JPS61286758A - Automatic chemical analyser - Google Patents

Automatic chemical analyser

Info

Publication number
JPS61286758A
JPS61286758A JP12714485A JP12714485A JPS61286758A JP S61286758 A JPS61286758 A JP S61286758A JP 12714485 A JP12714485 A JP 12714485A JP 12714485 A JP12714485 A JP 12714485A JP S61286758 A JPS61286758 A JP S61286758A
Authority
JP
Japan
Prior art keywords
reaction cell
cumulative
pure water
reaction
photometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12714485A
Other languages
Japanese (ja)
Other versions
JPH0660903B2 (en
Inventor
Noboru Yokoya
横谷 昇
Michio Kumada
美智男 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60127144A priority Critical patent/JPH0660903B2/en
Publication of JPS61286758A publication Critical patent/JPS61286758A/en
Publication of JPH0660903B2 publication Critical patent/JPH0660903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an analyser not requiring the inspection of pure water transmitting quantity, easy to maintain and excellent in operability and reliability, by performing the measurement of a specimen by using only a reaction cell judged to have no factor exerting adverse effect on the measurement of the specimen. CONSTITUTION:A cumulative data calculation control part 33 calculates the cumulative number of times, cumulative value and cumulative average thereof on the basis of photometric data at every individual reaction cell to store the same and performs the initial setting and renewal of the cumulative number of times and the cumulative value. A pure water value inspection part 36 calculates photometric data at every individual reaction cell and the deviation with the cumulative average thereof and judges whether the deviation is within a tolerant range to store judge information in a reaction cell judge table 37. A distribution/ photometric control part 47 performs control so as to perform the distribution and photometry of a specimen and a reagent only to the corresponding reaction cell on the basis of reaction cell information judged to be present in the tolerant range among the judge information stored in the judge table 37.

Description

【発明の詳細な説明】 [発明の伎術分野] 本発明は多数の反応セルに対する測定に悪影響を及ぼす
要因を判別可能な直接測光方式の自動化学分析装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a direct photometry type automatic chemical analyzer capable of determining factors that adversely affect measurements on a large number of reaction cells.

[発明の技術的前W41 最近の自動化学分析装置においては、処理能力の増加、
測光項目の増大及びランニングコスト低減のための試料
の微1化の傾向にある。
[Technical Precedence of the Invention W41 Recent automated chemical analyzers have increased throughput,
There is a trend toward increasing the number of photometric items and miniaturizing samples to reduce running costs.

試料の微量化については、反応管直接測光方式を採用す
ることにより対処し、処理能力の増加や測定項目の増加
については反応セルや測光部の増加により対処している
The miniaturization of the sample amount was addressed by adopting a reaction tube direct photometry method, and the increase in processing capacity and measurement items was addressed by increasing the number of reaction cells and photometry sections.

ところで、上記装置において測光データの悪化する要因
を観察すると、反応セルに気泡が付着し測定光を散乱さ
せたり、異物が混入して測定光を遮蔽したりして試料に
対する真の透過光量が得られないことや、光度計の検知
可能な最小限の光量が一定であるにもかかわらず透過光
量が反応セルの汚れのため減少しこの結果高度計の分解
能が低下すること、−さらには、試料に当った測定光が
光度計まで到達しないで迷光となる割合が多くなるため
測定データの誤差の割合が増えること等を挙げることが
できる。
By the way, when we observe the factors that cause the photometric data to deteriorate in the above-mentioned device, we find that air bubbles adhere to the reaction cell and scatter the measurement light, or foreign matter gets mixed in and blocks the measurement light, making it impossible to obtain the true amount of light transmitted to the sample. Although the minimum detectable light level of the photometer remains constant, the amount of transmitted light decreases due to contamination of the reaction cell, which reduces the resolution of the altimeter - and furthermore, For example, the percentage of measurement light that hits the photometer becomes stray light without reaching the photometer increases, which increases the percentage of errors in the measurement data.

このような測定データの悪化を生じさせる要因を検証す
るため、直接測光方式の自動化学分析装置においては反
応セルに純水を注入し、その反応セルを即行して得られ
る純水の透過光I(以下rloO%T値」ともいう。)
を塁に反応セルの気泡付着の有無、異物の混入、汚れの
程度等を判別する検証手段が採用されている。この10
0%T(!iをIos未知試料の透過光量を1、未知試
料の吸光度をEとすれば、これらの関係は下記(1)式
%式% 前記透過光量■は、測定に悪影響を及ぼす要因をオペレ
ータが検証するために各反応セル毎に記憶し、かつ、プ
リンタ等で表示することが必要となる。前記要因は純水
の透過光ff1Iの測定時及び試料の測定時に発生する
が、特に純水の透過光量■の測定は通常装置のWi源投
入時にだけ行ない以時の試料測定時にその透過光量工の
値を毎回使用するのでこの透過光量工の記憶5表示は重
要な意味を有する。
In order to verify the factors that cause such deterioration of measurement data, in an automatic chemical analyzer using direct photometry, pure water is injected into a reaction cell, and the reaction cell is run immediately to obtain transmitted light I of the pure water. (Hereinafter also referred to as "rloO%T value".)
Based on this, verification methods are used to determine the presence or absence of air bubbles in the reaction cell, the presence of foreign matter, the degree of contamination, etc. These 10
0%T (!Ios) If the amount of transmitted light of the unknown sample is 1 and the absorbance of the unknown sample is E, then these relationships are as follows (1) formula % Formula % The amount of transmitted light ■ is a factor that has an adverse effect on the measurement. It is necessary to memorize it for each reaction cell and display it on a printer etc. in order for the operator to verify it.The above factors occur when measuring the transmitted light ff1I of pure water and when measuring a sample, but especially The measurement of the amount of transmitted light (2) in pure water is normally performed only when the Wi source of the apparatus is turned on, and the value of the transmitted light amount is used every time in subsequent sample measurements, so the memory 5 display of the amount of transmitted light has an important meaning.

