JPS61287183A - Polarizing method for piezoelectric body material - Google Patents

Polarizing method for piezoelectric body material

Info

Publication number
JPS61287183A
JPS61287183A JP60128760A JP12876085A JPS61287183A JP S61287183 A JPS61287183 A JP S61287183A JP 60128760 A JP60128760 A JP 60128760A JP 12876085 A JP12876085 A JP 12876085A JP S61287183 A JPS61287183 A JP S61287183A
Authority
JP
Japan
Prior art keywords
oxide
piezoelectric material
polarizing
polarization
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60128760A
Other languages
Japanese (ja)
Inventor
Junichi Watanabe
純一 渡辺
Shigeru Sadamura
定村 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60128760A priority Critical patent/JPS61287183A/en
Publication of JPS61287183A publication Critical patent/JPS61287183A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify operation, and to stabilize electric characteristics by polarizing a titanic acid-lead zirconic acid group piezoelectric body material by applying specific DC voltage in air. CONSTITUTION:Titanium acid-lead zirconium acid group piezoelectric materials, such as lead oxide, titanium oxide, zirconium oxide, zinc oxide, strontium oxide and niobium oxide are compounded and mixed, and dried and calcined and crushed, and methyl cellulose, glycerin and water are added to the crushed powder and kneaded, thus manufacturing a sheet in thickness such as 300mum or less through an extrusion method. The sheet is punched in a discoid manner, and baked and changed into a pellet-shaped sintered body, electrodes are formed on both surfaces, and the sintered body is set to a polarizing device and DC voltage of 3KV/mm or less is applied in air, thus executing polarization treatment. Accordingly, the piezoelectric body materials having stable electric characteristics can be acquired simply.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は圧電体材料の分極方法に関するものであり、特
に肉厚の薄い圧電体セラミック材料において安定な圧電
体特性が得られ、かつ処理操作が簡便な分極方法に関す
るものである。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method for polarizing piezoelectric materials, which is particularly capable of obtaining stable piezoelectric properties in thin-walled piezoelectric ceramic materials, and which is suitable for processing operations. This relates to a simple polarization method.

「従来の技術」 圧電体セラミック材料は、鉛、チタン、ジルコニウム、
亜鉛、ストロンチウム及びニオブの酸化物等で構成され
るが、比誘電率、電気的機械結合係数を向上させるため
には分極処理を行なうことが必要である。この分極処理
は、通常1分極促進のために100℃前後に加温若しく
は加熱した油などの電気絶縁体中に圧電体材料を浸し、
直流電圧を印加する方法が取られている。
"Conventional technology" Piezoelectric ceramic materials include lead, titanium, zirconium,
Although it is composed of oxides of zinc, strontium, niobium, etc., it is necessary to perform polarization treatment to improve the dielectric constant and electrical mechanical coupling coefficient. This polarization treatment usually involves immersing the piezoelectric material in an electrical insulator such as oil that has been heated to around 100°C to promote polarization.
A method of applying a DC voltage is used.

「発明が解決しようとする問題点」 しかし、上に述べたような分極処理を行なった場合には
、分極後に圧電体材料を洗浄して油を取り除く必要があ
り、更に乾燥する必要もあった。
``Problem to be solved by the invention'' However, when the above-mentioned polarization process was performed, it was necessary to wash the piezoelectric material after polarization to remove oil, and it was also necessary to dry it. .

また、油中で分極するために、油浴槽中への圧電体材料
のセツティングあるいは取出しなど煩雑な工程が必要で
ある。また、現在実用に供されている圧電体素子は一般
的にその形状が小さく肉厚も薄いために、その取り扱い
中に欠けまたは割れ等が発生し易いため、上記分極方法
は工業的量産には必ずしも適していなかった。また、圧
電体材料がパイプ状のものである場合には、空孔内に残
留する油を完全に取り除くことが困難で信頼性に欠ける
ことがあった。
Furthermore, since the piezoelectric material is polarized in oil, complicated steps such as setting and taking out the piezoelectric material into an oil bath are required. In addition, the piezoelectric elements currently in practical use are generally small in shape and thin in wall thickness, so they are prone to chipping or cracking during handling, so the above polarization method is not suitable for industrial mass production. It wasn't necessarily suitable. Further, when the piezoelectric material is pipe-shaped, it is difficult to completely remove oil remaining in the pores, resulting in a lack of reliability.

