JPS61286260A - Manufacture of ceramics - Google Patents

Manufacture of ceramics

Info

Publication number
JPS61286260A
JPS61286260A JP60123492A JP12349285A JPS61286260A JP S61286260 A JPS61286260 A JP S61286260A JP 60123492 A JP60123492 A JP 60123492A JP 12349285 A JP12349285 A JP 12349285A JP S61286260 A JPS61286260 A JP S61286260A
Authority
JP
Japan
Prior art keywords
powder
dispersion treatment
raw material
dispersion
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60123492A
Other languages
Japanese (ja)
Other versions
JPH0532341B2 (en
Inventor
福二 鈴木
達夫 佐藤
智之 芳賀
薫 梅屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP60123492A priority Critical patent/JPS61286260A/en
Publication of JPS61286260A publication Critical patent/JPS61286260A/en
Publication of JPH0532341B2 publication Critical patent/JPH0532341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は、緻密で均質なセラミックスの製造法に関する
。更に詳しくは、原料粉体を湿式で一次粒子に分散処理
(本明細書中で、−大粒子に分散させるとは、粒子の凝
集体を解砕し、処理液中に分散せしめることを意味する
。以下、同じ]シ。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing dense and homogeneous ceramics.More specifically, the present invention relates to a method for producing dense and homogeneous ceramics. -Dispersing into large particles means breaking up particle aggregates and dispersing them in the processing liquid.The same applies hereinafter].

該分散処理液と分散処理粉体とを分離し、該分限処理粉
体を、4000 kg/cm2以上のプレス成形圧力で
成形し、常圧焼成して、緻密で均質なセラミックス焼結
体の製造法を提供することを目的とするものである。
Separating the dispersion treatment liquid and the dispersion treatment powder, molding the limited treatment powder at a press molding pressure of 4000 kg/cm2 or more, and firing under normal pressure to produce a dense and homogeneous ceramic sintered body. The purpose is to provide law.

(従来の技術) セラミックス焼結体の製造法は、通常成形時での粉体流
動性を向上させるために、原料粉体を有機バインダーと
混合分散処理し、該分散処理物をスプレードライして約
30〜100μmの大きさに造粒するか、又は、を機バ
インダーを含まない分散粉体をスプレードライして約3
0〜100μmの大きさの顆粒粉体とし、該造粒又は顆
粒粉体を4000 kg/cm2以下の成形圧力で成形
し、成形物を常圧で焼成してセラミックス焼結体を調合
するか又は熱間静圧焼結(HIP)やホットプレス等で
加圧焼成してセラミックス焼結体を製造している。
(Prior art) The manufacturing method for ceramic sintered bodies usually involves mixing and dispersing raw material powder with an organic binder and spray-drying the dispersed product in order to improve powder fluidity during molding. Granulate to a size of about 30 to 100 μm, or spray dry a dispersed powder that does not contain a binder to a size of about 3 μm.
A granular powder with a size of 0 to 100 μm is prepared, the granulated or granulated powder is molded at a molding pressure of 4000 kg/cm2 or less, and the molded product is fired at normal pressure to prepare a ceramic sintered body, or Ceramic sintered bodies are manufactured by pressure firing using hot isostatic pressure sintering (HIP), hot press, etc.

(発明が解決しようとする問題点) 原料粉体と有機バインダーとを混合分散し、該分散処理
物をスプレードライした造粒粉体では造造粒体表面に残
分又は粉体の結合剤として必要な量販上に多量の有機バ
インダーが存在するために、このような造粒粉体を用い
て成形し焼成すると、有機バインダーが脱脂Tる際セラ
ミックス焼結体内部の気孔の原因となり緻密で均質な焼
結体が得られない。また、有機バインダーを含まない分
散粉体をスプレードライして顆粒粉体とした場合には凝
集力が低下したり或いは顆粒の大きさが不均一になった
り、粒子間の凝集力が異なるために成形時になじみが悪
く均質な成形体は得られない。
(Problems to be Solved by the Invention) In the case of a granulated powder obtained by mixing and dispersing raw material powder and an organic binder and spray drying the dispersion, there is a residue on the surface of the granule or as a binder for the powder. Because there is a large amount of organic binder in the required mass-market products, when such granulated powder is molded and fired, when the organic binder is degreased, it causes pores inside the ceramic sintered body, resulting in a dense and homogeneous product. A sintered body cannot be obtained. In addition, when a dispersed powder that does not contain an organic binder is spray-dried to form granules, the cohesive force may decrease, the size of the granules may become uneven, or the cohesive forces between particles may differ. During molding, it does not fit well and a homogeneous molded product cannot be obtained.