他方、試料測定の検証においては、反応吸光度範囲や濃
度範囲でチェックしており、異常時にはデータエラーと
して情報が付加され、再測定を行なうため意外とその労
力は少ない。
On the other hand, in verifying sample measurements, the reaction absorbance range and concentration range are checked, and in the event of an abnormality, information is added as a data error and remeasurement is performed, so the effort involved is surprisingly small.

[背景技術の問題点] しかしながら、従来の検証手段においては、多数の反応
セルから得られたそれぞれの純水の透過光量をプリンタ
等によりそのまま表示していたので、オペレータは膨大
な測光データの中から異常データを探さなければならず
、検証漏れが起る可能性が強かった。
[Problems with the Background Art] However, in conventional verification methods, the amount of transmitted light of each pure water obtained from a large number of reaction cells was displayed as is on a printer, etc., so the operator was unable to navigate through the huge amount of photometric data. It was necessary to search for abnormal data, and there was a strong possibility that verification would be overlooked.

また、純水の透過光IIIの判定結果を表示する方法も
あるが、再度純水の透過光量工の測定をやり直したり、
反応セルを再洗浄したりしなければならず測定結果の精
度維持のための保守も容易ではない。
There is also a method of displaying the determination result of pure water transmitted light III, but you may have to redo the pure water transmitted light measurement again.
The reaction cell must be re-cleaned, and maintenance to maintain the accuracy of measurement results is not easy.

これらの問題は、最近の自動化学分析装置のように処理
速度300検体/時間、最大項目32項目(比色のみ)
、最大反応時間420秒(7分〉、反応セル本数140
8本というような高性能のものにおいて顕著である。
These problems are solved by the processing speed of recent automatic chemical analyzers, which have a processing speed of 300 samples/hour and a maximum of 32 items (colorimetry only).
, maximum reaction time 420 seconds (7 minutes), number of reaction cells 140
This is noticeable in high-performance devices such as eight.

[発明の目的] 本発明は上記事情に鑑みてなされたものであり、純水の
透過光量の検証が不要で、かつ、保守が容易で操作性、
信頼性に優れた直接測光方式の自動化学分析装置を提供
することを目的とするものである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and it eliminates the need to verify the amount of transmitted light of pure water, and provides easy maintenance and operability.
The purpose of this invention is to provide an automatic chemical analyzer using direct photometry with excellent reliability.

[発明の概要] 上記目的を達成するための本発明の1要は、多数の反応
セル中に純水を注入し直接測光方式により得られる個々
の反応セルの測光データを基に反応セルの適否を検証す
るようにした自助化学分析装置において、個々の反応セ
ル毎の測光データを基にその累積回数、累積値、累積平
均を算出して記憶するとともに累積回数、累積値の初期
設定及び更新が可能な累積データ算出制御部と、個々の
反応セル毎の測光データとその累積平均との偏差を求め
a偏差が許容範囲内であるか否かを判定する純水値検証
部と、該純水値検証部による判定情報を記憶する記憶手
段と、記憶手段に格納される判定情報のうち許容範囲内
にあると判定された反応セル情報を基に対応する反応セ
ルにのみ試料。
[Summary of the Invention] One key aspect of the present invention to achieve the above object is to determine the suitability of a reaction cell based on photometric data of each reaction cell obtained by direct photometry by injecting pure water into a large number of reaction cells. In a self-help chemical analyzer designed to verify the process, the cumulative number, cumulative value, and cumulative average are calculated and stored based on the photometric data of each individual reaction cell, and the cumulative number and cumulative value can be initialized and updated. a pure water value verification unit that calculates the deviation between the photometric data of each reaction cell and its cumulative average and determines whether the a deviation is within an allowable range; A storage means for storing judgment information by the value verification section, and a sample is applied only to corresponding reaction cells based on reaction cell information judged to be within an allowable range among the judgment information stored in the storage means.

試薬の分注及び測光を行なうように制御する分注・測光
制御部とを有することを特徴とするものである。
The device is characterized by having a dispensing/photometry control section that controls the dispensing of reagents and photometry.

[発明の実施例] 以下に本発明の実施例を詳細に説明する。第1図は実施
例装置の概略構成を示すものであり、同図中1は自動化
学分析部、2は分析データ処理部である。
[Embodiments of the Invention] Examples of the present invention will be described in detail below. FIG. 1 shows a schematic configuration of an embodiment apparatus, in which 1 is an automatic chemical analysis section and 2 is an analytical data processing section.