本発明は、上記従来技術の欠点を解消し、操作が簡単で
しかも特性の安定した圧電体材料が得られる分極方法を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polarization method that eliminates the drawbacks of the prior art described above and that is easy to operate and that allows the production of a piezoelectric material with stable characteristics.

r問題点を解決するための手段」 本発明は、上記目的を達成するために、圧電体材料を空
気中で3KV/m以下の直流電圧を印加して分極するこ
とを特徴とするものである。
In order to achieve the above object, the present invention is characterized in that a piezoelectric material is polarized in air by applying a DC voltage of 3 KV/m or less. .

本発明において、上記圧電体材料としては、空気中、室
温で分極可能なものが特に適しており。
In the present invention, the piezoelectric material that can be polarized in air at room temperature is particularly suitable.

例えば、−酸化鉛、酸化チタン、酸化ジルコニウム、酸
化亜鉛、および酸化ニオブより成る圧電体材料など、比
較的容易に分極が可能なものが適している。すなおち、
例えばPb(Ti、Zr)O,系の圧電体材料でpbの
一部をSrで、TiおよびZrの一部をNb、Znで置
換したものなどは、比較的容易に分極が出来るので好ま
しい。
For example, piezoelectric materials that can be polarized relatively easily are suitable, such as piezoelectric materials made of lead oxide, titanium oxide, zirconium oxide, zinc oxide, and niobium oxide. Sunaochi,
For example, a piezoelectric material based on Pb(Ti, Zr)O, in which a portion of pb is replaced with Sr and a portion of Ti and Zr is replaced with Nb or Zn, is preferable because it can be polarized relatively easily.

また、本発明において、上記直流電圧が高すぎると絶縁
破壊を起こすので、印加する直流電圧は3KV/−以下
とするのが良い。
Furthermore, in the present invention, if the DC voltage is too high, dielectric breakdown will occur, so the applied DC voltage is preferably 3 KV/- or less.

本発明を適用する圧電体材料の形状は、その厚さが30
0μ履以下が望ましく、300μ腫を越える厚さの圧電
体材料の場合には、分極が十分にできなくなる。また、
圧電体材料がパイプ状のものであるときは、その直径が
0.5〜5m11、長さが5〜20醜冨程度の小型のも
のが望ましく、内外面にメッキにて電極を形成し各々の
電極にリード線を付けた後、電極間に直流電圧を印加し
て分極をする。この場合も圧電体の肉厚が薄いもの程分
極し易いので。
The shape of the piezoelectric material to which the present invention is applied has a thickness of 30 mm.
Desirably, the thickness is less than 0 μm; if the thickness of the piezoelectric material exceeds 300 μm, sufficient polarization will not be achieved. Also,
When the piezoelectric material is pipe-shaped, it is preferable to use a small one with a diameter of 0.5 to 5 m11 and a length of about 5 to 20 mm. Electrodes are formed on the inner and outer surfaces by plating, and each After attaching lead wires to the electrodes, a DC voltage is applied between the electrodes to polarize them. In this case as well, the thinner the piezoelectric material is, the easier it is to polarize.

通常は50〜500μ鶴、望ましくは50〜300μ鴇
の肉厚のものがよい。
Usually, the wall thickness is 50 to 500 μm, preferably 50 to 300 μm.

また1本発明において、分極時間すなわち直流電圧の印
加時間は2分乃至30分間行なうことが好ましい、2分
よりも短い処理時間の場合は、分極が不十分となる恐れ
があり、また、時効処理を行なったり高温試験をした場
合などに比誘電率などが低下してしまうことがある。一
方、上記した程度の肉厚のものにおいては、5分間の分
極処理で十分であり、あまりにも長い分極処理は工業上
かえって不利益となるので、最長30分とする。
In addition, in the present invention, the polarization time, that is, the application time of the DC voltage, is preferably 2 minutes to 30 minutes. If the treatment time is shorter than 2 minutes, the polarization may be insufficient, and the aging treatment The dielectric constant etc. may decrease when conducting high-temperature tests or conducting high-temperature tests. On the other hand, in the case of a material having a wall thickness of the above-mentioned extent, a polarization treatment of 5 minutes is sufficient, and since an excessively long polarization treatment is rather disadvantageous industrially, the maximum length of the polarization treatment is 30 minutes.