そして、このような不均質な成形体を焼成すると反りや
歪みの原因となり、しかも焼結体内部は緻密で均質にな
らない。更に、造粒粉体や顆粒粉体を用いて成形体を加
圧焼成しても上記と同一の問題点から緻密で均質な焼結
体が得られない。また加圧焼成装置は別の問題点として
大がかりなものであったり、コストも非常に大となるも
のである等、多くの欠点がある。
Sintering such a non-uniform molded body causes warping and distortion, and furthermore, the inside of the sintered body is dense and not homogeneous. Furthermore, even if a molded body is pressure-fired using granulated powder or granular powder, a dense and homogeneous sintered body cannot be obtained due to the same problem as described above. Further, the pressure firing apparatus has many other drawbacks, such as being large-scale and very expensive.

そこで、本発明者らは、従来のように単に原料粉体とを
機バインダーとを混合分散しスプレードライして造粒し
たり、有機バインダーを含まな°い分散粉体をスプレー
ドライして顆粒とした粉体とTるのではなく、セラミッ
クス焼結体の製造工程に対する工夫によって上記の問題
点を解決しようと鋭意研究した結果、原料粉体を有機バ
インダーと共に湿式で分散処理を厖し一次粒子に分散さ
せ、該分散液と分散処理粉体とを分離し、分離した分散
処理粉体を4000 kg/cm”以上のプレス成形圧
力で成形し、成形体を常圧焼成することによって、反り
や歪みのないセラミックス焼結体が製造でき、しかも焼
結体内部が従来になく緻密で均質であることを見出し、
本研究の完成に至ったものである。
Therefore, the inventors of the present invention have decided to either simply mix and disperse the raw material powder with a machine binder and spray dry it to granulate it, as in the past, or spray dry a dispersed powder that does not contain an organic binder to granulate it. As a result of intensive research in an attempt to solve the above problems by improving the manufacturing process of ceramic sintered bodies, instead of treating the raw material powder with an organic binder, we wet-dispersed the raw material powder with an organic binder to form primary particles. The dispersion liquid and the dispersion-treated powder are separated, the separated dispersion-treated powder is molded at a press molding pressure of 4000 kg/cm or more, and the molded body is fired at normal pressure to prevent warpage. We discovered that it is possible to produce a ceramic sintered body without distortion, and that the interior of the sintered body is denser and more homogeneous than ever before.
This led to the completion of this research.

(問題点を解決するための手段] すなわち、本発明に係るセラミックスの製造法は、を機
バインダーを含有した分散処理液に原料粉体を混合して
湿式で一次粒子に分散処理し、該分散処理液と分散処理
粉体を分離し、該分散処理粉体を4000 kg/cm
2以上のプレス成形圧力で成形し、常圧焼成することを
特徴とするものである。
(Means for Solving the Problems) That is, the method for producing ceramics according to the present invention involves mixing a raw material powder into a dispersion treatment liquid containing a mechanical binder, wet-dispersing it into primary particles, and dispersing the dispersion. The treatment liquid and the dispersion-treated powder were separated, and the dispersion-treated powder was heated at 4000 kg/cm.
It is characterized by being molded at two or more press molding pressures and then fired under normal pressure.

本発明に用いられる原料粉体は、酸化アルミニウム(A
I 2033、炭化ホウ素(B2O)、窒化ホウ素(B
NI、炭化チタン(TiNl、炭化ケイ素(Sin)、
酸化ジルコニウム(ZrO2) 、もしくはイツトリウ
ム、カルシウム、ハフニウム、マグネシウム、アルミニ
ウム等の酸化物で部分安定化した酸化ジルコニウム等が
挙げられる。好ましくはイツトリウム、カルシウム、ハ
フニウム、アルミニウムの酸化物で部分安定化した酸化
ジルコニウムがよい。
The raw material powder used in the present invention is aluminum oxide (A
I 2033, boron carbide (BO), boron nitride (B
NI, titanium carbide (TiNl, silicon carbide (Sin),
Examples include zirconium oxide (ZrO2) or zirconium oxide partially stabilized with oxides such as yttrium, calcium, hafnium, magnesium, and aluminum. Zirconium oxide partially stabilized with oxides of yttrium, calcium, hafnium, and aluminum is preferred.

