel, such as LNG such as methane or methanol, these fuels must be converted into hydrogen and/or -carbon oxide by reforming in advance. Ru. Two types of reforming methods are known: an external reforming method and an internal reforming method.

外部リフオーミング方式は、リフオーマを電池外に配設
し、燃料を予めリフオーミングした後に電池の燃料ガス
通路に供給する方式である。これに対して、内部リフオ
ーミング方式は、電池の高い作動温度を利用して、電池
内で燃料をリフオーミングする方式であって、通常、負
極又はセパレータにリフオーミング触媒を担持させてい
る。
The external reforming method is a method in which a reformer is disposed outside the battery, and fuel is reformed in advance and then supplied to the fuel gas passage of the battery. On the other hand, the internal reforming method is a method in which fuel is reformed within the battery by utilizing the high operating temperature of the battery, and a reforming catalyst is usually supported on the negative electrode or separator.

このように、負極板にリフオーミング触媒を担持させて
、内部リフオーミング式燃料電池に用いるにせよ、外部
リフオーミング式燃料電池においてリフオーマ反応器に
充填して用いるにせよ、触媒が板状であるときは、使用
時に熱によるひずみや割れの発生を防止するために、板
状触媒は均一な板状を有することが要求され、板状触媒
が大面積であるほど、又は薄いほど、均一な平板状への
要求が高くなる。
In this way, whether the reforming catalyst is supported on the negative electrode plate and used in an internal reforming fuel cell, or it is used by filling the reformer reactor in an external reforming fuel cell, when the catalyst is plate-shaped, In order to prevent distortion and cracking due to heat during use, plate catalysts are required to have a uniform plate shape, and the larger the area or the thinner the plate catalyst is, the more uniform the plate shape will be. Demands become higher.

例えば、負極板にリフオーミング触媒を担持させる場合
は、長時間の連続運転において、板状触媒が熱的な原因
によって不均一な形状変化、例えば伸縮を生じて、歪を
生じるときは、隣接する燃料電池構成要素との間の接触
抵抗が増大し、電池性能を低下させる。また、外部リフ
オーマにおいて板状触媒を用いる場合も、板状触媒が燃
料電池の運転中に歪を生じて変形するときは、リフオー
マにおいて反応が不均一に起こり、局部における過熱等
によって、板状触媒が損傷し、或いはリフオーミング活
性が損なわれる。
For example, when supporting a reforming catalyst on the negative electrode plate, if the plate-shaped catalyst undergoes uneven shape changes due to thermal causes, such as expansion and contraction, and distortion during long-term continuous operation, the adjacent Contact resistance between battery components increases and battery performance deteriorates. In addition, even when using a plate-shaped catalyst in an external re-former, if the plate-shaped catalyst is strained and deformed during fuel cell operation, the reaction will occur unevenly in the re-former, and local overheating will cause the plate-shaped catalyst to deform. or rehoming activity is impaired.

しかし、板状触媒の製造において、従来のように、触媒
成分を含有するスラリーを当初から平板状に成形すると
きは、均一な平板性を有する板状成形物を製造すること
は容易ではない。例えば、押出法による場合は、従来、
スラリーの押出速度と押し出された板状物の送り速度と
を厳密に制御しているが、板状成形物が大面積であるほ
ど、又は薄いほど、押出時に押し出されたスラリーが波
打ち現象を起こして、一様な厚みを有し、又は規則的な
厚み分布を有して所定の断面形状を有する板状物を得る
ことが困難である。そのうえ、かかる押出物を加熱乾燥
する段階において、更に、曲がりや変形を生じることが
避は難い。また、上記のように、スラリーの押出速度と
押し出された板状物の送り速度とを厳密に制御する必要
があるために、設備が複雑であり、且つ、高価である。
However, in the production of plate-shaped catalysts, when a slurry containing a catalyst component is molded into a flat plate from the beginning as in the past, it is not easy to produce a plate-shaped molded product having uniform flatness. For example, when using the extrusion method, conventionally,
Although the extrusion speed of the slurry and the feed rate of the extruded plate-shaped product are strictly controlled, the larger the area of the plate-shaped product or the thinner the plate-shaped product, the more likely the slurry extruded during extrusion will wave. Therefore, it is difficult to obtain a plate-like article having a uniform thickness or a regular thickness distribution and a predetermined cross-sectional shape. Moreover, in the step of heating and drying such an extrudate, further bending and deformation are unavoidable. Furthermore, as described above, it is necessary to strictly control the extrusion speed of the slurry and the feeding speed of the extruded plate-like material, making the equipment complex and expensive.

