JPH06308131A - Data processing apparatus - Google Patents

Data processing apparatus

Info

Publication number
JPH06308131A
JPH06308131A JP9574493A JP9574493A JPH06308131A JP H06308131 A JPH06308131 A JP H06308131A JP 9574493 A JP9574493 A JP 9574493A JP 9574493 A JP9574493 A JP 9574493A JP H06308131 A JPH06308131 A JP H06308131A
Authority
JP
Japan
Prior art keywords
data
processing device
data processing
devices
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9574493A
Other languages
Japanese (ja)
Inventor
Rie Yamagishi
理恵 山岸
Takeshi Sato
剛 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9574493A priority Critical patent/JPH06308131A/en
Publication of JPH06308131A publication Critical patent/JPH06308131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To make measuring values of a plurality of apparatus agree thereby to provide highly reliable measuring data, by connecting a plurality of automatic analyzing devices, calculating a correcting coefficient for each device from the measuring values of calibration samples obtained from the analyzing devices, and calibrating the difference of measuring values of the devices automatically. CONSTITUTION:Several samples are measured for each analysis item in each automatic analyzing device. The data are sent to a data processing device 31 through an interface. The data are correlatively processed to the data of a reference device at an operating part 29 of the processing device 31. The result is stored as a correcting coefficient in a memory part 30 of the processing device 31. The correcting coefficient is multiplied by a measuring value obtained from a general sample, and output from an output device connected to the processing device 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動分析装置のデータ
処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a data processing device for an automatic analyzer.

【0002】[0002]

【従来の技術】臨床検査の分野では、検体数の増加に伴
って、生化学自動分析装置の普及が高まってきた。さら
に効率を高めるため、大病院や検査センター等では、同
一分析項目を複数の自動分析装置を使用して短時間に大
量の検体を処理できるようになった。また、同一項目の
分析において装置故障用バックアップ装置や夜間緊急用
装置と、昼間のルーチン装置と別に備えている場合が多
く、これら装置間でのデータの互換性は、検査の信頼性
向上の上で重要である。したがって、検査データの信頼
性を確保するため個々の装置の性能は向上し、装置毎の
精度管理やホストコンピュータによるデータ管理による
人為ミスの減少等の機能は発展してきた。しかし、個々
の装置の精度管理は行われているが、装置間の測定値差
は全く管理されておらず、同一施設内で装置ごとに測定
値が異なる可能性があった。このように同一施設内です
ら測定値が異なる可能性があるのだから、施設が異なれ
ば同一項目だからといって単純に比較検討することはで
きない。したがって、転院するたびに同じ検査を行わな
ければならず、患者に時間的,経済的負担を強いること
になっていた。
2. Description of the Related Art In the field of clinical tests, the spread of biochemical automatic analyzers has increased with the increase in the number of specimens. In order to further improve efficiency, large hospitals, test centers, and the like have been able to process a large number of samples for the same analysis item in a short time by using a plurality of automatic analyzers. Moreover, in the analysis of the same item, it is often the case that a backup device for equipment failure, an emergency equipment for nighttime, and a routine equipment for daytime are provided separately. Is important in. Therefore, the performance of each device has been improved in order to ensure the reliability of the inspection data, and the functions such as the accuracy management of each device and the reduction of human error due to the data management by the host computer have been developed. However, although the quality control of each device is performed, the difference in the measured values between the devices is not managed at all, and there is a possibility that the measured values may differ for each device in the same facility. In this way, the measured values may differ even within the same facility, so it is not possible to simply compare and compare the same items if the facilities are different. Therefore, the same examination must be performed every time the patient is transferred to the hospital, which imposes a time and financial burden on the patient.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では複数
の装置間での測定値差は考慮されておらず、装置間の測
定値差を校正するには装置個々に校正用試料を測定し、
その結果を手作業で集計,演算後、検量係数を補正しな
ければならず非効率的であった。したがって、本発明の
目的は、複数の自動分析装置の測定値差を自動的に校正
し、複数の装置での測定値の一致を図り、検査の信頼性
向上を目指すものである。
The above-mentioned prior art does not consider the difference in measured values among a plurality of devices, and in order to calibrate the difference in measured values between devices, a calibration sample is measured for each device,
The results were inefficient because the calibration coefficient had to be corrected after totaling and calculating manually. Therefore, an object of the present invention is to automatically calibrate the difference in measured values of a plurality of automatic analyzers so as to match the measured values in a plurality of devices and improve the reliability of inspection.