自動化学分析部1は、多数の反応セル4を円形状に支持
し、かつ、後述する分析データ処理部2のCPU50に
より制御される反応ディスク駆動部55によって駆動さ
れ同図矢印へ方向に1反応セル間隔で間欠的に回転する
反応ディスク3と、各種の試料を収納した多数の試料容
器6を円形状に支持し前記反応ディスク駆動部55によ
り駆動されて反応ディスク3と同様同図矢印へ方向に回
転するサンプルディスク5と、純水で満たされた純水ボ
トル7、CPU50によりl1ljlllされる純水供
給ポンプ8及び純水注入ノズル9を具備し前記各反応セ
ル4に純水を注入する純水注入部10と、試薬で満たさ
れた試薬ボトル11.CPU50により制御される試薬
ポンプ12及び試薬注入ノズル13を具備し前記各反応
セル4に試薬を注入する試薬注入部14と、CPU50
により制御されて前記サンプルディスク5上の試料容器
6と反応ディスク3上の反応セル4間を移動するサンプ
リングノズル15及びサンプリングポンプ16を具備し
試料の吸引、吐出を行うサンプリング部17と、前記反
応セル4の移動経路を挾んで配置された光源ランプ18
及び高度計19を有しCPLJ50によりf、1J11
1される測光系20と、CPU50によりl11wされ
る洗浄用シリンジ21及びノズル22を具備し前記反応
セル4の洗浄乾燥を行う洗浄乾燥部23と、前記反応セ
ル4内の反応液の排液を行う反応排出手段(図示せず)
と、前記反応セル内の反応液を攪拌する1u11’部2
4とを有して構成されている。
The automatic chemical analysis section 1 supports a large number of reaction cells 4 in a circular shape, and is driven by a reaction disk drive section 55 controlled by the CPU 50 of the analysis data processing section 2, which will be described later, to perform one reaction in the direction of the arrow in the figure. A reaction disk 3 that rotates intermittently at cell intervals and a large number of sample containers 6 containing various samples are supported in a circular shape and are driven by the reaction disk drive section 55 to move in the same direction as the reaction disk 3 in the direction of the arrow in the figure. A sample disk 5 that rotates, a pure water bottle 7 filled with pure water, a pure water supply pump 8 and a pure water injection nozzle 9 that are fed by the CPU 50, and a pure water bottle 7 that injects pure water into each reaction cell 4. A water injection part 10 and a reagent bottle 11 filled with reagents. a reagent injection unit 14 that includes a reagent pump 12 and a reagent injection nozzle 13 and injects a reagent into each reaction cell 4, which is controlled by the CPU 50;
a sampling unit 17 that includes a sampling nozzle 15 and a sampling pump 16 that move between the sample container 6 on the sample disk 5 and the reaction cell 4 on the reaction disk 3 under the control of Light source lamps 18 placed across the movement path of the cell 4
and altimeter 19 f, 1J11 by CPLJ50
a photometry system 20 that is cleaned by the CPU 50; a cleaning and drying section 23 that cleans and dries the reaction cell 4, which is equipped with a cleaning syringe 21 and a nozzle 22 that are cleaned by the CPU 50; Reaction discharge means (not shown)
and 1u11' section 2 for stirring the reaction solution in the reaction cell.
4.

ここで、前記反応ディスク3についてさらに詳述する。Here, the reaction disk 3 will be explained in more detail.

いま、第2図に示すような48個の反応セル4が同図に
示す位置にあるとき各反応セル4の位置をP1〜Pas
で表し、試料分注位置をPl、試料分注位置をP2、純
水供給位置をPse、攪拌位置をPl9、測光位置をP
li、反応液排液位置をP36、洗浄乾燥位置をP37
〜P40でそれぞれ表すものとする。
Now, when the 48 reaction cells 4 are at the positions shown in FIG. 2, the positions of each reaction cell 4 are designated as P1 to Pas
The sample dispensing position is Pl, the sample dispensing position is P2, the pure water supply position is Pse, the stirring position is Pl9, and the photometry position is P.
li, the reaction liquid drain position is P36, and the washing drying position is P37.
~P40 respectively.

前記反応ディスク駆動部55は、CP U 50により
制御され、反応ディスク3及びサンプリングディスク5
を駆動するとともに反応ディスク3上の特定の反応セル
4に対応する信号(反応セル番号)を侵述する分析デー
タ処理部2の純水値検証部36へ送出するようになって
いる。
The reaction disk drive section 55 is controlled by the CPU 50 and drives the reaction disk 3 and the sampling disk 5.
At the same time, a signal (reaction cell number) corresponding to a specific reaction cell 4 on the reaction disk 3 is sent to the pure water value verification section 36 of the analytical data processing section 2.

尚、第2図に示すような位置に各反応セル4があるとき
、この位置を「ホームポジション」と称するものとする
。そして、CPU50は各反応セル4のホームポジショ
ン及びその後の回転位置をそれぞれ認識できるようにな
っている。
Incidentally, when each reaction cell 4 is located at a position as shown in FIG. 2, this position will be referred to as a "home position". The CPU 50 is configured to be able to recognize the home position and subsequent rotational position of each reaction cell 4, respectively.