(発明の目的) 従って、本発明は、一般には、板状触媒の製造における
」1記した種々の問題を解決するためになされたもので
あって、均一な厚み分布を有する平板状、又は規則的な
厚み分布によって所定の断面形状を有する平板状の成形
物としての板状触媒を提供することを目的とし、特に、
例えば、リフオーミング式溶融炭酸塩型燃料電池のため
のリフオーミング触媒として好適に用いることができる
板状触媒の製造方法を提供することを目的とする。
(Object of the Invention) Therefore, the present invention has been made in order to solve the various problems described in 1. in the production of plate-shaped catalysts, and is aimed at producing a plate-like catalyst having a uniform thickness distribution or a regular catalyst. The purpose is to provide a plate-shaped catalyst as a plate-shaped molded product having a predetermined cross-sectional shape with a thickness distribution, and in particular,
For example, an object of the present invention is to provide a method for manufacturing a plate-shaped catalyst that can be suitably used as a reforming catalyst for a reforming type molten carbonate fuel cell.

(発明の構成) 本発明による板状触媒の製造方法の第1は、管又は棒か
らなる支持体を、触媒、担体、及び必要に応じて助触媒
を含有し、又はこれらの前駆体を含有するスラリーと共
に所定の形状を有する口型から同軸に押出し、上記スラ
リーが所定の断面形状にて付着された支持体を得、この
スラリーをこの支持体上で乾燥さ・Uて支持体上に環状
のグリーン体を得、次いで、この環状のグリーン体を支
持体−にで押出方向に切開して平板状とした後、加熱焼
成するごとを特徴とする。
(Structure of the Invention) The first method for producing a plate-shaped catalyst according to the present invention is to prepare a support made of a tube or a rod containing a catalyst, a carrier, and optionally a co-catalyst, or a precursor thereof. The slurry is coaxially extruded from a mouth mold having a predetermined shape to obtain a support to which the slurry is adhered in a predetermined cross-sectional shape, and this slurry is dried on the support. The method is characterized in that a green body is obtained, and then this annular green body is cut into a flat plate shape by cutting the support in the extrusion direction, and then heated and fired.

本発明による板状触媒の製造方法の第2は、+al  
管又は棒からなる支持体を、担体及び必要に応じて助触
媒を含有し、又はこれらの前駆体を含有するスラリーと
共に所定の形状を有する口型から同軸に押出し、−ト記
スラリーが所定の断面形状にて付着された支持体を得、
このスラリーをこの支持体−にで乾燥させて支持体上に
環状のグリーン体を得、この環状のグリーン体を支持体
−1二で押出方向に切開して平板状とした後、加熱焼成
して板状担体を得、次いで、 fbl  この板状担体に触媒、及び必要に応じて助触
媒と担体又はこれらの前駆体を含有する溶液又はスラリ
ーを塗布し、又は含浸させた後、再び加熱焼成して、触
媒を担持させることを特徴とする。
The second method for producing a plate-shaped catalyst according to the present invention is +al
A support consisting of a tube or a rod is coaxially extruded from a mouth mold having a predetermined shape together with a slurry containing a support and, if necessary, a cocatalyst or a precursor thereof. Obtain a support attached in a cross-sectional shape,
This slurry is dried on this support to obtain an annular green body on the support, and this annular green body is cut in the extrusion direction with support 1 to form a flat plate, and then heated and baked. Then, fbl This plate-like carrier is coated with or impregnated with a solution or slurry containing a catalyst and, if necessary, a co-catalyst and a carrier or their precursors, and then heated and calcined again. It is characterized by supporting a catalyst.

本発明において、スラリーに含有される触媒、担体及び
/又は助触媒は、還元雰囲気下又は酸化雰囲気下での所
定の加熱焼成によってそれぞれ触媒、担体及び助触媒に
活性化され得る前駆体を含むものとする。かかる前駆体
の例としては、例えば、還元雰囲気下での加熱焼成によ
って活性金属種や助触媒に還元活性化される金属化合物
、例えば、酸化物、種々の塩や、酸化雰囲気下での加熱
焼成によって活性な酸化物触媒や担体、助触媒に酸化さ
れる種々の塩を挙げることができる。
In the present invention, the catalyst, carrier and/or co-catalyst contained in the slurry shall contain precursors that can be activated into the catalyst, carrier and co-catalyst, respectively, by predetermined heating and calcination in a reducing atmosphere or an oxidizing atmosphere. . Examples of such precursors include, for example, metal compounds such as oxides and various salts that are activated by reduction to active metal species or co-catalysts by heating and calcination in a reducing atmosphere, and metal compounds such as oxides and various salts, and Examples include various salts that can be oxidized to active oxide catalysts, carriers, and co-catalysts.

