JPS6128727B2 - - Google Patents

Info

Publication number
JPS6128727B2
JPS6128727B2 JP18766880A JP18766880A JPS6128727B2 JP S6128727 B2 JPS6128727 B2 JP S6128727B2 JP 18766880 A JP18766880 A JP 18766880A JP 18766880 A JP18766880 A JP 18766880A JP S6128727 B2 JPS6128727 B2 JP S6128727B2
Authority
JP
Japan
Prior art keywords
copper
tungsten
alloy
cucl
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18766880A
Other languages
Japanese (ja)
Other versions
JPS57110629A (en
Inventor
Shinichiro Kobayashi
Hideo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP18766880A priority Critical patent/JPS57110629A/en
Publication of JPS57110629A publication Critical patent/JPS57110629A/en
Publication of JPS6128727B2 publication Critical patent/JPS6128727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は接点材料等に利用されている銅−タン
グステン合金の廃棄物または製造時の工程損失分
から簡単な操作によつて、銅とタングステンをそ
れぞれ高収率で分離回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention enables the separation and recovery of copper and tungsten in high yield through simple operations from the waste or process loss during production of copper-tungsten alloys used in contact materials, etc. Regarding how to.

接点材料等に利用されている銅−タングステン
合金はタングステン含有率は通常20〜70%(重
量)で、残りは銅であるが、この銅−タングステ
ン合金の廃棄物または製造時の工程損失分から銅
とタングステンをそれぞれ分離回収するには、従
来、該銅−タングステン合金を硝酸性水溶液に浸
漬し、銅のみを溶解させる方法が採られてきた。
しかしながら、この従来法では溶解時に窒素酸化
物蒸気が発生し、その処理を要する上、溶解に伴
う硝酸性水溶液中の遊離の硝酸濃度の低下によ
り、反応の進行が遅くなり、かつ加温が必要であ
つた。さらに、硝酸による溶解時にタングステン
の一部も溶解し、回収されるタングステンの粒径
が微細になりかつ表面が酸化される。また、浸出
液の硝酸銅溶液から該溶解したタングステンを分
離する必要があつた。
Copper-tungsten alloys used for contact materials usually have a tungsten content of 20 to 70% (by weight), with the remainder being copper. In order to separate and recover copper and tungsten, the conventional method has been to immerse the copper-tungsten alloy in a nitric acid aqueous solution to dissolve only the copper.
However, in this conventional method, nitrogen oxide vapor is generated during dissolution, which requires treatment, and the reaction progresses slowly due to a decrease in the concentration of free nitric acid in the nitric acid aqueous solution during dissolution, and heating is required. It was hot. Furthermore, part of the tungsten is also dissolved during dissolution with nitric acid, and the particle size of the recovered tungsten becomes fine and the surface is oxidized. It was also necessary to separate the dissolved tungsten from the copper nitrate solution of the leachate.

本発明は上記の従来法の問題点を克服し、銅−
タングステン合金の廃棄物または製造時の工程損
失分から、簡単な操作によつて、銅とタングステ
ンをそれぞれ高収率で分離回収する方法を提供す
るもので、その要旨とするところは、銅−タング
ステン合金を塩酸性水溶液に浸漬し、次いで該浸
漬液に塩素ガスを含むガスを吹き込むことを特徴
とする銅−タングステン合金からの有価金属の回
収方法、にある。
The present invention overcomes the above-mentioned problems of the conventional method and
This method provides a method for separating and recovering copper and tungsten at high yields through simple operations from tungsten alloy waste or manufacturing process losses. A method for recovering valuable metals from a copper-tungsten alloy, characterized by immersing the alloy in a hydrochloric acid aqueous solution, and then blowing a gas containing chlorine gas into the immersion solution.