原料粉体を湿式で分散処理する際に用いられる分散機と
しては、遊星式ボールミル、回転式ボールミル、振動式
ボールミル等が挙げられるが、好ましくは効率のよい遊
星式ボールミルがよい、また、湿式分散処理に添加する
有機バインダーとしては、メチルセルロース(MO3、
エチルセルロース(EC1、カルボキシメチルセルロー
ス(CMCI、ヒドロキシエチルセルロース(HEC)
、ポリビニルアルコール(PVA)、ポリビニルメチル
エーテル(PVM)、ビニルメチルエーテル−無水マレ
イン酸コポリマー、ポリビニルピロリドン(PVPJ、
ポリビニルオキサゾリドン、ポリビニルスルホン酸、ポ
リエチレンオキサイド(PEO)、ポリエチレンイミン
(PEI)、ポリアクリル酸系、ポリアクリルアマイド
系、ゼラチン、カゼイン、アラビアゴム、澱粉等が挙げ
られ、これらの1種または2種以上が用いられるが、好
ましくはPVAやMOがよい。更に、湿式分散処理に泡
が立つ時には消泡剤としてポリアルキレン務導体、非イ
オン界面活性剤等を添加する。そして湿式分散処理液と
しては、水及び/又はアルコール等の水可溶性溶剤又は
四塩化炭素やベンゼン。
Examples of the dispersion machine used when dispersing the raw material powder in a wet manner include a planetary ball mill, a rotary ball mill, a vibrating ball mill, etc., but a planetary ball mill is preferable because of its high efficiency. The organic binder added to the treatment includes methylcellulose (MO3,
Ethyl cellulose (EC1, carboxymethyl cellulose (CMCI), hydroxyethyl cellulose (HEC)
, polyvinyl alcohol (PVA), polyvinyl methyl ether (PVM), vinyl methyl ether-maleic anhydride copolymer, polyvinyl pyrrolidone (PVPJ,
Examples include polyvinyl oxazolidone, polyvinyl sulfonic acid, polyethylene oxide (PEO), polyethylene imine (PEI), polyacrylic acid type, polyacrylamide type, gelatin, casein, gum arabic, starch, etc., and one or more of these types is used, preferably PVA or MO. Furthermore, when foam is generated during wet dispersion treatment, a polyalkylene conductor, a nonionic surfactant, etc. are added as an antifoaming agent. The wet dispersion treatment liquid includes water and/or a water-soluble solvent such as alcohol, carbon tetrachloride, and benzene.