【0004】尚、本発明は同一施設内のみならず、施設
間のデータ管理も対象とする。
The present invention is applicable not only to the same facility but also to data management between facilities.

【0005】[0005]

【課題を解決するための手段】本発明は、複数の自動分
析装置を接続したデータ処理装置に、各々の装置におけ
る校正用試料の測定結果を集計し、演算,検量係数の補
正を自動的に行うことにより達成される。
According to the present invention, a data processing device to which a plurality of automatic analyzers are connected collects measurement results of calibration samples in each device, and automatically calculates and corrects the calibration coefficient. It is achieved by doing.

【0006】[0006]

【作用】本発明によって、今まで校正されていなかった
装置間の測定値差が、簡便で迅速に補正でき、複数の装
置での測定値の一致を図ることができる。これにより検
査の信頼性が高まることはもちろん、測定結果に互換性
があるので転院するたびに同じ検査を繰り返さずに済
み、時間的,経済的節約につながる。
According to the present invention, a difference in measured value between devices which has not been calibrated up to now can be simply and quickly corrected, and the measured values of a plurality of devices can be matched. This not only improves the reliability of the test, but also because the measurement results are compatible, the same test need not be repeated each time the patient is transferred to the hospital, which saves time and money.

【0007】[0007]

【実施例】以下、本発明の実施に用いる実施例1を図
1,図2aにより説明する。まず、自動分析装置32−
32″の動作例を図3により説明する。
Embodiment 1 Hereinafter, Embodiment 1 used for carrying out the present invention will be described with reference to FIGS. 1 and 2a. First, the automatic analyzer 32-
An example of operation of 32 ″ will be described with reference to FIG.

【0008】試料を入れた試料カップ1は、試料ディス
ク2の上に複数個設置される。試料ディスク2は、コン
ピュータ3によりインターフェイス4を介して制御され
る。試料ディスク2は、予め登録された順番に従って試
料分注プローブ5の下まで回転移動し、試料は試料分注
プローブ5に連結された試料用ポンプ7により反応容器
6の中に所定量分注される。試料を分注された反応容器
6は恒温槽8に連絡された反応槽9の中を第一試薬添加
位置まで移動する。第一試薬添加位置まで移動した反応
容器6は、試料分注プローブ10に連結された試薬ポン
プ11により試薬ビン12から吸引された所定の第一試
薬が加えられる。第一試薬添加後の反応容器6は撹拌装
置13の位置まで移動、最初の撹拌が行われる。内容物
が撹拌された反応容器6は光源14から発した光束を通
過し、この時の吸光度は多波長光度計15で検知され
る。検知された吸光度信号は、アナログ/デジタル(A
/D)コンバータを経由し、インターフェイス4を介し
てコンピュータ3に入り、試料中の測定対象濃度に変換
される。この濃度変換方法は、測定項目によって異なる
が、例えば、酵素項目では次のような式によって変換さ
れる。
A plurality of sample cups 1 containing the sample are set on the sample disk 2. The sample disc 2 is controlled by the computer 3 via the interface 4. The sample disc 2 is rotationally moved to the bottom of the sample dispensing probe 5 according to a pre-registered order, and a predetermined amount of the sample is dispensed into the reaction container 6 by the sample pump 7 connected to the sample dispensing probe 5. It The reaction container 6 into which the sample has been dispensed moves to the first reagent addition position in the reaction tank 9 connected to the constant temperature tank 8. To the reaction container 6 that has moved to the first reagent addition position, a predetermined first reagent sucked from the reagent bottle 12 is added by the reagent pump 11 connected to the sample dispensing probe 10. After the addition of the first reagent, the reaction container 6 moves to the position of the stirring device 13 and the first stirring is performed. The reaction container 6 in which the contents are stirred passes through the light flux emitted from the light source 14, and the absorbance at this time is detected by the multi-wavelength photometer 15. The detected absorbance signal is analog / digital (A
/ D) via the converter, the computer 3 enters through the interface 4 and is converted into the concentration to be measured in the sample. Although this concentration conversion method varies depending on the measurement item, for example, the enzyme item is converted by the following formula.