前!!atll光系20は第3図に示すように光源ラン
プ18から光度計19への光路が前記測光位tpUにお
いて反応セル4を透過するように配置されている。そし
て、光度計19は光源ランプ18からの光を受光する回
折格子25と、この回折格子25からの回折光を通過さ
せるスリット26と、スリット26を経た回折光を受光
し電気信号に変換して反応セル4の測光データとして送
出する検知器27を具備している。
Before! ! As shown in FIG. 3, the atll optical system 20 is arranged so that the optical path from the light source lamp 18 to the photometer 19 passes through the reaction cell 4 at the photometric position tpU. The photometer 19 includes a diffraction grating 25 that receives light from the light source lamp 18, a slit 26 that allows the diffracted light from the diffraction grating 25 to pass through, and receives the diffracted light that has passed through the slit 26 and converts it into an electrical signal. It is equipped with a detector 27 that sends out photometric data of the reaction cell 4.

次に、前記分析データ処理部2について詳述する。Next, the analysis data processing section 2 will be explained in detail.

分析データ処理部2は、第4図に示すように前記測光系
20からの測光データをアナログデジタル変換するA/
D変換器31と、デジタル信号に変換された測光データ
を取り込み、これを送出するデータ取り込み部32と、
前記測光データを基に個々の測光データの累積回数、累
積値、累積平均の算出及び記憶を行い、かつ、これら累
積データの初期化をも行う累積データ算出υ11に1部
33と、前記累積平均、11光データと前記反応ディス
ク駆動部55からの特定の反応セル4を表わす反応セル
番号とを入力し、これらのデータを基に特定の反応セル
4の測光データと累積平均との偏差を算出する偏差算出
部34及びこの偏差が予め設定された許容値の範囲内に
あるか否かを判定し、許容範囲内であれば良とし許容範
囲外であれば不良とする判定情報を送出する判定部35
からなる純水値検証部36と、舶記判定部35からの判
定情報を第6図に示すように反応セルごとに例えば良−
〇、不良≠0というような2値化した信号で記憶する記
憶手段としての反応セル判定表37と、この反応セル判
定表37から良と判定された反応セル番号のみ選択し、
これを基に前記試薬注入部14、サンプリング部171
反応ディスク駆動部55及び測光系20を制御する分注
・測光制御部47と、前記測光データ、判定情報等を表
示する表示手段であるプリンタ46とを有して構成され
ている。
The analytical data processing section 2 includes an A/D converter that converts the photometric data from the photometric system 20 into analog and digital, as shown in FIG.
a D converter 31; a data import unit 32 that imports photometric data converted into a digital signal and sends it out;
A cumulative data calculation unit 33 for calculating and storing the cumulative number of times, cumulative value, and cumulative average of each photometric data based on the photometric data, and also initializing these cumulative data, and the cumulative average. , 11 inputs the optical data and the reaction cell number representing the specific reaction cell 4 from the reaction disk drive section 55, and calculates the deviation between the photometric data of the specific reaction cell 4 and the cumulative average based on these data. A deviation calculation unit 34 that determines whether or not this deviation is within a preset tolerance range, and sends determination information indicating that it is acceptable if it is within the tolerance range and defective if it is outside the tolerance range. Part 35
As shown in FIG. 6, the judgment information from the pure water value verification section 36 consisting of
〇, a reaction cell judgment table 37 as a storage means for storing a binary signal such as defective≠0, and only reaction cell numbers judged as good from this reaction cell judgment table 37 are selected;
Based on this, the reagent injection section 14 and the sampling section 171
It includes a dispensing/photometry control section 47 that controls the reaction disk drive section 55 and the photometry system 20, and a printer 46 that is a display means for displaying the photometry data, determination information, and the like.

累積データ算出制御部33は、第5図に示すように48
個の反応セル4毎の累積回数及び累積値を記憶するメモ
リである累積表38と、前記データ取り込み部32から
の測光データ及び累積表38から読み出した対応する反
応セル4の累積回数を入力し、累積回数が初期値(−0
)ならば入力した測光データを累積表38に対応する反
応セル4の累積値として塵き込み、かつ、その累積回数
を1とするとともに、測光データを前記累積表38から
各反応セル4毎の累積回数及び累積値を読み出し除輝処
理して累積平均を求めこれを前記偏差算出部34へ送出
する累積平均算出部40と、判定部35からの測光デー
タを入力しこの測光データを基に累積表38の対応する
反応セル4の累積回数及び累積値を更新する累積操作部
41と、前記累積表38の各反応セル4毎の累積回数及
び累積値を初期化する初期化部42とを有して構成され
ている。
The cumulative data calculation control unit 33 has 48
Input the cumulative number of times of the corresponding reaction cell 4 read out from the cumulative table 38, which is a memory that stores the cumulative number of times and the cumulative value of each reaction cell 4, the photometric data from the data importing section 32, and the cumulative number of times of the corresponding reaction cell 4. , the cumulative number is the initial value (-0
), input the input photometric data as the cumulative value of the reaction cell 4 corresponding to the cumulative table 38, set the cumulative number to 1, and input the photometric data for each reaction cell 4 from the cumulative table 38. A cumulative average calculation section 40 reads out the cumulative number of times and cumulative values, performs a brightening process to obtain a cumulative average, and sends it to the deviation calculation section 34; and a cumulative average calculation section 40 that inputs photometric data from the determination section 35 and calculates the cumulative average based on this photometric data. It has a cumulative operation section 41 that updates the cumulative number and cumulative value of the corresponding reaction cell 4 in table 38, and an initialization section 42 that initializes the cumulative number and cumulative value of each reaction cell 4 in the cumulative table 38. It is configured as follows.