本発明による第1の方法においては、触媒、担体、必要
に応じて助触媒からなる触媒成分は、溶剤及び必要に応
じて、バインダー、可を剤、解膠剤等の所要の助剤と共
に混合され、スラリーとされる。溶剤としては、通常、
水が好ましく用いられ、従って、バインダーとしても、
通常、ポリビニルアルコールやポリエチレングリコール
等のような水溶性樹脂が好ましく用いられる。
In the first method according to the invention, the catalyst components consisting of catalyst, carrier and optionally co-catalyst are mixed together with a solvent and optionally the required auxiliary agents such as binders, emollients, peptizers, etc. and slurry. As a solvent, usually
Water is preferably used and therefore also as a binder.
Generally, water-soluble resins such as polyvinyl alcohol and polyethylene glycol are preferably used.

本発明による板状触媒を前述したように溶融炭酸塩型燃
料電池のためのリフオーミング触媒として用いる場合は
、活性金属種は、通常、ニッケル、鉄、ニッケルー鉄合
金の1種又は2種以上である。
When the plate-shaped catalyst according to the present invention is used as a reforming catalyst for a molten carbonate fuel cell as described above, the active metal species is usually one or more of nickel, iron, and nickel-iron alloy. .

これらは従来より溶融炭酸塩型燃料電池のためのリフオ
ーミング触媒として知られている。本発明による板状触
媒の製造方法は、触媒活性種において何ら上記例示に限
定されるものではないが、以下、溶融炭酸塩型燃料電池
のためのリフオーミング用板状触媒について説明する。
These are conventionally known as reforming catalysts for molten carbonate fuel cells. Although the method for producing a plate-shaped catalyst according to the present invention is not limited to the above-mentioned examples in terms of catalytically active species, a plate-shaped catalyst for reforming for a molten carbonate fuel cell will be described below.

これら活性金属種は、好ましくは、触媒の耐久性や耐イ
オウ性を向上させるために、コバルト、マンガン、タン
グステン、モリブデン、又はこれらの1種又は2種以上
が助触媒として併用される。
These active metal species are preferably cobalt, manganese, tungsten, molybdenum, or one or more of these used in combination as a cocatalyst in order to improve the durability and sulfur resistance of the catalyst.

更に、かかる活性金属種からなる触媒は、適宜の担体に
担持されていることが好ましい。このような担体には、
例えば、アルミナ、チタニア、ジルコニア等が好ましく
用いられるが、これらに限定されるものではない。
Further, it is preferable that the catalyst made of such an active metal species is supported on a suitable carrier. Such carriers include
For example, alumina, titania, zirconia, etc. are preferably used, but the material is not limited to these.

本発明において、スラリーは、前述したように、必要に
応じてバインダー、可塑剤、解膠剤等の助剤を適宜に含
有する。可塑剤は、スラリーに所要の粘度を与えるため
に、解膠剤は均一なスラリーを得るためにそれぞれ添加
されるものであって、特に、限定されるものではないが
、可塑剤としては、例えば、ポリオール系樹脂等が、ま
た、解膠剤としては、例えば、高分子ポリカルボン酸ア
ンモニウム塩等が用いられる。
In the present invention, as described above, the slurry appropriately contains auxiliary agents such as a binder, a plasticizer, and a deflocculant, if necessary. The plasticizer is added to give the slurry the required viscosity, and the deflocculant is added to obtain a uniform slurry. Although not particularly limited, examples of the plasticizer include, for example. , a polyol-based resin, etc., and as a deflocculant, for example, a polymer polycarboxylic acid ammonium salt or the like is used.

無機化合物や金属微粉末のスラリーを調製する方法は、
既に種々の技術分野において広く知られており、本発明
においても、これら従来の技術に従って、適当な粘度を
有するスラリーを得ることができる。従って、スラリー
における触媒、担体及び助触媒等の触媒成分の配合量や
、バインダー、可塑剤、解膠剤等の配合量は必ずしも限
定されるものではないが、例えば、スラリーにおいて、
触媒成分粉末40〜80重量%、溶剤10〜50重量%
、バインダー3〜30重量%、可塑剤0〜10重量%及
び解膠剤0〜5重量%が適当である。
The method for preparing slurry of inorganic compounds and fine metal powder is as follows:
These conventional techniques are already widely known in various technical fields, and in the present invention, a slurry having an appropriate viscosity can be obtained according to these conventional techniques. Therefore, the amount of catalyst components such as catalyst, carrier and co-catalyst, and the amount of binder, plasticizer, peptizer, etc. in the slurry are not necessarily limited, but for example, in the slurry,
Catalyst component powder 40-80% by weight, solvent 10-50% by weight
, 3 to 30% by weight of binder, 0 to 10% by weight of plasticizer and 0 to 5% by weight of peptizer are suitable.