本発明は次の2つの反応機構の組合せに基づく
ものである。すなわち、 (1) 水溶液中で複数の価数のイオンの形態を取り
うる金属の高次の価数の塩化物、たとえば
CuCl2の水溶液中にCuがあると、CuはCuCl2
溶液にわずかながら溶解する性質を有してい
る。この性質によつて、CuはCuCl2水溶液中で Cu+CuCl2→2CuCl なる反応によりCuCl2をCuClに還元する過程で
自らはCuClとなり溶解してゆく。しかしなが
ら、CuClがある程度以上生成すると、水溶液
中での溶解度を越え、CuClが析出し始める。
また、溶液中の塩酸も合金中の銅と反応して減
少しているので、銅の溶液中への溶解は極端に
遅くなり、ついには停止する。
The present invention is based on a combination of the following two reaction mechanisms. (1) Higher valence chlorides of metals that can take the form of multivalent ions in aqueous solution, e.g.
When Cu is present in an aqueous solution of CuCl 2 , Cu has the property of being slightly dissolved in the aqueous solution of CuCl 2 . Due to this property, Cu itself becomes CuCl and dissolves in the process of reducing CuCl 2 to CuCl through the reaction Cu+CuCl 2 →2CuCl in a CuCl 2 aqueous solution. However, when CuCl is generated beyond a certain level, its solubility in an aqueous solution is exceeded and CuCl begins to precipitate.
Furthermore, since the hydrochloric acid in the solution is also reduced by reacting with the copper in the alloy, the dissolution of copper into the solution becomes extremely slow and eventually stops.

(2) 一方、Cl2ガスは中性ないし酸性水溶液にわ
ずかながら溶解し、水溶液中で複数の価数を取
りうる金属イオンの価数が低次の場合には、こ
れを酸化する性質がある。たとえば、CuClは
Cl2ガスによつて次の反応によりCuCl2にな
る。
(2) On the other hand, Cl 2 gas dissolves in neutral or acidic aqueous solutions to a small extent, and has the property of oxidizing metal ions that can have multiple valences in aqueous solutions when they have low valences. . For example, CuCl is
With Cl 2 gas, it becomes CuCl 2 through the following reaction.

2Cu+Cl2→2CuCl2 本発明方法は上記のように、銅とタングステン
からなる合金を塩酸性水溶液に浸漬する工程とこ
の浸漬液に塩素を含むガスを吹き込む工程との組
合せよりなるものであるが、上記の反応機構によ
つて、まず該合金中のCu分が塩酸性水溶液に少
量溶解してCuCl2を生成すると、このCuCl2が合
金中の残りのCu分を攻撃して溶解しCuClとな
る。このCuClは吹き込まれたCl2ガスで即座に酸
化されてCuCl2となり、再び合金中のCu分を攻撃
してCuを溶解し、合金中のCu分がなくなるま
で、これらの反応は次に示すように連鎖反応の形
で進行する。
2Cu+Cl 2 →2CuCl 2As mentioned above, the method of the present invention consists of a combination of the step of immersing an alloy made of copper and tungsten in a hydrochloric acid aqueous solution and the step of blowing a chlorine-containing gas into this immersion solution. According to the above reaction mechanism, first a small amount of Cu in the alloy is dissolved in an aqueous hydrochloric acid solution to generate CuCl 2 , then this CuCl 2 attacks and dissolves the remaining Cu in the alloy to form CuCl. . This CuCl is immediately oxidized by the injected Cl 2 gas to become CuCl 2 , which attacks the Cu component in the alloy again and dissolves the Cu, until the Cu component in the alloy disappears. These reactions are shown below. It proceeds in the form of a chain reaction.

上記において、銅−タングステン合金中のCu
分の塩酸性水溶液への溶解は水溶液中のCuCl2
度が反応の進行とともに高まるので、残留固形分
中のCu含量が減少しても、最後まで反応が進行
し、該合金中のCu分を完全に溶解させることが
できる。一方、該合金中のタングステンは上記反
応過程において全く不活性であり、粉状残渣とし
て回収される。
In the above, Cu in the copper-tungsten alloy
The concentration of CuCl 2 in the aqueous solution increases as the reaction progresses, so even if the Cu content in the residual solids decreases, the reaction will proceed to the end and the Cu content in the alloy will increase. Can be completely dissolved. On the other hand, tungsten in the alloy is completely inactive during the above reaction process and is recovered as a powdery residue.