尚、前記分析データ処理部2は第1図に示すように操作
パネル43及び各構成部間の信号の伝送を受は持つイン
ターフェース44を含み、前記初回累積部39.累積平
均算出部40.累積操作部41、初期化部42、純水値
検証部36及び分注・測光制御部47はCPU50に含
まれて構成されている。
As shown in FIG. 1, the analysis data processing section 2 includes an operation panel 43 and an interface 44 for receiving signals between each component, and the first accumulation section 39. Cumulative average calculation unit 40. The accumulation operation section 41, the initialization section 42, the pure water value verification section 36, and the dispensing/photometry control section 47 are included in the CPU 50.

次に上記構成の実施例装置の作用を第7図に示すこの装
置全体の処理過程を示すフローチャート及び第8図に示
す通常の反応セル4と汚れた反応セル4の100%丁値
の相違を示すグラフをも参照して説明する。尚、光源ラ
ンプ18から放射される光の波長をλとし、このときの
通常の反応セル4の100%丁値をTo、汚れた反応セ
ル4の100%丁値をT1とする。
Next, the operation of the embodiment apparatus having the above configuration is shown in FIG. 7, which is a flowchart showing the overall processing process of this apparatus, and FIG. The explanation will be given with reference to the graph shown. Note that the wavelength of the light emitted from the light source lamp 18 is λ, the 100% value of the normal reaction cell 4 at this time is To, and the 100% value of the dirty reaction cell 4 is T1.

また、第2図に示すホームポジションにおいて測光位@
Puにある反応セル4には既に純水注入部10により純
水が注入されているものとする。
Also, the photometric position @ at the home position shown in Figure 2 is
It is assumed that pure water has already been injected into the reaction cell 4 in Pu by the pure water injector 10.

測光系20の光源ランプ18は波長λの光を測光位[P
aにある反応セル4に放射する。
The light source lamp 18 of the photometric system 20 converts the light of wavelength λ into the photometric position [P
radiate to the reaction cell 4 located at a.

この光は反応セル4及びその中の純水を透過し光度計1
9の回折格子25で回折してスリット26を経て検知器
27で検知されるが、このとき反応セル4が汚れていた
場合には検知器27により検知される100%T(if
fはT1となり、この値が測光データとしてA/D変換
器31に入力する。
This light passes through the reaction cell 4 and the pure water therein and passes through the photometer 1.
9 is diffracted by the diffraction grating 25, passes through the slit 26, and is detected by the detector 27. At this time, if the reaction cell 4 is dirty, the 100% T (if
f becomes T1, and this value is input to the A/D converter 31 as photometric data.

一方、反応セル4が汚れていない場合にはそのときの1
00%丁値はToとなりこの値が測光データとしA/D
変換器31に入力する。
On the other hand, if the reaction cell 4 is not dirty, then
The 00% value is To, and this value is taken as photometric data and A/D
input to converter 31;

A/D変換器31は入力した測光データをデジタル信号
に変換しデータ取り込み部32を経て初回累積部39へ
送出する。
The A/D converter 31 converts the input photometric data into a digital signal and sends it to the initial accumulation section 39 via the data acquisition section 32.

初回累8%部39は入力した測光データに対応する反応
セル4の累積回数を累積表38から読み出し、もし累積
回数が初期値であれば、この測光データを累積表38に
書き込みとともに累積回数を1にする。
The initial cumulative 8% section 39 reads the cumulative number of times of the reaction cell 4 corresponding to the input photometric data from the cumulative number of times, and if the cumulative number of times is the initial value, writes this photometric data to the cumulative number of times and records the cumulative number of times. Set it to 1.

一方、累積表38から読み出した累積回数が初期値でな
い場合には、初回累積部39はその測光データを偏差算
出部34へ送出する。
On the other hand, if the cumulative number read from the cumulative table 38 is not the initial value, the initial cumulative unit 39 sends the photometric data to the deviation calculating unit 34.

この初回累積部39の動作と並行して累積平均算出部4
0は測光データに対応する反応セル4の累積回数及び累
積値を累積表39から読み出し、累積(a/累積回数の
除算を実行して累積平均を算出しその値を偏差算出部3
4へ送出する。
In parallel with the operation of this initial accumulation section 39, the cumulative average calculation section 4
0 reads the cumulative number and cumulative value of the reaction cell 4 corresponding to the photometric data from the cumulative table 39, calculates the cumulative average by dividing the cumulative number (a/cumulative number), and calculates the cumulative average.
Send to 4.