「実施例」 以下1本発明を実施例に基づいて、より具体的に説明す
る。
"Example" The present invention will be described in more detail below based on an example.

〈実施例1〉 一酸化鉛(pbo、リサージA、三井金属鉱業■製)と
酸化チタン(TiO2,KA−10チタン工業■製)と
酸化ジルコニウム(ZrO,、EP第−稀元素■製)と
酸化亜鉛(ZnO,正同化学111111)と炭酸スト
ロンチウム(S r COs v レア・メタリック社
製)と酸化ニオブ(Nb、O,、HPCスタルク■製)
を、 Pba、ss Sro、1sCZn1ysNb*
yz>o、zsTio、*5Zro、40mの組成にな
るように配合し混合した後、乾燥し、850℃で仮焼き
し粉砕した。 この粉砕粉にメチルセルロース(S M
 −4000信越化学■製)とグリセリン(和光純薬■
製)と水とを加え、混練したのち、押し出し法で種々の
厚さく 100.180゜および300μ■)のシート
を作製した。これを直径25+amの円板状に打ち抜い
た後、1 、280℃で焼成してペレット状の焼結体を
得た。得られた焼結体の両面に金、クロムを蒸着するこ
とにより電極を形成した0次に、これを分極装置にセッ
トして空気中、20℃で3KV/−閣の直流電圧を5分
間印加して分極処理を施した。得られた強誘電体の電気
特性を第1表に示す。
<Example 1> Lead monoxide (pbo, Resurge A, manufactured by Mitsui Kinzoku Kogyo ■), titanium oxide (TiO2, KA-10 manufactured by Titanium Industries ■), and zirconium oxide (ZrO, manufactured by EP Rare Element ■) Zinc oxide (ZnO, Seido Kagaku 111111), strontium carbonate (S r COs v manufactured by Rare Metallic Co., Ltd.), and niobium oxide (Nb, O, manufactured by HPC Starck ■)
, Pba, ss Sro, 1sCZn1ysNb*
After blending and mixing to have a composition of yz>o, zsTio, *5Zro, 40m, it was dried, calcined at 850°C, and pulverized. Methyl cellulose (S M
-4000 (manufactured by Shin-Etsu Chemical) and glycerin (Wako Pure Chemical)
After adding water and kneading, sheets of various thicknesses (100.180° and 300 μm) were produced by extrusion. This was punched out into a disc shape with a diameter of 25+ am, and then fired at 1,280°C to obtain a pellet-shaped sintered body. Electrodes were formed by vapor-depositing gold and chromium on both sides of the obtained sintered body. Next, this was set in a polarizer and a DC voltage of 3 KV/- was applied for 5 minutes at 20°C in air. Then, polarization treatment was performed. The electrical properties of the obtained ferroelectric material are shown in Table 1.

第   1   表 これらの結果から電気特性は良好で分極は十分に行なわ
れていることが判る。
Table 1 From these results, it can be seen that the electrical properties are good and polarization is sufficiently performed.

〈実施例2〉 実施例1で作製した300μ箇の焼結体を、20℃〜1
00℃の温度で2時間アニールし、さらに室温で3力月
間放置した。その結果は、第2表に示すように、50〜
80℃でエージングした試料は、3力月経過後も電気特
性が変化しなかった。
<Example 2> The 300μ sintered bodies produced in Example 1 were heated at 20°C to 1
The sample was annealed at a temperature of 00° C. for 2 hours, and then left at room temperature for 3 months. The results are as shown in Table 2.
The electrical properties of the sample aged at 80° C. did not change even after 3 months.