また、スラリー粘度は25℃において2000〜200
00cps程度が好適である。
In addition, the slurry viscosity is 2000 to 200 at 25°C.
Approximately 0.00 cps is suitable.

本発明による第1の方法においては、上記したような触
媒成分を含有するスラリーを支持体と共に所定の形状を
有する口型からこれと同軸に押出し、スラリーが所定の
断面形状にて付着された支持体を得る。
In the first method according to the present invention, a slurry containing the catalyst component as described above is coaxially extruded together with a support through a spout having a predetermined shape, and the slurry is attached to the support with a predetermined cross-sectional shape. Get a body.

本発明において、支持体としては、耐熱性を有する丸棒
や両端を密閉した管が好ましく、例えば、ステンレス鋼
からなる丸棒や管が好ましい。
In the present invention, the support is preferably a heat-resistant round rod or a tube with both ends sealed, and for example, a round rod or tube made of stainless steel is preferable.

本発明においては、所定の形状を有する口型を備えた容
器又は押出機内に上記スラリーと支持体を装入し、支持
体にスラリーを付着させつつ、この支持体を上記スラリ
ーと共に所定の形状を有する口型から同軸に押出し、上
記スラリーが周面上に所定の断面形状にて付着された支
持体を得る。
In the present invention, the slurry and support are charged into a container or extruder equipped with a mouth mold having a predetermined shape, and while the slurry is attached to the support, the support is formed into a predetermined shape together with the slurry. The slurry is coaxially extruded from a mold having a mouth to obtain a support having a predetermined cross-sectional shape on the peripheral surface of the slurry.

即ち、口型が一様な円孔である場合は、明らかに均一な
厚み分布を有する環状にスラリーが付着した支持体を得
ることができる。また、口型が例えば規則的な凹凸形状
によって周縁が一形成される円孔からなる場合は、例え
ば、第1図に示すように、規則的な凹凸の断面形状によ
って規則的な厚み分布を有する環状にスラリー11が付
着した支持体12を得ることができる。
That is, when the mouth shape is a uniform circular hole, it is possible to obtain a support to which the slurry is attached in an annular shape having a clearly uniform thickness distribution. In addition, if the mouth shape is, for example, a circular hole whose periphery is formed by a regular uneven shape, it has a regular thickness distribution due to the regular uneven cross-sectional shape, as shown in FIG. A support 12 to which slurry 11 is attached in an annular manner can be obtained.

次いで、本発明によれば、上記支持体上の環状のスラリ
ーを加熱し、溶剤を除去して、支持体上に環状のグリー
ン体を得る。このグリーン体は尚バインダーを含有して
、柔軟であるので、これを支持体上にて押出方向に切開
し、展開すれば、平板状のグリーン体を得ることができ
る。これを触媒成分に応じて、所定の雰囲気下に所要の
温度に加熱焼成し、触媒成分をそれぞれ活性化すると共
に、バインダーを除去することによって、均一な厚み分
布を有する板状触媒、又は前述したように、口型が所定
の断面形状を有する場合は、例えば、第2図に示すよう
に、この日型形状に応じて規則的な厚み分布によって所
定の断面形状を有する板状触媒13を得ることができる
Then, according to the present invention, the annular slurry on the support is heated and the solvent is removed to obtain an annular green body on the support. Since this green body still contains a binder and is flexible, a flat green body can be obtained by cutting it in the extrusion direction on a support and rolling it out. This is heated and fired at a required temperature in a predetermined atmosphere depending on the catalyst component to activate each catalyst component and remove the binder to produce a plate-shaped catalyst with a uniform thickness distribution or as described above. When the mouth mold has a predetermined cross-sectional shape, for example, as shown in FIG. be able to.

尚、可塑剤や解膠剤等の成形助剤は、その種類によって
は、上記焼成後にも成形物に残存することがあるが、焼
結助剤を兼ねることもあるので、焼成によって除去する
必要は必ずしもない。
Depending on the type, molding aids such as plasticizers and peptizers may remain in the molded product even after the above-mentioned firing, but they may also serve as sintering aids, so they must be removed by firing. Not necessarily.

グリーン体の加熱焼成温度は、触媒成分にもよるが、例
えば、前記した溶融炭酸塩型燃料電池におけるリフオー
ミング用ニッケル触媒の場合は、約650℃が好適であ
る。しかし、この焼成温度は、焼成雰囲気と共に、用い
る触媒成分によって適宜に選択されるべきものである。
The heating and firing temperature of the green body depends on the catalyst components, but for example, in the case of the above-mentioned nickel catalyst for reforming in the molten carbonate fuel cell, about 650° C. is suitable. However, this firing temperature should be appropriately selected depending on the firing atmosphere and the catalyst components used.