偏差算出部34は、反応セル駆動部55からの反応セル
番号を基に前記測光データ及び累積平均の間の偏差を算
出し、測光データ及び算出した偏差を判定部35へ送出
する。判定部35は、入力した偏差及び測光データを基
に偏差が予め設定された所定の範囲(例えば51Abs
以内)にあるか否かを判別し、この範囲内であれば測光
データを累積操作部41へ送出して累積表38の対応す
る反応セル4の累積値、累積回数を更新するとともに判
定結果が良であることを示す判定情報を反応セル判定表
37へ送出する。
The deviation calculating section 34 calculates the deviation between the photometric data and the cumulative average based on the reaction cell number from the reaction cell driving section 55, and sends the photometric data and the calculated deviation to the determining section 35. The determination unit 35 determines the deviation within a predetermined range (for example, 51 Abs) based on the input deviation and photometric data.
If it is within this range, the photometric data is sent to the cumulative operation unit 41, the cumulative value and cumulative number of the corresponding reaction cell 4 in the cumulative table 38 are updated, and the determination result is Judgment information indicating that the cell is good is sent to the reaction cell judgment table 37.

一方、判定部35において偏差が許容範囲外であると判
定されたり、あるいはその測光データがミスデータやデ
ータ無しくO値)と判別された場合には、その測光デー
タに対応する反応セル情報、例えば反応セル番号がプリ
ンタ36へ送られプリントアウトされるとともに反応セ
ル判定表37に不良であることを示す判定情報が格納さ
れる。この場合には判定部35から累積操作部41へ測
光データは送られず累積表38の更新は行われない。
On the other hand, if the determination unit 35 determines that the deviation is outside the allowable range or that the photometric data is erroneous data or no data (O value), the reaction cell information corresponding to the photometric data, For example, the reaction cell number is sent to the printer 36 and printed out, and judgment information indicating that the reaction cell is defective is stored in the reaction cell judgment table 37. In this case, the photometric data is not sent from the determination section 35 to the accumulation operation section 41 and the accumulation table 38 is not updated.

分注・測光制御部47は、試料分注ポジションP1にあ
る反応セルの番号を呼び出すと共に、前記判定表37か
らその反応セルが良であるか不良であるかの信号を呼び
出し、良と判定された反応セル4のみを使用して前記試
料分注を行うように各部をIII IIIする。このと
き、分注・測光制御部47により制御されるサンプリン
グ部17が作動し、試料分注位置P1にある反応セル4
に試料が分注される。
The dispensing/photometry control section 47 calls the number of the reaction cell located at the sample dispensing position P1, and also calls a signal from the judgment table 37 indicating whether the reaction cell is good or bad. Each section is adjusted so that the sample is dispensed using only the reaction cell 4 that has been prepared. At this time, the sampling section 17 controlled by the dispensing/photometry control section 47 is activated, and the reaction cell 4 at the sample dispensing position P1 is activated.
The sample is dispensed.

次に、上述した動作と同様な順序で試料が分注された反
応セル4は試料分注位[P2に送られここで試薬注入部
14による試薬の注入が行なわれる。
Next, the reaction cell 4 into which the sample has been dispensed in the same order as described above is sent to the sample dispensing position [P2, where the reagent is injected by the reagent injector 14.

そして、分注・測光制御部47は反応ディスク駆動部5
5を制御し試料及び試薬が注入された反応セル4を攪拌
部24で攪拌した後測光位置P22まで回転移動させる
とともに、測光系20を制御して測光位置Pzzにある
反応セル4の測光を行なう。
The dispensing/photometry control section 47 then controls the reaction disk drive section 5.
5, the reaction cell 4 into which the sample and reagent have been injected is stirred by the stirring unit 24, and then rotated to the photometry position P22, and the photometry system 20 is controlled to perform photometry of the reaction cell 4 at the photometry position Pzz. .

尚、上述したある特定の反応セル4に対する純水の10
0%T(!の測定から試料の分注に至るまでの過程にお
いて、純水で満たされたその反応セル4は一旦洗浄乾燥
位WIP37〜P4oに送られ純水の放出、乾燥が行な
われることはいうまでもない。
Incidentally, the amount of pure water 10
In the process from measuring 0%T (!) to dispensing the sample, the reaction cell 4 filled with pure water is once sent to the washing and drying positions WIP37 to P4o, where the pure water is discharged and dried. Needless to say.

前記工程において、分注・測光制御部47の検査対象と
なる反応セルが判定表37内の不良に該当する場合は分
注・測光制御は行われず、次の反応セルが検査対象に供
されるように間欠移動され、良の反応セルが到達する迄
繰り返される。
In the above process, if the reaction cell to be inspected by the dispensing/photometry control unit 47 falls under the defective condition in the judgment table 37, the dispensing/photometry control is not performed and the next reaction cell is subjected to inspection. This is repeated intermittently until a good reaction cell is reached.

このようにして、本実施例装置によれば純水検証部36
において測定に悪影響を及ぼす要因が無いと判定された
反応セル4に対してのみ自助的に試料、試薬が注入され
測定に供されるので、100%Tll自体の検証が不要
となり、装置の保守の容易化と操作の容易化が図れ、か
つ、測光データの信頼性の向上を図ることが可能となる
In this way, according to the apparatus of this embodiment, the pure water verification section 36
Samples and reagents are self-injected into the reaction cells 4 for which it was determined that there are no factors that would adversely affect the measurement and used for measurement, eliminating the need to verify 100% Tll itself and reducing equipment maintenance. It is possible to achieve ease of operation and ease of operation, and to improve the reliability of photometric data.