このように、本発明方法は上記反応機構に基づ
く連鎖反応を利用するもので、そのため塩酸性水
溶液によるCu浸出に要する時間は従来法に比し
て大幅に短縮し、かつCu分の浸出溶解の終点付
近で反応速度がにぶらないという利点がある。し
かも、溶解された銅を含有する液中のタングステ
ン分と残渣のタングステン粉末中のCu分はいず
れも100ppm以下であり、その相互の分離性能は
きわめて良好である。
As described above, the method of the present invention utilizes a chain reaction based on the above reaction mechanism, and therefore the time required for leaching Cu with an aqueous hydrochloric acid solution is significantly shortened compared to the conventional method, and the time required for leaching and dissolving Cu is significantly reduced. It has the advantage that the reaction rate does not slow down near the end point. Furthermore, the tungsten content in the solution containing dissolved copper and the Cu content in the residual tungsten powder are both 100 ppm or less, and their mutual separation performance is extremely good.

このように回収されたタングステン粉末は高純
度であるので、そのまま焼結冶金法による銅−タ
ングステン合金の原料タングステン粉末として再
利用でき、かつ銅は2価の塩化第二酸水溶液にな
つているので、晶析してCuCl2・2H2Oとし、ま
たはセメンテーシヨンで金属状銅粉とするなど、
その利用可能性は大きい。
Since the tungsten powder recovered in this way is of high purity, it can be reused as it is as raw material tungsten powder for copper-tungsten alloy using the sinter metallurgy method, and since the copper has been converted into a divalent dichloric acid aqueous solution. , crystallized to form CuCl 2 2H 2 O, or cemented to form metallic copper powder, etc.
Its potential use is great.

本発明方法で回収対象の銅−タングステン合金
中のタングステン含有率は前述したように通常20
〜70%(重量)であり、残りは銅であるが、本発
明方法においてはその反応性から考えて該合金中
のタングステン濃度はとくに規定するには及ばな
い。
As mentioned above, the tungsten content in the copper-tungsten alloy to be recovered by the method of the present invention is usually 20
~70% (by weight), and the remainder is copper, but in view of its reactivity in the method of the present invention, the concentration of tungsten in the alloy is not particularly defined.

本発明方法における浸漬液としての塩酸性水溶
液の塩酸濃度は初期に上記銅−タングステン合金
中のCu分を溶解し、少量のCuCl2を生成せしめる
能力があればよいので、とくに規定するには及ば
ないが、1規定以上12規定以下がとくに有効であ
る。塩酸濃度が1規定未満では銅の溶解速度が遅
く、所要液量も多量を必要とし、また12規定を越
える塩酸水溶液は常圧下では得られない。
The concentration of hydrochloric acid in the aqueous hydrochloric acid solution as the immersion liquid in the method of the present invention cannot be particularly specified because it only needs to have the ability to initially dissolve the Cu content in the copper-tungsten alloy and generate a small amount of CuCl2 . However, 1 to 12 regulations are particularly effective. If the hydrochloric acid concentration is less than 1N, the dissolution rate of copper is slow and a large amount of liquid is required, and an aqueous hydrochloric acid solution exceeding 12N cannot be obtained under normal pressure.