【0009】[0009]

【数1】 [Equation 1]

【0010】ここで、△Aは吸光度変化、εはモル吸光
係数、Lはセルの光路長、Vsは試料容量、Vrは試薬
容量である。このうち、カッコ内はKファクターと呼ば
れ、酵素活性の検量係数である。自動分析装置では、K
ファクターを予め設定しておき測定した吸光度変化に乗
じて活性値を求めている。Kファクターには、Kファク
ターを構成する個々の物理的パラメータを理論値とし
て、計算で求めるF値がある。しかし、F値は装置その
もののバラツキを全く考慮しておらず、現実にそぐわな
いものである。そこで最近は、Kファクターを複数濃度
の反応指示物質を測定して検量を行う実測K値が用いら
れるようになった。実測K値は、F値より現実的ではあ
るが、酵素活性の測定にはサンプルの経時変化や試薬の
ロット間差、劣化などの装置以外で測定誤差をおこす因
子も多く存在し、実測K値だけでは補正しきれない場合
もある。そこで本発明では、各自動分析装置32−3
2″において各分析項目毎に数種の同一試料を測定し、
それをインターフェイス4を介してデータ処理装置31
へ送信する。データ処理装置31の演算部29は、基準
とする装置に対する相関処理を行う。この時に得られる
線形一次回帰は、 y=aix+bi で表され、各装置のデータ処理上の補正係数としてデー
タ処理装置31の記憶部30に記憶される。この補正係
数を一般試料の測定値に乗じて、データ処理装置31に
接続された出力装置33から出力、報告書を作成する。
この方法を用いた測定例をALPを例として図4で示
す。一般的にALPは、装置間差が大きい項目である
が、本発明を利用すれば、装置間差を簡単に補正するこ
とができるのである。測定の終了した反応容器6は洗浄
機構19の位置まで移動し、容器洗浄ポンプ20により
内部の液排出後水で洗浄され次の分析に供される。
Here, ΔA is the change in absorbance, ε is the molar extinction coefficient, L is the optical path length of the cell, Vs is the sample volume, and Vr is the reagent volume. Of these, the value in parentheses is called K factor, which is a calibration coefficient of enzyme activity. In the automatic analyzer, K
The factor is set in advance and the activity value is obtained by multiplying the measured change in absorbance. The K factor has an F value that is calculated by using each physical parameter constituting the K factor as a theoretical value. However, the F value does not match the reality because it does not consider the variation of the device itself. Therefore, recently, an actually measured K value has been used in which the K factor is calibrated by measuring a plurality of concentrations of reaction indicator substances. The measured K value is more realistic than the F value, but there are many factors that cause measurement errors in devices other than the device, such as changes over time of samples, differences between lots of reagents, and deterioration in the measurement of enzyme activity. In some cases, it may not be possible to correct all by itself. Therefore, in the present invention, each automatic analyzer 32-3
At 2 ″, several kinds of the same sample were measured for each analysis item.
The data processing device 31 through the interface 4
Send to. The calculation unit 29 of the data processing device 31 performs a correlation process with respect to a reference device. The linear linear regression obtained at this time is represented by y = a i x + b i , and is stored in the storage unit 30 of the data processing device 31 as a correction coefficient in data processing of each device. The measurement value of the general sample is multiplied by this correction coefficient, and the output device 33 connected to the data processing device 31 outputs and produces a report.
An example of measurement using this method is shown in FIG. 4 using ALP as an example. Generally, the ALP is an item with a large difference between the devices, but by using the present invention, the difference between the devices can be easily corrected. After the measurement, the reaction container 6 is moved to the position of the cleaning mechanism 19, and the container cleaning pump 20 discharges the liquid inside and cleans it with water for the next analysis.

【0011】実施例2として、図2bでは、各自動分析
装置32−32″において各分析項目毎に数種の同一試
料を測定し、それをインターフェイス4を介してデータ
処理装置31へ送信する。データ処理装置31の演算部
29で、基準とする装置に対する相関処理を行い、これ
を補正係数としてデータ処理装置31の記憶部30に記
憶する。この補正係数を各自動分析装置32−32″の
インターフェイス4を介してコンピュータ3の中の各測
定項目のKファクターに乗じてKファクター自体を校正
し、通常試料の測定を行い結果をプリンタ17から印字
出力するか、CRT画面18上に表示出力する。
As a second embodiment, in FIG. 2B, several kinds of the same sample are measured for each analysis item in each automatic analysis device 32-32 ″ and are transmitted to the data processing device 31 through the interface 4. The calculation unit 29 of the data processing device 31 performs a correlation process with respect to the reference device, and stores this as a correction coefficient in the storage unit 30 of the data processing device 31. This correction coefficient is stored in each automatic analyzer 32-32 ″. The K factor of each measurement item in the computer 3 is multiplied through the interface 4 to calibrate the K factor itself, and the normal sample is measured and the result is printed out from the printer 17 or displayed on the CRT screen 18. .