第   2   表 ε8:比誘電率 kp:電気機械結合係数 〈実施例3〉 実施例1と同様に仮焼き、混練した材料を押し出し法で
、外径1.5鳳曹、内径1.0飄m(肉厚250μm)
長さ15mmのパイプ状圧電体を成形し、これを128
0℃で焼成した。この焼結体の内外面に無電解メッキに
より電極を形成し、該電極にリード線を半田付けにより
接続した。次に、空気中で3kV/mmの直流電圧を5
分間印加して分極した後、65℃で2時間エージングし
た。得られたパイプ状圧電体材料の電気特性は、比誘電
率5,800.電気機械結合係数61%で、その特性は
安定していた。
Table 2 ε8: Relative dielectric constant kp: Electromechanical coupling coefficient <Example 3> Materials calcined and kneaded in the same manner as in Example 1 were extruded to form a mold with an outer diameter of 1.5 mm and an inner diameter of 1.0 mm. (Wall thickness 250μm)
A pipe-shaped piezoelectric body with a length of 15 mm is molded, and this is
It was fired at 0°C. Electrodes were formed on the inner and outer surfaces of this sintered body by electroless plating, and lead wires were connected to the electrodes by soldering. Next, apply a DC voltage of 3 kV/mm in air to 5
After polarization was applied for a minute, it was aged at 65° C. for 2 hours. The electrical properties of the obtained pipe-shaped piezoelectric material were as follows: dielectric constant: 5,800. Its properties were stable with an electromechanical coupling coefficient of 61%.

「発明の効果」 以上説明したように、本発明は空気中で分極処理をし、
さらに必要により高温でアニールすることにより電気的
特性の安定な圧電体材料が得られるので、従来の油に浸
して分極する方法と比較して、洗浄等の後工程が不必要
になるという特長を有する。更に、本発明は、パイプ形
状の小さな圧電体も簡便に分極できるという効果も有す
る。
"Effects of the Invention" As explained above, the present invention performs polarization treatment in air,
Furthermore, piezoelectric materials with stable electrical properties can be obtained by annealing at high temperatures if necessary, so compared to the conventional method of immersing in oil and polarizing, post-processes such as cleaning are not required. have Furthermore, the present invention has the effect that even a small pipe-shaped piezoelectric body can be easily polarized.

昭和60年 特許願 第128760号発明の名称 圧電体材料の分極方法 補正をする者 事件との関係  特許出願人 住所 東京都千代田区丸ノ内二丁目1番2号名称 (5
08)日立金属株式会社 補正の対象 明細書の「特許請求の範囲」の欄、および
「発明の詳細な説明」の欄。
1985 Patent application No. 128760 Name of the invention Relationship to the case of a person who corrects the polarization method of piezoelectric material Patent applicant address 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Name (5
08) Subject of Hitachi Metals Co., Ltd. amendment The "Claims" column and the "Detailed Description of the Invention" column of the specification.

補正の内容 別紙の通り 補正の内容 ■、明細書の「特許請求の範囲」の欄の記載を、下記の
通り訂正する。
Contents of the amendment As shown in the attached document, the contents of the amendment (■) and the statement in the "Claims" column of the specification are corrected as follows.

記 「(1)チタントシルコン酸鉛系の圧電体材料を、空気
中で3KV/u+以下の直流電圧を印加して分極するこ
とを特徴とする圧電体材料の分極方法。
(1) A method for polarizing a piezoelectric material, which comprises polarizing a lead titanium tosylconate-based piezoelectric material by applying a DC voltage of 3 KV/u+ or less in air.

(2)特許請求の範囲第1項記載の分極方法において、
上記圧電体材料が一酸化鉛、酸化チタン。
(2) In the polarization method according to claim 1,
The above piezoelectric materials are lead monoxide and titanium oxide.

酸化ジルコニウム、M化亜鉛、酸化ストロンチウム、お
よび酸化ニオブとから成ることを特徴とする圧電体材料
の分極方法。
A method for polarizing a piezoelectric material comprising zirconium oxide, zinc oxide, strontium oxide, and niobium oxide.

(3)特許請求の範囲第1項または第2項記載の分極方
法において、上記圧電体材料が厚さユ駐以下のものであ
ることを特徴とする圧電体材料の分極方法。
(3) A method for polarizing a piezoelectric material according to claim 1 or 2, characterized in that the piezoelectric material has a thickness of less than or equal to 10 mm.