第2図は、本発明の方法を実施するのに好適に用いるこ
とができる押出機の一例を示す。即ら、押出機21は、
胴壁22にスラリー供給口23を有すると共に、先端に
所定の断面形状の口型24を備えている。胴内にはこの
日型に臨んで、これと同軸にリップ25を有するニップ
ル26と、これと一体のスリーブ27が回動(及び前進
)可能に収容されており、このスリーブ及びニップル内
に支持体28が挿入され、このニップル及び上記口型を
経て、口型に同軸に押し出される。上記ニップルは、先
端部において胴壁との間に空隙29を有すると共に、前
記スラリー供給口の軸方向に対して傾斜する環状の傾斜
溝30を有し、上記空隙はこの傾斜溝に連通されている
FIG. 2 shows an example of an extruder that can be suitably used to carry out the method of the present invention. That is, the extruder 21 is
The body wall 22 has a slurry supply port 23, and the tip thereof is provided with a mouth mold 24 having a predetermined cross-sectional shape. A nipple 26 having a lip 25 coaxially with the body and a sleeve 27 integral with the nipple 26 are rotatably (and forwardly) accommodated in the barrel, facing the date mold, and a sleeve 27 is supported within the sleeve and nipple. A body 28 is inserted and coaxially extruded through the nipple and the mouth mold into the mouth mold. The nipple has a gap 29 between it and the trunk wall at its tip, and also has an annular inclined groove 30 inclined with respect to the axial direction of the slurry supply port, and the gap is communicated with the inclined groove. There is.

従って、スラリー供給口からスラリーを前記傾斜溝に供
給して、スリーブの回動(及び前進)によってスラリー
を前記空隙及び口型を経て押し出すと共に、スリーブ内
の支持体をも口型と同軸に押し出すことによって、スラ
リー31が支持体上に口型の断面形状に応じた断面形状
にて付着した支持体を得ることができる。この支持体上
の環状のスラリーを前述したように加熱乾燥して環状の
グリーン体を得、これを支持体上で押出方向に切開して
平板状とした後、加熱焼成すれば、口型の断面形状に応
じて、均一な厚み分布を有する板状触媒、又は規則的な
厚み分布によって所定の断面形状を有する板状触媒を得
ることができる。
Therefore, slurry is supplied from the slurry supply port to the inclined groove, and as the sleeve rotates (and moves forward), the slurry is pushed out through the gap and the mouth mold, and the support inside the sleeve is also pushed out coaxially with the mouth mold. By doing so, it is possible to obtain a support on which the slurry 31 is adhered in a cross-sectional shape corresponding to the cross-sectional shape of the mouth mold. The annular slurry on the support is heated and dried as described above to obtain an annular green body, which is cut in the extrusion direction on the support to form a flat plate, and then heated and baked to form a mouth-shaped green body. Depending on the cross-sectional shape, a plate-shaped catalyst having a uniform thickness distribution or a plate-shaped catalyst having a predetermined cross-sectional shape due to a regular thickness distribution can be obtained.

本発明による第2の方法は、担体及び必要に応じて助触
媒を含有するスラリーを支持体と共に上記と同様にして
口型から押出し、加熱乾燥して環状のグリーン体を得、
これを押出方向に切開し、平板状に展開した後、これを
加熱焼成して、平板状の担体を得、次いで、この担体に
触媒及び必要に応じて助触媒を含有する溶液、通常、水
溶液を塗布又は含浸し、これを所定の雰囲気下に所定の
温度に加熱焼成して、板状触媒を得るものである。
The second method according to the present invention is to extrude a slurry containing a carrier and, if necessary, a co-catalyst together with the support through a mouth die in the same manner as above, and heat and dry it to obtain an annular green body.
This is cut in the extrusion direction and developed into a flat plate shape, and then heated and fired to obtain a flat support. Next, this carrier is added to a solution containing a catalyst and, if necessary, a co-catalyst, usually an aqueous solution. A plate-shaped catalyst is obtained by coating or impregnating the catalyst and heating and baking it at a predetermined temperature in a predetermined atmosphere.