本発明は上述した実施例に限定されるものではなくその
要旨の範囲内で種々の変形が可能である。
The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the invention.

例えば、累積表に逐次書き込まれる累積回数。For example, the cumulative number of times a cumulative table is written sequentially.

累積値や累積平均算出部で算出する累積平均の値、偏差
算出部で算出される偏差の値、さらには判定部による判
定結果を各反応セルに対応付けて表示手段例えばCRT
の画面上に表示することも容易に行なうこともできる。
The cumulative value, the cumulative average value calculated by the cumulative average calculation section, the deviation value calculated by the deviation calculation section, and the judgment result by the judgment section are displayed in correspondence with each reaction cell, for example, on a CRT.
It can also be easily displayed on the screen.

[発明の効果] 以上詳述した本発明によれば、試料の測定に悪影響を及
ぼす要因がないと判定された反応セルのみを使用して試
料の測定を行なうようにしたことによって、純水の透過
光量自体をオペレータが検証する必要がなく、保守が容
易で操作性及び測定データの信頼性に優れた直接測光方
式の自助化学分析装置を提供することができる。
[Effects of the Invention] According to the present invention described in detail above, the measurement of the sample is performed using only reaction cells that have been determined to have no adverse effects on the measurement of the sample. It is possible to provide a direct photometry type self-help chemical analyzer that does not require an operator to verify the amount of transmitted light itself, is easy to maintain, and has excellent operability and reliability of measurement data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置の概略説明図、第2図は同
装置における反応ディスクのホームポジションの状態を
示す説明図、第3図は同装置の測光系及び分析データ処
理部の概略説明図、第4図は同装置の分析データ処理部
の構成を示すブロック図、第5図は同装置の累積表の一
例を示す説明図、第6図は同装置の反応セル判定表を示
す説明図、第7図は同装置の全体の作用を示すフローチ
ャート、第8図は通常の反応セルと汚れた反応セルとの
100%T値を示すグラフである。 1・・・自助化学分析部、 2・・・分析データ処理部
、4・・・反応セル、 20・・・測光系、33・・・
累積データ算出制御部、 36・・・純水値検証部、 37・・・反応セル判定表
、47・・・分注・測光!II 111部。
Fig. 1 is a schematic explanatory diagram of an embodiment of the device of the present invention, Fig. 2 is an explanatory diagram showing the state of the home position of the reaction disk in the same device, and Fig. 3 is a schematic diagram of the photometry system and analytical data processing section of the same device. 4 is a block diagram showing the configuration of the analytical data processing section of the device, FIG. 5 is an explanatory diagram showing an example of the cumulative table of the device, and FIG. 6 is a reaction cell judgment table of the device. The explanatory diagram, FIG. 7, is a flowchart showing the overall operation of the device, and FIG. 8 is a graph showing the 100% T value of a normal reaction cell and a dirty reaction cell. 1...Self-help chemical analysis section, 2...Analysis data processing section, 4...Reaction cell, 20...Photometry system, 33...
Cumulative data calculation control unit, 36...Pure water value verification unit, 37...Reaction cell judgment table, 47...Dispensing/photometry! II Part 111.

Claims (1)

【特許請求の範囲】[Claims] 多数の反応セル中に純水を注入し直接測光方式により得
られる個々の反応セルの測光データを基に反応セルの適
否を検証するようにした自動化学分析装置において、個
々の反応セル毎の測光データを基にその累積回数、累積
値、累積平均を算出して記憶するとともに累積回数、累
積値の初期設定及び更新が可能な累積データ算出制御部
と、個々の反応セル毎の測光データとその累積平均との
偏差を求め該偏差が許容範囲内であるか否かを判定する
純水値検証部と、該純水値検証部による判定情報を記憶
する記憶手段と、記憶手段に格納される判定情報のうち
許容範囲内にあると判定された反応セル情報を基に対応
する反応セルにのみ試料、試薬の分注及び測光を行なう
ように制御する分注・測光制御部とを有することを特徴
とする自動化学分析装置。
In an automatic chemical analyzer that verifies the suitability of a reaction cell based on the photometric data of each reaction cell obtained by direct photometry by injecting pure water into a large number of reaction cells, photometry of each individual reaction cell is performed. A cumulative data calculation control unit that calculates and stores the cumulative number of times, cumulative value, and cumulative average based on the data, and can initialize and update the cumulative number of times and cumulative value, and the photometric data of each individual reaction cell and its A pure water value verification unit that calculates the deviation from the cumulative average and determines whether the deviation is within an allowable range; a storage unit that stores determination information by the pure water value verification unit; The dispensing and photometry control unit controls the dispensing of samples and reagents and photometry only to the corresponding reaction cells based on the reaction cell information that is determined to be within the allowable range among the determination information. Characteristic automatic chemical analyzer.
JP60127144A 1985-06-13 1985-06-13 Automatic chemical analyzer Expired - Lifetime JPH0660903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60127144A JPH0660903B2 (en) 1985-06-13 1985-06-13 Automatic chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127144A JPH0660903B2 (en) 1985-06-13 1985-06-13 Automatic chemical analyzer