(4)特許請求の範囲第1項または第2項記載の分極方
法において、上記圧電体材料が直径0.5〜5ml、長
さ5〜20m+aのパイプ形状を有し、メッキにて電極
を形成した後にリード線を接続したちのであることを特
徴とする圧電体材料の分極方法。
(4) In the polarization method according to claim 1 or 2, the piezoelectric material has a pipe shape with a diameter of 0.5 to 5 ml and a length of 5 to 20 m+a, and electrodes are formed by plating. A method for polarizing a piezoelectric material, comprising: connecting lead wires after the polarization is performed.

(5)特許請求の範囲第1項乃至第4項のいずれかに記
載の分極方法において、上記空気中雰囲気の温度が0〜
30℃であることを特徴とする圧電体材料の分極方法。
(5) In the polarization method according to any one of claims 1 to 4, the temperature of the air atmosphere is 0 to 0.
A method for polarizing a piezoelectric material, characterized in that the temperature is 30°C.

(6)特許請求の範囲第1項乃至第5項のいずれかに記
載の分極方法において、上記分極処理後に50〜80℃
の温度で1時間以上エージングすることを特徴とする圧
電体材料の分極方法」 ■、明細書の「発明の詳細な説明」の欄の記載を、次の
如く訂正する。
(6) In the polarization method according to any one of claims 1 to 5, the temperature is 50 to 80°C after the polarization treatment.
"A method for polarizing a piezoelectric material characterized by aging at a temperature of 1 hour or more" (2) The description in the "Detailed Description of the Invention" column of the specification is corrected as follows.

1、第4頁第18行の「300μl」を「700μ■」
に訂正する。
1. Change "300μl" on page 4, line 18 to "700μ■"
Correct.

2)同頁同行の「300μ謹」を「700μ■」に訂正
する。
2) Correct "300μ蹹" on the same page to "700μ■".

3、第5頁第6行の「50〜500μI」をr50〜2
im Jに訂正する。
3. "50-500μI" on page 5, line 6 is set to r50-2
im J to correct.

4、同頁同行の「50〜300μIIJをl”1μm 
〜111 Jに訂正する。
4. "50 to 300μIIJ to l"1μm on the same page
- Corrected to 111 J.

5、第6頁第12〜13行の[(100,180,およ
び300μn ) Jをr 100. 300μmおよ
び1mm )]に訂正する。
5, page 6, lines 12-13 [(100, 180, and 300 μn) J to r 100. 300 μm and 1 mm)].

6、第7頁第1表第1行の数値を「180Jを「300
」に訂正する。
6. Change the value in the first row of Table 1 on page 7 to ``180J'' to ``300J''.
” is corrected.

7、同頁同表同行の数値を「300」を「100」にて
訂正する。
7. Correct the numerical value on the same page and table from "300" to "100".

以上that's all

Claims (6)