触媒活性金属種が例えばニッケルである場合、硫酸ニッ
ケルを前駆体として含有する水溶液を担体に塗布又は含
浸させる。尚、この場合において、上記溶液に代えてス
ラリーを用いてもよく、更に、溶液又はスラリーは必要
に応じて担体や助触媒を含有していてもよい。
If the catalytically active metal species is, for example, nickel, the carrier is coated or impregnated with an aqueous solution containing nickel sulfate as a precursor. In this case, a slurry may be used instead of the above solution, and the solution or slurry may further contain a carrier or a co-catalyst as required.

(発明の効果) 以」二のように本発明の方法によれば、その面積や厚み
によらずに、均一な厚み分布を有し、又は規則的な厚み
分布を有する板状触媒を容易目、つ確実に得ることがで
きる。特に、従来の方法によれば、板状触媒は、触媒成
分を含有するスラリーを当初より板状に成形して、これ
を加熱乾燥し、更に、加熱焼成するので、例えば、押出
法による場合であれば、スラリーは押出時に波打ちを起
こすのみならず、加熱乾燥の段階において、曲がりや変
形を生しることが避は難ったが、本発明の方法によれば
、スラリーを支持体と共に押出し、且つ、支持体上で加
熱乾燥するので、この段階で曲がりや変形を生じること
がない。更に、本発明の方法においては、用いる押出機
も構造が簡単であるので、製造費用も低度である。
(Effects of the Invention) As described below, according to the method of the present invention, plate-like catalysts having a uniform thickness distribution or a regular thickness distribution can be easily observed regardless of their area or thickness. , you can definitely get one. In particular, according to the conventional method, a plate-shaped catalyst is produced by forming a slurry containing catalyst components into a plate shape from the beginning, heating and drying this, and then heating and calcining it. However, according to the method of the present invention, it is possible to extrude the slurry together with the support. Moreover, since it is heated and dried on the support, no bending or deformation occurs at this stage. Furthermore, in the method of the present invention, the extruder used has a simple structure, so the manufacturing cost is low.

(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例によって何ら限定されるものではない。尚、
以下において、部は重量部を示す。
(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way. still,
In the following, parts indicate parts by weight.

実施例 ニッケル微粉末(活性金属種、平均 粒径2.5μm)         60部水    
                   30部可塑剤
                1部解膠剤    
            3部ポリビニルアルコールと
ポリエチレン グリコールの混合物(バインダー)   6部とからな
る混合物を十分に混合攪拌して、25℃において粘度5
000cpsのスラリーを調製した。
Example Fine nickel powder (active metal species, average particle size 2.5 μm) 60 parts water
30 parts plasticizer 1 part peptizer
A mixture of 3 parts and 6 parts of polyvinyl alcohol and polyethylene glycol (binder) was thoroughly mixed and stirred to achieve a viscosity of 5 at 25°C.
000 cps slurry was prepared.

このスラリーを第2図に示したような押出機にて、規則
的な凹凸形状にて周縁が形成された円孔状の口型からス
テンレス鋼製支持棒と共に同軸に押出して、上記スラリ
ーが表面に規則的な凹凸形状の厚み分布を有するように
付着した支持棒を得た。この支持棒上のスラリーを支持
棒と共に空気中にて60℃の温度で2時間加熱して、水
を除去して、環状のグリーン体を得た。
This slurry is extruded coaxially with a stainless steel support rod through a circular hole-shaped mouth mold whose periphery is formed with regular uneven shapes using an extruder as shown in Fig. 2, so that the slurry is A support rod was obtained which was attached to the support rod so as to have a regular uneven thickness distribution. The slurry on this support rod was heated together with the support rod in air at a temperature of 60° C. for 2 hours to remove water and obtain an annular green body.

次いで、この環状のグリーン体を押出方向に切開し、展
開して板状とした後、60%水素−40%窒素気流中に
て650℃の温度で1.5時間加熱焼成して、縦横各約
315mm、凸部高さ31璽、四部高さ11重、凸部及
び四部の幅それぞれ2龍の板状触媒を得た。
Next, this annular green body was cut in the extrusion direction, expanded to form a plate shape, and then heated and baked at a temperature of 650°C for 1.5 hours in a 60% hydrogen-40% nitrogen stream to cut the length and width of the green body. A plate-shaped catalyst was obtained with a height of about 315 mm, a height of the convex part of 31 mm, a height of 11 times of the four parts, and a width of 2 times of each of the convex parts and the four parts.

比較のために、従来の押出法にて、上記と同様の断面形
状を有する板状触媒を製作した。
For comparison, a plate-shaped catalyst having a cross-sectional shape similar to that described above was manufactured using a conventional extrusion method.