本発明方法における塩酸性水溶液の銅−タング
ステン合金に対する量的割合はHCl換算で該合金
中のCu含有量に対して2倍当量以上であればよ
く、とくに規定する必要はない。2倍当量を要す
る理由は、該合金中のCu分を溶解するために供
されるCl分がすべて浸漬液中のHClから供給する
と考えて、次の反応式 Cu+2HCl→CuCl2+H2 から算出したところ、実験結果とよく合致するた
めである。
The quantitative ratio of the hydrochloric acid aqueous solution to the copper-tungsten alloy in the method of the present invention may be at least twice the equivalent of the Cu content in the alloy in terms of HCl, and does not need to be particularly specified. The reason why twice the equivalent is required is that the Cl component provided to dissolve the Cu component in the alloy is all supplied from the HCl in the immersion liquid, and it was calculated from the following reaction formula Cu + 2 HCl → CuCl 2 + H 2 However, this is because it agrees well with the experimental results.

上記浸漬液に吹き込まれる塩素ガスとしては、
浸漬液に飽和状態で含有されるような速度で供給
されればよく、処理する合金の重量によつて決定
されるので、とくに規定するには及ばないが、
Cuを溶解することによつて生成するCuClを2価
に酸化するためには銅の熔解速度の2倍当量以上
の速度で吹き込む必要があることが実験的に確め
られている。また、本発明方法では以上から明ら
かであるように、有害ガスは発生しない。
The chlorine gas blown into the above immersion liquid is as follows:
It is sufficient to supply the material at a rate such that it is contained in the immersion liquid in a saturated state, and since it is determined by the weight of the alloy to be processed, it is not necessary to specify it in particular.
It has been experimentally confirmed that in order to divalently oxidize CuCl produced by dissolving Cu, it is necessary to blow at a rate twice or more equivalent to the copper melting rate. Further, in the method of the present invention, as is clear from the above, no harmful gas is generated.

本発明は、以上のごとく、接点材料等に利用さ
れている銅−タングステン合金の廃棄物または製
造時の工程損失分から、簡単な操作による連鎖反
応を利用して、有害ガスを発生させることなく銅
とタングステンをそれぞれ高収率で相互に分離回
収する方法を提供するもので、その工業的価値は
大きい。
As described above, the present invention utilizes the copper-tungsten alloy waste used for contact materials, etc., or the process loss during production, by using a chain reaction with a simple operation, to produce copper without generating harmful gases. It provides a method for mutually separating and recovering tungsten and tungsten in high yields, and its industrial value is great.

次に、本発明を実施例によつて、さらに具体的
に説明するが、本発明はその要旨を越えない限り
以下の実施例によつて限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例 1 タングステンを50g含有する銅−タングステン
合金100gを300mlの6N塩酸に浸漬し、次いでこ
の浸漬液に塩素ガスを200ml/mmの割合で吹き込ん
だところ、1時間で浸出残渣が粉末となつた。こ
の粉末を浸漬液から別し、成分を化学分析した
ところ、銅を約80ppm含有するタングステン粉
末であり、電子顕微鏡観察により、約1μmの粒
径を有していることがわかつた。また、浸出液中
のタングステンは化学分析の結果、検出限界の
10ppm以下であつた。
Example 1 100 g of a copper-tungsten alloy containing 50 g of tungsten was immersed in 300 ml of 6N hydrochloric acid, and then chlorine gas was blown into this immersion solution at a rate of 200 ml/mm, and the leaching residue turned into powder in 1 hour. . When this powder was separated from the immersion liquid and chemically analyzed for its components, it was found to be tungsten powder containing about 80 ppm of copper, and by electron microscopic observation, it was found to have a particle size of about 1 μm. In addition, as a result of chemical analysis, tungsten in the leachate was found to be below the detection limit.
It was below 10ppm.