トルエン、キシレン等の芳香族炭化水素、ヘキサン等の
脂肪族炭化水素など水不溶性溶剤が代表的なものであり
、これらの1M又は2M1以上が使用される。湿式で分
散処理した後、分散処理液と分散処理粉体とを分離する
には、5戸紙や1布を用いる通常の方法でもよいが、粉
体の分散性が良好な場合には、限外5濾過や加圧濾過又
は遠心S濾過機等を用いるのが好ましい、すなわち、分
散処理液と分散処理粉体とを分離して得られた分散処理
粉体はプレス成形時に粉体が均一になる最低必要量の有
機バインダーを各々の一次粒子表面に収着しており、且
つ常圧焼成時に完全脱脂することが可能な量とするだめ
の必須条件である。本発明において、原料粉体を湿式分
散処理するには、特に限定しないが、予め有機バインダ
ーと消泡剤とを溶解させた水溶液及び/又は水溶性溶剤
の溶液又は水不溶性溶剤の溶液に粉体濃度が5〜70重
量%、好ましくは10〜50重量%となる如く原料粉体
を添加混合する。5重量%以下では分散処理粉体の製造
効率が悪い。又、70重量%以上では分散処理時に、分
散液粘度が上昇するために、均一に分散処理ができない
。更に、分散処理する際の有機バインダーの添加量は原
料粉体100重量部に対してα2〜8重量部好ましくは
0.5〜5重量部で分散処理を施す。02重量部以下の
量では分散処理粉体の分散性が悪く、粉体の一次粒子化
ができない。又、8重量部以上では分散処理液と分散処
理粉体とに分離した分散処理粉体中に多量の゛有機バイ
ンダーが残存するために、これを成形焼成した焼結体で
は気孔が見られ緻密で均質なセラミックスが得られない
。又、本発明者らは、分散処理粉体中の最適を機バイン
ダー量を求めるために、分散処理液と分散処理粉体とを
分離し、該分離分散処理粉体を予め105℃にて8時間
乾燥させ、分散処理液を蒸発させた。該分散処理乾燥粉
体をs o (3°cで焼成し、焼成前後の重量変化か
ら分散処理乾燥粉体中の有機バインダー量を求めた。又
有機バインダーであるか否かを確認するために、フーリ
エ変換赤外分光光度it (FT−IR)で分散処理乾
燥粉体と原料粉体との差スペクトルから確認した。これ
らの結果から分散処理粉体中の有機バインダー量は40
〜10000p、p、mで、好ましくは100〜600
0 p、p、m、ノ量テffiる。このバインダー量は
、前述の湿式分散処理条件で粉体原料を分散処理し、分
散処理液から分離することにより得られる。そして、こ
の有機バインダーの量は原料粉体の一次粒子の粒子表面
を均一に被覆処理する最低量以上の量である。更に又、
分散処理する際の消泡剤の量は、分散処理時の泡が消え
る量の最低量がよく、特に限定する量ではないが有機バ
インダーを含む分散液にα1重量%添加で十分である。
Water-insoluble solvents such as aromatic hydrocarbons such as toluene and xylene, and aliphatic hydrocarbons such as hexane are typical, and 1M or 2M1 or more of these are used. After the wet dispersion treatment, the dispersion treatment liquid and the dispersion treatment powder can be separated by the usual method using five doors paper or one cloth, but if the dispersibility of the powder is good, there are limitations. It is preferable to use external 5 filtration, pressure filtration, centrifugal S filtration, etc. In other words, the dispersion-treated powder obtained by separating the dispersion-treated liquid and the dispersion-treated powder is uniform during press molding. This is an essential condition for ensuring that the minimum required amount of organic binder is sorbed onto the surface of each primary particle, and that the amount is such that it can be completely degreased during normal pressure firing. In the present invention, in order to wet-disperse the raw material powder, it is possible to apply the powder to an aqueous solution in which an organic binder and an antifoaming agent are dissolved in advance, and/or a solution of a water-soluble solvent, or a solution of a water-insoluble solvent. Raw material powder is added and mixed so that the concentration is 5 to 70% by weight, preferably 10 to 50% by weight. If it is less than 5% by weight, the production efficiency of the dispersed powder is poor. Moreover, if it exceeds 70% by weight, the viscosity of the dispersion increases during dispersion treatment, making it impossible to uniformly disperse it. Further, the amount of the organic binder added during the dispersion treatment is α2 to 8 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the raw material powder. If the amount is less than 0.02 parts by weight, the dispersibility of the dispersion-treated powder is poor and the powder cannot be converted into primary particles. In addition, if it is 8 parts by weight or more, a large amount of organic binder remains in the dispersion-treated powder that is separated into the dispersion-treated liquid and the dispersion-treated powder, and the sintered body formed from this will have pores and become dense. homogeneous ceramics cannot be obtained. In addition, in order to determine the optimum amount of binder in the dispersion-treated powder, the present inventors separated the dispersion-treated liquid and the dispersion-treated powder, and preheated the separated and dispersion-treated powder at 105°C for 8 It was dried for a while and the dispersion treatment liquid was evaporated. The dispersion-treated dry powder was fired at 3 °C, and the amount of organic binder in the dispersion-treated dry powder was determined from the weight change before and after firing.Also, to confirm whether it was an organic binder or not. This was confirmed from the difference spectrum between the dispersion-treated dry powder and the raw material powder using Fourier transform infrared spectroscopy (FT-IR).From these results, the amount of organic binder in the dispersion-treated powder was 40%.
~10000 p, p, m, preferably 100-600
0 p, p, m, quantity. This amount of binder can be obtained by dispersing the powder raw material under the above-mentioned wet dispersion treatment conditions and separating it from the dispersion treatment liquid. The amount of the organic binder is at least the minimum amount for uniformly coating the surface of the primary particles of the raw material powder. Furthermore,
The amount of antifoaming agent during dispersion treatment is preferably the minimum amount that eliminates foam during dispersion treatment, and although the amount is not particularly limited, it is sufficient to add α1% by weight to the dispersion containing the organic binder.