【0012】[0012]

【発明の効果】本発明によって、今まで校正されていな
かった複数装置間の測定値差を簡単に補正でき、より汎
用性の高い測定データを供給でき、測定結果に対する信
頼性が高まるという効果がある。また、測定結果に互換
性があるので転院するたびに同じ検査を繰り返さずに済
み、時間的,経済的節約につながる。
According to the present invention, it is possible to easily correct a difference in measured values between a plurality of devices which has not been calibrated up to now, supply more versatile measurement data, and increase the reliability of the measurement result. is there. In addition, since the measurement results are compatible, the same test need not be repeated each time the patient is transferred to the hospital, which saves time and money.

【図面の簡単な説明】[Brief description of drawings]

【図1】データ処理装置の内部構造図である。FIG. 1 is an internal structural diagram of a data processing device.

【図2】複数の自動分析装置を用いたシステム構成例
1,2を示す図である。
FIG. 2 is a diagram showing system configuration examples 1 and 2 using a plurality of automatic analyzers.

【図3】自動分析装置の一例を示す図である。FIG. 3 is a diagram showing an example of an automatic analyzer.

【図4】実際に本発明を用いた場合のALPの測定例を
示す図である。
FIG. 4 is a diagram showing an example of ALP measurement when the present invention is actually used.

【符号の説明】[Explanation of symbols]

1…試料カップ、2…試料ディスク、3…コンピュー
タ、4…インターフェイス、5…試料分注プローブ、6
…反応容器、7…試料用ポンプ、8…恒温槽、9…反応
槽、10…試薬分注プローブ、11…試薬ポンプ、12
…試薬ビン、13…撹拌装置、14…光源、15…多波
長光度計、17…プリンタ、18…CRT画面、19…
洗浄機構、20…洗浄ポンプ、29…データ処理装置の
演算部、30…データ処理装置の記憶部、31…データ
処理装置、32−32″…自動分析装置、33…出力装
置。
1 ... Sample cup, 2 ... Sample disk, 3 ... Computer, 4 ... Interface, 5 ... Sample dispensing probe, 6
... Reaction container, 7 ... Sample pump, 8 ... Constant temperature tank, 9 ... Reaction tank, 10 ... Reagent dispensing probe, 11 ... Reagent pump, 12
... Reagent bottle, 13 ... Stirrer, 14 ... Light source, 15 ... Multi-wavelength photometer, 17 ... Printer, 18 ... CRT screen, 19 ...
Washing mechanism, 20 ... Washing pump, 29 ... Data processor processing unit, 30 ... Data processor storage unit, 31 ... Data processor, 32-32 ″ ... Automatic analyzer, 33 ... Output device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】生体試料中の被検物質と、それを直接的,
間接的に係らず検出し得る物質を含有する試薬を混合
し、その反応物質に光を照射して吸光度又は濁度、又は
反射率を測定することにより、被検物質の定量を行う自
動分析装置において、複数台の自動分析装置の各々から
得られた任意の校正用試料の測定結果から、各装置の補
正係数を算出し、自動的に装置間の測定値差を校正する
ことを特徴とするデータ処理装置。
1. A test substance in a biological sample and a test substance
An automatic analyzer for quantifying a test substance by mixing a reagent containing a substance that can be detected regardless of indirectness and irradiating the reaction substance with light to measure the absorbance, turbidity, or reflectance. In (1), the correction coefficient of each device is calculated from the measurement result of an arbitrary calibration sample obtained from each of the plurality of automatic analyzers, and the difference in the measured values between the devices is automatically calibrated. Data processing device.
JP9574493A 1993-04-22 1993-04-22 Data processing apparatus Pending JPH06308131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9574493A JPH06308131A (en) 1993-04-22 1993-04-22 Data processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9574493A JPH06308131A (en) 1993-04-22 1993-04-22 Data processing apparatus

Publications (1)

Publication Number Publication Date
JPH06308131A true JPH06308131A (en) 1994-11-04

Family

ID=14146007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9574493A Pending JPH06308131A (en) 1993-04-22 1993-04-22 Data processing apparatus

Country Status (1)