【特許請求の範囲】[Claims] (1)チタン酸−ジルコン酸鉛系の圧電体材料を、空気
中で3KV/mm以下の直流電圧を印加して分極するこ
とを特徴とする圧電体材料の分極方法。
(1) A method for polarizing a piezoelectric material, which comprises polarizing a lead titanate-zirconate-based piezoelectric material by applying a DC voltage of 3 KV/mm or less in air.
(2)特許請求の範囲第1項記載の分極方法において、
上記圧電体材料が一酸化鉛、酸化チタン、酸化ジルコニ
ウム、酸化亜鉛、酸化ストロンチウム、および酸化ニオ
ブとから成ることを特徴とする圧電体材料の分極方法。
(2) In the polarization method according to claim 1,
A method for polarizing a piezoelectric material, characterized in that the piezoelectric material is comprised of lead monoxide, titanium oxide, zirconium oxide, zinc oxide, strontium oxide, and niobium oxide.
(3)特許請求の範囲第1項または第2項記載の分極方
法において、上記圧電体材料が厚さ300μm以下のも
のであることを特徴とする圧電体材料の分極方法。
(3) A method for polarizing a piezoelectric material according to claim 1 or 2, wherein the piezoelectric material has a thickness of 300 μm or less.
(4)特許請求の範囲第1項または第2項記載の分極方
法において、上記圧電体材料が直径0.5〜5mm、長
さ5〜20mmのパイプ形状を有し、メッキにて電極を
形成した後にリード線を接続したものであることを特徴
とする圧電体材料の分極方法。
(4) In the polarization method according to claim 1 or 2, the piezoelectric material has a pipe shape with a diameter of 0.5 to 5 mm and a length of 5 to 20 mm, and an electrode is formed by plating. A method for polarizing a piezoelectric material, characterized in that a lead wire is connected after the polarization is performed.
(5)特許請求の範囲第1項乃至第4項のいずれかに記
載の分極方法において、上記空気中雰囲気の温度が0〜
30℃であることを特徴とする圧電体材料の分極方法。
(5) In the polarization method according to any one of claims 1 to 4, the temperature of the air atmosphere is 0 to 0.
A method for polarizing a piezoelectric material, characterized in that the temperature is 30°C.
(6)特許請求の範囲第1項乃至第5項のいずれかに記
載の分極方法において、上記分極処理後に50〜80℃
の温度で1時間以上エージングすることを特徴とする圧
電体材料の分極方法。
(6) In the polarization method according to any one of claims 1 to 5, the temperature is 50 to 80°C after the polarization treatment.
A method for polarizing a piezoelectric material, characterized by aging at a temperature of 1 hour or more.
JP60128760A 1985-06-13 1985-06-13 Polarizing method for piezoelectric body material Pending JPS61287183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128760A JPS61287183A (en) 1985-06-13 1985-06-13 Polarizing method for piezoelectric body material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128760A JPS61287183A (en) 1985-06-13 1985-06-13 Polarizing method for piezoelectric body material

Publications (1)

Publication Number Publication Date
JPS61287183A true JPS61287183A (en) 1986-12-17

Family

ID=14992785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128760A Pending JPS61287183A (en) 1985-06-13 1985-06-13 Polarizing method for piezoelectric body material

Country Status (1)

Country Link
JP (1) JPS61287183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302445A (en) * 2008-06-17 2009-12-24 Fujifilm Corp Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302445A (en) * 2008-06-17 2009-12-24 Fujifilm Corp Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure
US8567026B2 (en) 2008-06-17 2013-10-29 Fujifilm Corporation Piezoelectric film poling method

Similar Documents

Publication Publication Date Title
CN107986782B (en) Doped modified lead zirconate titanate piezoelectric ceramic and preparation method thereof
CN116573936B (en) Anion modified piezoelectric ceramic and preparation method thereof
CN100360466C (en) Doped and modified piezoelectric ceramic of potassium sodium bismuth titanate and preparation method
JP3108724B2 (en) High durability piezoelectric composite ceramics and its manufacturing method
JP2002208743A (en) Laminate displacement element
JPS61287183A (en) Polarizing method for piezoelectric body material
CN105645957B (en) A kind of high mechanical-electric coupling performance lead zirconate titanate fine grain piezoelectric ceramics and preparation method thereof
JPS61292385A (en) Polarization of piezoelectric material
JPS62154680A (en) Batio3 system porcelain for actuator
JPH0558729A (en) Piezoelectric ceramic composition
JP2003201171A (en) Piezoelectric porcelain composition
JPH0548173A (en) Manufacture of piezoelectric material ceramics
JP3451309B2 (en) High performance electrostrictive ceramics
JP3044304B1 (en) High performance piezoelectric ceramics and method of manufacturing the same
JPH02192459A (en) Production of piezoelectric ceramics
JP2000143339A (en) Piezoelectric substance porcelain composition
JPH03159281A (en) Piezoelectric porcelain composition
JPH0524648B2 (en)
JP3554397B2 (en) Piezoelectric material
JP2716083B2 (en) PZT photovoltaic element
JPH0244273B2 (en)
JPH01305856A (en) Lead titanate zirconate type oxide composition
JPH01239830A (en) Reduced reoxidized semiconductor ceramic capacitor
JPH02288381A (en) Piezoelectric porcelain composition
JPH0692729A (en) Piezoelectric porcelain composition