分散処理粉体の成形に際しては簡便で効率的なプレス成
形法がよい。但し成形圧力は4000 kg/cm2以
上が好マシく、4000 kg 7cm2以下のプレス
成形圧力では緻密にならずセラミックス焼結体内部に気
孔が見られる。
When molding the dispersed powder, a simple and efficient press molding method is preferred. However, a molding pressure of 4000 kg/cm2 or higher is preferable, and if the press molding pressure is 4000 kg/7cm2 or lower, the ceramic sintered body will not become dense and pores will be observed inside the ceramic sintered body.

プレス成形後の焼成については、大がかりなHIF装置
でもよいが、通常の常圧焼g’c’十分である。又、焼
成温度や焼成時間も特に限定しなし1が通常の温度、例
えば1300〜2000℃でよく、又、焼成時間も周知
の数時間で十分である。
For firing after press forming, a large-scale HIF device may be used, but ordinary pressure firing g'c' is sufficient. Further, the firing temperature and firing time are not particularly limited, and may be a normal temperature, for example, 1,300 to 2,000°C, and a well-known several hours is sufficient for the firing time.

(実施例) 次に実施例及び比較例を挙げて、本発明を具体的に明ら
かにするが、本発明はこれにより限定されるものではな
い。なお効果の判定は以下の試験法にて評価した。
(Examples) Next, Examples and Comparative Examples will be given to specifically clarify the present invention, but the present invention is not limited thereto. The effectiveness was evaluated using the following test method.

一緻密・均質性試験− 1】、走査型電子顕微鏡による折面観察製造したセラミ
ックス焼結体を万力で押え、金槌で叩いて切断して折面
に金蒸着し、走査型電子顕微鏡で折面を観察し、気孔の
有無と大きさから緻密・均質性を肉眼判定した。すなわ
ち、気孔が無いか又は気孔の大きさが01μm以下の場
合、緻密で均質なセラミックス焼結体であると判定した
1) Density and homogeneity test - 1] Observation of folded surfaces using a scanning electron microscope The produced ceramic sintered body was held in a vise and cut by hitting with a hammer, gold was deposited on the folded surface, and folded using a scanning electron microscope. The surface was observed, and the density and homogeneity were determined visually based on the presence and size of pores. That is, if there were no pores or the size of the pores was 01 μm or less, it was determined that the ceramic sintered body was dense and homogeneous.

2)、焼結体の密度測定 セラミックス焼結体を万能投影機を用いて寸法を計り、
焼結体の体積を求めた。又、焼結体の重さを秤り、体積
と重さから密度を求め、密度が大きい程緻密であると判
定した。
2) Density measurement of the sintered body Measure the dimensions of the ceramic sintered body using a universal projector.
The volume of the sintered body was determined. Further, the weight of the sintered body was measured, and the density was determined from the volume and weight, and it was determined that the higher the density, the denser it was.

実施例 1 1.2gのポリビニルアルコールを溶解した水溶270
gにイツトリヤ(3モル%添加〕系部分安定化ジルコニ
ア粉体30gを混合し、該混合液に消泡剤(ポリアルキ
レン誘導体)0.1mlを加え遊星ボールミルにて2時
間分散処理した。
Example 1 Water solution 270 in which 1.2g of polyvinyl alcohol was dissolved
30 g of partially stabilized zirconia powder based on Ittriya (3 mol % added) was mixed with the mixture, and 0.1 ml of an antifoaming agent (polyalkylene derivative) was added to the mixture, followed by dispersion treatment in a planetary ball mill for 2 hours.

該分散処理液を1000Or、p、m、r3030分間
遠心し、分散処理粉体を得た。
The dispersion treatment liquid was centrifuged at 1000 Or, p, m, r for 3030 minutes to obtain a dispersion treatment powder.