実施例 2 タングステンを600g含有する銅−タングステ
ン合金1Kgと6の3N塩酸に浸漬し、この浸漬
液に塩素ガスを800ml/mmの割合で吹き込んだとこ
ろ、2時間で浸出残渣が粉末となつた。この粉末
を浸漬液から別し、成分を化学分析したとこ
ろ、銅を約100ppm含有するタングステン粉末で
あり、電子顕微鏡観察により約1μmの粒径を有
していることがわかつた。また、浸出液中のタン
グステンは化学分析の結果検出限界の10ppm以
下であつた。
Example 2 When 1 kg of a copper-tungsten alloy containing 600 g of tungsten and 6 parts were immersed in 3N hydrochloric acid and chlorine gas was blown into the immersion liquid at a rate of 800 ml/mm, the leaching residue turned into powder in 2 hours. When this powder was separated from the immersion liquid and chemically analyzed for its components, it was found to be tungsten powder containing about 100 ppm of copper, and by electron microscopic observation, it was found to have a particle size of about 1 μm. Furthermore, chemical analysis showed that the tungsten in the leachate was below the detection limit of 10 ppm.

Claims (1)

【特許請求の範囲】[Claims] 1 銅−タングステン合金を塩酸性水溶液に浸漬
し、次いで該浸漬液に塩素ガスを含有するガスを
吹き込むことを特徴とする銅−タングステン合金
からの有価金属の回収方法。
1. A method for recovering valuable metals from a copper-tungsten alloy, which comprises immersing the copper-tungsten alloy in an aqueous hydrochloric acid solution, and then blowing a gas containing chlorine gas into the immersion solution.
JP18766880A 1980-12-27 1980-12-27 Recovering method for valuable metal from copper-tungsten alloy Granted JPS57110629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18766880A JPS57110629A (en) 1980-12-27 1980-12-27 Recovering method for valuable metal from copper-tungsten alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18766880A JPS57110629A (en) 1980-12-27 1980-12-27 Recovering method for valuable metal from copper-tungsten alloy

Publications (2)

Publication Number Publication Date
JPS57110629A JPS57110629A (en) 1982-07-09
JPS6128727B2 true JPS6128727B2 (en) 1986-07-02

Family

ID=16210069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18766880A Granted JPS57110629A (en) 1980-12-27 1980-12-27 Recovering method for valuable metal from copper-tungsten alloy

Country Status (1)

Country Link
JP (1) JPS57110629A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990010568A (en) * 1997-07-18 1999-02-18 김종진 How to remove copper in scrap metal
CN109082520A (en) * 2018-07-25 2018-12-25 华南理工大学 A method of silver being recycled in electrical contact from scrapping

Also Published As

Publication number Publication date
JPS57110629A (en) 1982-07-09

Similar Documents

Publication Publication Date Title
JP4642796B2 (en) Gold leaching method
NO158106B (en) PROCEDURE FOR TREATING Aqueous SOLUTION CONTAINING Precious Metals and Undesirable Elements.
AU773569B2 (en) Process for refining silver bullion with gold separation
JP2023545603A (en) Method for leaching and recovering platinum group metals in organic solvents
US4997532A (en) Process for extracting noble metals
JP4207959B2 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
RU2102507C1 (en) Aqueous solution for leaching precious metals (versions)
JP6636819B2 (en) Treatment method of metal-containing acidic aqueous solution
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JPS6128727B2 (en)
US3996046A (en) Extraction and purification of silver from sulfates
JP7423467B2 (en) Ruthenium recovery method
EP0061468B1 (en) Recovery of silver from ores and concentrates
JP4406745B2 (en) Method for processing Sn, Pb, Cu-containing material
JP7247050B2 (en) Method for treating selenosulfuric acid solution
Sugawara Recovery of gold from incinerated sewage sludge
JP6994984B2 (en) How to recover ruthenium
JPH10265863A (en) Method for recovering noble metals from smelting residue
JP7423479B2 (en) Ruthenium recovery method
JP6835577B2 (en) How to collect valuables
JP2020196921A (en) Chlorination leaching method
JPS6138251B2 (en)
JP2019147718A (en) Method for recovering tellurium
JP7331744B2 (en) Method for leaching sparingly soluble platinum group elements
JP7498137B2 (en) Method for separating ruthenium and iridium