次に、このようにして本発明の方法及び従来の方法によ
って製作したそれぞれ5枚の板状触媒の熱的強度を調べ
るために、これらを空気中において流動床式熱疲労試験
機によって、300°Cと650℃との間で10回の熱
サイクルを与えた。350℃から600℃への昇温時間
10分、600℃での保持時間15分、600℃から3
50℃への降温時間10分とした。
Next, in order to examine the thermal strength of the five plate-shaped catalysts produced by the method of the present invention and the conventional method, they were tested in air at 300° using a fluidized bed thermal fatigue tester. Ten thermal cycles were given between C and 650°C. Heating time from 350℃ to 600℃ 10 minutes, holding time at 600℃ 15 minutes, from 600℃ to 3
The time for cooling down to 50°C was 10 minutes.

このような熱疲労試験の後、電極板の表面に割れが発生
したかどうかを目視によって調べた。結果を表に示す。
After such a thermal fatigue test, whether or not cracks had occurred on the surface of the electrode plate was visually inspected. The results are shown in the table.

本発明の方法による電極板が熱的強度にすぐれることが
明らかである。
It is clear that the electrode plate produced by the method of the present invention has excellent thermal strength.

次に、このようにして得たリフオーミング用板状触媒の
触媒活性を評価するために、板状触媒との間に空隙を残
すようにして、これを2枚のステンレス銅板間に支持し
、上記空隙に下記の燃料ガスを供給して、リフオーミン
グし、反応後のガスの組成を分析した。
Next, in order to evaluate the catalytic activity of the plate-shaped catalyst for reforming obtained in this way, it was supported between two stainless steel copper plates, leaving a gap between the plate-shaped catalyst and the plate-shaped catalyst described above. The following fuel gas was supplied to the void, re-forming was performed, and the composition of the gas after the reaction was analyzed.

供給燃料ガスは、メタン2.1%、水蒸気21.5%、
水素3.9%及び残余窒素からなり、反応条件は、空間
速度3830hr”、反応温度650°Cとした。反応
後のガス組成は、メタン1.16%、炭酸ガス0.72
%、水素7.4%、水蒸気17.3%、−酸化炭素0.
15%、残余窒素からなり、従って、メタン転化率は4
2.5%であるので、本発明品は、市販されているリフ
オーミング触媒とほぼ同一の触媒活性を有して、十分に
実用的なリフオーミング機能を有することが理解される
The supplied fuel gas is methane 2.1%, water vapor 21.5%,
It consisted of 3.9% hydrogen and residual nitrogen, and the reaction conditions were a space velocity of 3830 hr" and a reaction temperature of 650°C. The gas composition after the reaction was 1.16% methane and 0.72% carbon dioxide.
%, hydrogen 7.4%, water vapor 17.3%, -carbon oxide 0.
15%, residual nitrogen, therefore the methane conversion is 4.
Since it is 2.5%, it is understood that the product of the present invention has almost the same catalytic activity as a commercially available reforming catalyst, and has a sufficient practical reforming function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、支持体上に付着したスラリーの断面形状の一
例を示す断面図、第2図は、本発明の方法に従って得ら
れる板状触媒の一例を示す断面図、第3図は、本発明の
方法を実施するのに好適に用いることができる押出機の
一例を示す断面図である。 11・・・スラリー、12・・・支持体、13・・・板
状触媒、21・・・押出機、23・・・スラリー供給口
、24・・・口型、25・・・リップ、26・・・ニッ
プル、28・・・支持体、29・・・空隙、30・・・
傾斜溝、31・・・スラリー。 第1図 第2図
FIG. 1 is a cross-sectional view showing an example of the cross-sectional shape of the slurry deposited on a support, FIG. 2 is a cross-sectional view showing an example of a plate-shaped catalyst obtained according to the method of the present invention, and FIG. FIG. 1 is a sectional view showing an example of an extruder that can be suitably used to carry out the method of the invention. DESCRIPTION OF SYMBOLS 11... Slurry, 12... Support, 13... Plate catalyst, 21... Extruder, 23... Slurry supply port, 24... Mouth type, 25... Lip, 26 ...Nipple, 28...Support, 29...Gap, 30...
Slanted groove, 31...Slurry. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)管又は棒からなる支持体を、触媒、担体、及び必
要に応じて助触媒を含有し、又はこれらの前駆体を含有
するスラリーと共に所定の形状を有する口型から同軸に
押出し、上記スラリーが所定の断面形状にて付着された
支持体を得、このスラリーをこの支持体上で乾燥させて
支持体上に環状のグリーン体を得、次いで、この環状の
グリーン体を支持体上で押出方向に切開して平板状とし
た後、加熱焼成することを特徴とする板状触媒の製造方
法。
(1) Coaxially extruding a support consisting of a tube or rod together with a slurry containing a catalyst, a carrier, and if necessary a co-catalyst or a precursor thereof from a mouth mold having a predetermined shape, Obtain a support to which the slurry has been adhered in a predetermined cross-sectional shape, dry this slurry on this support to obtain an annular green body on the support, and then apply this annular green body on the support. A method for producing a plate-shaped catalyst, which comprises cutting the catalyst into a plate shape by cutting in the extrusion direction, and then heating and baking the catalyst.
(2)(a)管又は棒からなる支持体を、担体及び必要
に応じて助触媒を含有し、又はこれらの前駆体を含有す
るスラリーと共に所定の形状を有する口型から同軸に押
出し、上記スラリーが所定の断面形状にて付着された支
持体を得、このスラリーをこの支持体上で乾燥させて支
持体上に環状のグリーン体を得、この環状のグリーン体
を支持体上で押出方向に切開して平板状とした後、加熱
焼成して板状担体を得、次いで、 (b)この板状担体に触媒、及び必要に応じて助触媒と
担体又はこれらの前駆体を含有する溶液又はスラリーを
塗布し、又は含浸させた後、再び加熱焼成して、触媒を
担持させることを特徴とする板状触媒の製造方法。
(2) (a) Coaxially extrude a support consisting of a tube or rod together with a slurry containing a carrier and a co-catalyst if necessary, or a precursor thereof from a mouth mold having a predetermined shape, and Obtain a support to which the slurry is attached in a predetermined cross-sectional shape, dry this slurry on this support to obtain an annular green body on the support, and extrude this annular green body on the support in the extrusion direction. After cutting it into a flat plate shape, heating and calcining it to obtain a plate-shaped carrier, and (b) adding a catalyst to this plate-shaped carrier and, if necessary, a solution containing a co-catalyst and a carrier or their precursors. Or, a method for producing a plate-shaped catalyst, which comprises applying or impregnating a slurry and then heating and calcining it again to support the catalyst.
JP60130289A 1985-06-14 1985-06-14 Production of lamellar catalyst Pending JPS61287452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60130289A JPS61287452A (en) 1985-06-14 1985-06-14 Production of lamellar catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130289A JPS61287452A (en) 1985-06-14 1985-06-14 Production of lamellar catalyst