得られた分散処理粉体を808Cにて2日間乾燥し分散
処理粉体30gを得た。乾燥粉体を粉砕し250メツシ
ユの篩を通過させた。該乾燥粉体を金型に充填し、60
00 kg /cm2の成形圧力でプレス成形した後、
1500’Cで1時間焼成した。
The obtained dispersed powder was dried at 808C for 2 days to obtain 30 g of dispersed powder. The dry powder was ground and passed through a 250 mesh sieve. The dry powder was filled into a mold and heated to 60
After press molding at a molding pressure of 00 kg/cm2,
It was fired at 1500'C for 1 hour.

放冷後セラミックス焼結体を°得た。After cooling, a ceramic sintered body was obtained.

比較例 1 実施例1と同一条件で分散処理し該分散処理液に精製水
900 mlを加えプロペラ撹拌し分散させた。該分散
液をスプレードライし、平均70μmの真球状a粒粉体
30gを得た。該造粒粉体を金型に充填し、3700 
kg/cm2の成形圧力でプレス成形した後、1500
℃で1時間焼成した。
Comparative Example 1 A dispersion treatment was carried out under the same conditions as in Example 1, and 900 ml of purified water was added to the dispersion treatment liquid and the mixture was stirred with a propeller for dispersion. The dispersion was spray-dried to obtain 30 g of true spherical A-grain powder with an average diameter of 70 μm. The granulated powder was filled into a mold and heated to 3700 m
After press molding at a molding pressure of kg/cm2, 1500
It was baked at ℃ for 1 hour.

放冷後、セラミックス焼結体を得た。After cooling, a ceramic sintered body was obtained.

実見例 2 05gのメチルセルロースを溶解した10%のメタノー
ル水溶液90gにイツトリヤ(3モル%添加)系部分安
定化ジルコニア粉体10gを混合し、該混合液に消泡剤
(ポリアルキレン誘導体)α1 mlを加え遊星ボール
ミルにて2時間分散処理した。該分散処理液を1500
Or、p、m、で30分間遠心分離し、分散処理粉体を
得た。得られた分散処理粉体を80℃にて2日間乾燥し
、分散処理粉体10gを得た。乾燥粉体を粉砕し250
メツシユの篩を通過させた。該乾燥粉体を金型に充填し
、4000kg/cm  の成形圧力でプレス成形した
後、1500°Cで1時間焼成した。放冷後セラミック
ス焼結体を得た。
Actual Example 2 10 g of Ittriya (3 mol% addition) partially stabilized zirconia powder was mixed with 90 g of a 10% aqueous methanol solution in which 0.5 g of methyl cellulose was dissolved, and 1 ml of antifoaming agent (polyalkylene derivative) α was added to the mixture. was added and subjected to dispersion treatment for 2 hours in a planetary ball mill. 1,500 ml of the dispersion treatment liquid
Centrifugation was performed for 30 minutes at Or, p, m to obtain a dispersed powder. The obtained dispersed powder was dried at 80° C. for 2 days to obtain 10 g of dispersed powder. Grind the dry powder to 250
passed through the mesh sieve. The dry powder was filled into a mold, press-molded at a molding pressure of 4000 kg/cm 2 , and then baked at 1500°C for 1 hour. After cooling, a ceramic sintered body was obtained.

比較例 2 実施例2と同一条件で分散処理し、該分散処理液に10
%メタノール水溶液240 mlを加え、プロペラ撹拌
し分散させた。該分散液をスプレードライし、平均50
μmの真球状造粒粉体10gを得た。該造粒粉体を金型
に充填し、3700 kg/Cm2の成形圧力でプレス
成形した後、1500℃で1時間焼成した。放冷後セラ
ミックス焼結体を得た。
Comparative Example 2 Dispersion treatment was carried out under the same conditions as Example 2, and 10% of the dispersion treatment liquid was
% methanol aqueous solution was added and dispersed by stirring with a propeller. The dispersion was spray dried to give an average of 50
10 g of a true spherical granulated powder of μm was obtained. The granulated powder was filled into a mold, press-molded at a molding pressure of 3700 kg/cm2, and then fired at 1500°C for 1 hour. After cooling, a ceramic sintered body was obtained.

次に製造したセラミックス焼結体の緻密・均質性試験結
果を述べる。
Next, we will discuss the results of denseness and homogeneity tests of the manufactured ceramic sintered bodies.