Publications (2)

Publication Number Publication Date
JPS61286758A true JPS61286758A (en) 1986-12-17
JPH0660903B2 JPH0660903B2 (en) 1994-08-10

Family

ID=14952704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127144A Expired - Lifetime JPH0660903B2 (en) 1985-06-13 1985-06-13 Automatic chemical analyzer

Country Status (1)

Country Link
JP (1) JPH0660903B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208765A (en) * 1987-02-25 1988-08-30 Shimadzu Corp Automatic biochemical analyzer
JPS6469936A (en) * 1987-09-11 1989-03-15 Jeol Ltd Cell blank treating method of biochemical automatic analyzer
JPH03181862A (en) * 1989-12-11 1991-08-07 Shimadzu Corp Automatic analyser
JPH03282262A (en) * 1990-03-30 1991-12-12 Corona Denki Kk Automatic sample measuring apparatus, method for detecting presence of test tube in automatic sample measuring apparatus and method for detecting presence of sample in automatic sample measuring apparatus
JP2000131233A (en) * 1998-10-28 2000-05-12 Dade Behring Marburg Gmbh Optical in-process control type nephelometry analyzing and detecting unit
JP2008164487A (en) * 2006-12-28 2008-07-17 Horiba Ltd Analysis apparatus for semiconductor manufacturing system
JP2009115693A (en) * 2007-11-08 2009-05-28 Hitachi High-Technologies Corp Automatic analyzer
JP2010151811A (en) * 2008-11-28 2010-07-08 Shimadzu Corp Particle counter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310480A (en) * 1976-05-13 1978-01-30 Secr Social Service Brit Method of and apparatus for testing cleanness of container
JPS5630650A (en) * 1979-08-22 1981-03-27 Hitachi Ltd Automatic chemical analyzer
JPS5657939A (en) * 1979-10-16 1981-05-20 Paaku Deebisu Kk Inspecting device for medical capsule
JPS56125670A (en) * 1980-01-28 1981-10-02 Coulter Electronics Cleaning method of and apparatus for re-using reaction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310480A (en) * 1976-05-13 1978-01-30 Secr Social Service Brit Method of and apparatus for testing cleanness of container
JPS5630650A (en) * 1979-08-22 1981-03-27 Hitachi Ltd Automatic chemical analyzer
JPS5657939A (en) * 1979-10-16 1981-05-20 Paaku Deebisu Kk Inspecting device for medical capsule
JPS56125670A (en) * 1980-01-28 1981-10-02 Coulter Electronics Cleaning method of and apparatus for re-using reaction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208765A (en) * 1987-02-25 1988-08-30 Shimadzu Corp Automatic biochemical analyzer
JPS6469936A (en) * 1987-09-11 1989-03-15 Jeol Ltd Cell blank treating method of biochemical automatic analyzer
JPH03181862A (en) * 1989-12-11 1991-08-07 Shimadzu Corp Automatic analyser
JPH03282262A (en) * 1990-03-30 1991-12-12 Corona Denki Kk Automatic sample measuring apparatus, method for detecting presence of test tube in automatic sample measuring apparatus and method for detecting presence of sample in automatic sample measuring apparatus
JP2000131233A (en) * 1998-10-28 2000-05-12 Dade Behring Marburg Gmbh Optical in-process control type nephelometry analyzing and detecting unit
JP2008164487A (en) * 2006-12-28 2008-07-17 Horiba Ltd Analysis apparatus for semiconductor manufacturing system
JP2009115693A (en) * 2007-11-08 2009-05-28 Hitachi High-Technologies Corp Automatic analyzer
JP2010151811A (en) * 2008-11-28 2010-07-08 Shimadzu Corp Particle counter

Also Published As

Publication number Publication date
JPH0660903B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
JP6746188B2 (en) Automatic analyzer
US5646046A (en) Method and instrument for automatically performing analysis relating to thrombosis and hemostasis
US8758684B2 (en) Automatic analyzer
US20090269242A1 (en) Analyzer
US20070215467A1 (en) Automatic analyzer
EP3693744A1 (en) Automatic analyzer
US9989549B2 (en) Automatic analyzer
US20090292494A1 (en) Analyzer
JP4871026B2 (en) Automatic analyzer and its sample dispensing method
JPS61286758A (en) Automatic chemical analyser
US20090169432A1 (en) Automatic analyzer and dispensing method thereof
US4939095A (en) Automatic chemical analyzer
US20090114538A1 (en) Automated biochemical analyzer
JPS61218949A (en) Automatic analyzing instrument
JP2008175731A (en) Automatic analysis apparatus and its maintenance method
JP4825442B2 (en) Accuracy control method of automatic analyzer for clinical examination, and automatic analyzer
JPH11142412A (en) Automatic analyzer
JPH06308131A (en) Data processing apparatus
WO2020121726A1 (en) Automated analyzer
JPS6244663A (en) Automatic analyzing instrument with many items
JP3420791B2 (en) Analysis equipment
US20220026452A1 (en) Automatic analyzer
JP5134452B2 (en) Automatic analyzer
JP2604043B2 (en) Automatic analyzer
JP2007322246A (en) Autoanalyzer