Publications (1)

Publication Number Publication Date
JPS61287452A true JPS61287452A (en) 1986-12-17

Family

ID=15030755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130289A Pending JPS61287452A (en) 1985-06-14 1985-06-14 Production of lamellar catalyst

Country Status (1)

Country Link
JP (1) JPS61287452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888317A (en) * 1988-07-15 1989-12-19 Corning Incorporated Catalyst-agglomerate bodies encapsulated in a structure and method for their production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888317A (en) * 1988-07-15 1989-12-19 Corning Incorporated Catalyst-agglomerate bodies encapsulated in a structure and method for their production

Similar Documents

Publication Publication Date Title
EP0098605B1 (en) Fuel cell catalyst member and method of making same
US7732084B2 (en) Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods
US4235748A (en) Method of making improved hydrogenation catalyst
JPS6158174A (en) Fuel cell
JPH0467588A (en) Electrode-integrated honeycomb heater and manufacture thereof
JPS58140979A (en) Fuel battery and method for performing gas phase oxidation
JP2000007301A (en) Reforming reactor
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
KR101828175B1 (en) Synthesis method of metal catalyst having carbon shell using metal-aniline complex
CN113871636A (en) Chromium poisoning resistant nano-structured composite cathode of solid oxide fuel cell
US4892857A (en) Electrically conductive ceramic substrate
CN109921034B (en) Preparation method and application of graded and ordered catalyst layer of anion exchange membrane fuel cell
CN108075142B (en) Preparation method of nano-array catalyst layer for anion exchange membrane fuel cell
CN101157054A (en) Metallic carrier for catalyst
JPS61287452A (en) Production of lamellar catalyst
US3369938A (en) Catalytic electrodes and fuel cells therewith
US6294128B1 (en) Method of making a supported plurality of electrochemical extruded membranes
CN111640953A (en) Air electrode catalyst of aluminum-air battery and preparation method thereof
US3791896A (en) Bi-functional gas electrode
CN109378488A (en) A kind of tubular solid oxide fuel cells and preparation method thereof
JPS6035471A (en) Electrode for fuel cell
CN113457684A (en) Non-supported methanol reforming hydrogen production catalyst and preparation method and application thereof
CN112673125B (en) Metal porous body, steam reformer including the same, and method of manufacturing the metal porous body
JPS61260555A (en) Compounded constituent element for internal reforming type fuel cell
JP2004066173A (en) Emission gas purification catalyst and emission gas purification reactor