1)、走査型電子顕微鏡による折面観察実施例1で製造
したセラミックス焼結体の折面を、走査型電子顕微鏡で
観察した状態を男1図に添付した。比較例1で製造した
セラミックス焼結体の折面の状態を第2図に添付した。
1) Observation of the folded surface using a scanning electron microscope The folded surface of the ceramic sintered body produced in Example 1 was observed using a scanning electron microscope and is attached to Figure 1. The state of the folded surface of the ceramic sintered body manufactured in Comparative Example 1 is attached to FIG.

実施例2で製造したセラミックス焼結体の折面の状態を
第3図に添付した。更に比較例2で製造したセラミック
ス焼結体の折面の状態を第4図に添付した。添付した写
真は全て1万倍で観察したものである。
The state of the folded surface of the ceramic sintered body manufactured in Example 2 is attached to FIG. Furthermore, the state of the folded surface of the ceramic sintered body manufactured in Comparative Example 2 is attached in FIG. All the attached photos were observed at 10,000x magnification.

これら折面の状態から分るように実施例1で製造したセ
ラミックス焼結体(第1図)と実施例2で製造したセラ
ミックス焼結体く第3図】は、比較例1で製造したセラ
ミックス焼結体(第2図]や比較例2で製造したセラミ
ックス焼結体(第4図)に比べ、気孔が01μmよりも
小さく非常に緻密で均質であることが分る。比較例1や
比較例2で製造したセラミックスの焼結体には非常に大
きい気孔が見られ、緻密でなく均質性にも劣っているこ
とが分る。
As can be seen from the state of these folded surfaces, the ceramic sintered body manufactured in Example 1 (Figure 1) and the ceramic sintered body manufactured in Example 2 (Figure 3) are different from the ceramic sintered body manufactured in Comparative Example 1. Compared to the sintered body (Figure 2) and the ceramic sintered body manufactured in Comparative Example 2 (Figure 4), it can be seen that the pores are smaller than 0.1 μm and are extremely dense and homogeneous.Comparative Example 1 and Comparison The ceramic sintered body produced in Example 2 had very large pores, indicating that it was not dense and had poor homogeneity.

2)、焼結体の密度測定 セラミックス焼結体の密度測定結果を第1表に示した。2), Density measurement of sintered body Table 1 shows the density measurement results of the ceramic sintered bodies.

第1表 セラミックス焼結体の密度 第1表の密度測定結果から分るように実3例1及び実施
例2でw造したセラミックス焼結体の密度は5.95以
上で理論密度の99%に達し、非常に緻密であることが
分る。これに比べて比較例1及び比較例2で製造したセ
ラミックス焼結体の密度は5.4程度であり、理論密度
の90%と緻密でないことが分る。
Table 1 Density of Ceramic Sintered Body As can be seen from the density measurement results in Table 1, the density of the ceramic sintered body produced in Example 3 and Example 2 was 5.95 or higher, which is 99% of the theoretical density. It can be seen that it is very precise. In comparison, the density of the ceramic sintered bodies manufactured in Comparative Example 1 and Comparative Example 2 was approximately 5.4, which was 90% of the theoretical density, indicating that it was not dense.

実施例 3 025gのポリビニルアルコールを溶解した水溶液50
gにイツトリヤ(3モル%添加]系部分安定化ジルコニ
ア粉体50gを混合し、該混合液に消泡剤(ポリアルキ
レン誘導体) αl mlを加えて遊星ボールミルにて
2時間分散処理した。該分散処理液を1000Or、p
、m、で30分間遠心分離し、分散処理粉体を得た。得
られた分散処理粉体を50℃で3日間既燥し分散処理粉
体50gを得た。乾燥粉体を粉砕し100メツシユの篩
を通過させた。該乾燥粉体を金型に充填し、5000 
kg /cm 2の成形圧力でプレス成形した後、15
00℃で1時間焼成した。放冷後セラミックス焼結体を
得た。この焼結体についても、走査型電子顕微鏡による
折面観察(例示してないが)を行なった結果、緻密で均
質なセラミックス焼結体であった。
Example 3 Aqueous solution in which 0.25 g of polyvinyl alcohol was dissolved 50
50 g of partially stabilized zirconia powder based on Ittriya (3 mol % added) was mixed with g, and 1 ml of an antifoaming agent (polyalkylene derivative) was added to the mixture, and the mixture was subjected to a dispersion treatment for 2 hours in a planetary ball mill. The treatment liquid was heated to 1000 Or, p
, m, for 30 minutes to obtain a dispersed powder. The obtained dispersion-treated powder was dried at 50° C. for 3 days to obtain 50 g of dispersion-treated powder. The dry powder was ground and passed through a 100 mesh sieve. The dry powder was filled into a mold and heated to 5000
After press molding at a molding pressure of kg/cm2, 15
It was baked at 00°C for 1 hour. After cooling, a ceramic sintered body was obtained. This sintered body was also subjected to folded surface observation using a scanning electron microscope (not shown) and was found to be a dense and homogeneous ceramic sintered body.