Country Link
JP (1) JPH06308131A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132961A (en) * 2002-07-31 2004-04-30 F Hoffmann La Roche Ag Inspection device for analysis of biological sample liquid
JP2006017600A (en) * 2004-07-02 2006-01-19 Hitachi Sci Syst Ltd Clinical examination system
JP2006047325A (en) * 2005-10-24 2006-02-16 Toshiba Corp Automatic analyzer
JP2008216263A (en) * 2008-04-07 2008-09-18 Toshiba Corp Automatic analyzer
EP2182364A2 (en) 2008-10-28 2010-05-05 Sysmex Corporation Sample analyzer and calibration method of sample analyzer
JP2010249839A (en) * 2010-06-30 2010-11-04 Toshiba Corp Automatic analyzer
JP2010256290A (en) * 2009-04-28 2010-11-11 Terametsukusu Kk Absorbance measuring device or method of the same
JP2011149747A (en) * 2010-01-20 2011-08-04 Hitachi High-Technologies Corp Autoanalyzer
JP2012098295A (en) * 2011-12-13 2012-05-24 Toshiba Corp Automatic analyzer
JP2013205193A (en) * 2012-03-28 2013-10-07 Sysmex Corp Specimen analysis system, specimen analyzer, and management method of specimen analysis system
JP2021025803A (en) * 2019-07-31 2021-02-22 株式会社リコー Calibration device for spectral sensor, and calibration method for spectral sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182747B2 (en) 2002-07-31 2012-05-22 Roche Diagnostics Operations, Inc. Test device for analyzing a biological sample liquid
JP2004132961A (en) * 2002-07-31 2004-04-30 F Hoffmann La Roche Ag Inspection device for analysis of biological sample liquid
JP2006017600A (en) * 2004-07-02 2006-01-19 Hitachi Sci Syst Ltd Clinical examination system
JP2006047325A (en) * 2005-10-24 2006-02-16 Toshiba Corp Automatic analyzer
JP2008216263A (en) * 2008-04-07 2008-09-18 Toshiba Corp Automatic analyzer
JP2010107255A (en) * 2008-10-28 2010-05-13 Sysmex Corp Specimen analyzer, method for calibrating the same and computer program
EP2182364A2 (en) 2008-10-28 2010-05-05 Sysmex Corporation Sample analyzer and calibration method of sample analyzer
US8252593B2 (en) 2008-10-28 2012-08-28 Sysmex Corporation Sample analyzer and calibration method of sample analyzer
EP2182364A3 (en) * 2008-10-28 2017-08-16 Sysmex Corporation Sample analyzer and calibration method of sample analyzer
JP2010256290A (en) * 2009-04-28 2010-11-11 Terametsukusu Kk Absorbance measuring device or method of the same
JP2011149747A (en) * 2010-01-20 2011-08-04 Hitachi High-Technologies Corp Autoanalyzer
JP2010249839A (en) * 2010-06-30 2010-11-04 Toshiba Corp Automatic analyzer
JP2012098295A (en) * 2011-12-13 2012-05-24 Toshiba Corp Automatic analyzer
JP2013205193A (en) * 2012-03-28 2013-10-07 Sysmex Corp Specimen analysis system, specimen analyzer, and management method of specimen analysis system
JP2021025803A (en) * 2019-07-31 2021-02-22 株式会社リコー Calibration device for spectral sensor, and calibration method for spectral sensor

Similar Documents

Publication Publication Date Title
US11280733B2 (en) Automatic analyzer
US5083283A (en) Method of determining calibration curve and apparatus using calibaration curve
US9476893B2 (en) Automatic analysis device and analysis method
US9488667B2 (en) Automatic analyzer
US9638640B2 (en) Automatic analyzer
JPH03255366A (en) Automatic analyzing method and apparatus
JPH06308131A (en) Data processing apparatus
JPH11142412A (en) Automatic analyzer
JPH0433386B2 (en)
US20220170953A1 (en) Data analysis method, data analysis system, and computer
JP3206999B2 (en) Method for detecting sample dilution error and apparatus for detecting sample dilution error using the same
JP2007187445A (en) Autoanalyzer
US20220026452A1 (en) Automatic analyzer
JPH0660903B2 (en) Automatic chemical analyzer
JP2008203008A (en) Autoanalyzer
JPS6411909B2 (en)
JPH0554067B2 (en)
JPH0886784A (en) Automatic analyzer
JP7372886B2 (en) Calibration curve generation method, automatic analyzer, calibration curve generation program
JP3232997B2 (en) Automatic analyzer
CN112955749B (en) Abnormality determination method and automatic analysis device
JPS6060558A (en) Analyzing method for plural measurements
JP3125576U (en) Automatic analyzer
JPS63243880A (en) Automatic analysis instrument
JPS63732B2 (en)