(発明の効果) 本発明の製造方法によれば、緻密で均質なセラミックス
焼結体を簡便に得ることができる。
(Effects of the Invention) According to the manufacturing method of the present invention, a dense and homogeneous ceramic sintered body can be easily obtained.

本発明によって製造される緻密で均質なセラミックス焼
結体は強度が高くなり、靭性も高くなることから、II
!磁気材料や硬質材料、強度材料、光4材料、生化学材
料、高精密加工材料の製造に最適である。
Since the dense and homogeneous ceramic sintered body produced by the present invention has high strength and toughness, II.
! It is ideal for manufacturing magnetic materials, hard materials, strength materials, optical materials, biochemical materials, and high-precision processing materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で製造したセラミックス焼゛結体折面
の走査型電子顕微鏡写真である。 第2図は比較例1で製造したセラミックス焼結体折面の
走査型電子顕微鏡写真である。 第3図は実施例2で製造したセラミックス焼結体折面の
走査型電子顕微鏡写真である。 第4図は比較例2で製造したセラミックス焼結体折面の
走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of the folded surface of the ceramic sintered body produced in Example 1. FIG. 2 is a scanning electron micrograph of a folded surface of the ceramic sintered body produced in Comparative Example 1. FIG. 3 is a scanning electron micrograph of the folded surface of the ceramic sintered body produced in Example 2. FIG. 4 is a scanning electron micrograph of the folded surface of the ceramic sintered body produced in Comparative Example 2.

Claims (1)

【特許請求の範囲】 1、有機バインダーを含有した分散処理液に原料粉体を
混合して湿式で一次粒子に分散処理し、該分散処理液と
分散処理粉体を分離し、該分散処理粉体を4000kg
/cm^2以上のプレス成形圧力で成形し、常圧焼成す
ることを特徴とするセラミックスの製造法。 2、前記原料粉体が酸化アルミニウム、炭化ホウ素、窒
化ホウ素、炭化チタン、窒化チタン、炭化ケイ素、酸化
ジルコニウム、もしくはイットリウム、カルシウム、ハ
フニウム、マグネシウム、アルミニウム等の酸化物で部
分安定化した酸化ジルコニウムから選ばれた1の粉体で
ある特許請求の範囲第1項記載のセラミックスの製造法
。 3、前記有機バインダーがメチルセルロース、エチルセ
ルロース、カルボキシメチルセルロース、ヒドロキシエ
チルセルロース、ポリビニルアルコール、ポリビニルメ
チルエーテル、ビニルメチルエーテル−無水マレイン酸
コポリマー、ポリビニルピロリドン、ポリビニルオキサ
ゾリドン、ポリビニルスルホン酸、ポリエチレンオキサ
イド、ポリエチレンイミン、ポリアクリル酸系化合物、
ポリアクリルアマイド系化合物、ゼラチン、カゼイン、
アラビアゴム、澱粉から選ばれた1種または2種以上の
混合物である特許請求の範囲第1項記載のセラミックス
の製造法。 4、前記分散処理液が水及び/又はアルコール等水可溶
性溶剤、四塩化炭素、芳香族炭化水素等水不溶性溶剤の
1種または2種以上の混合液である特許請求の範囲第1
項記載のセラミックスの製造法。 5、前記分散処理液中の原料粉体濃度が5〜70重量%
である特許請求の範囲第1項記載のセラミックスの製造
法。 6、前記分散処理液中の原料粉体に対する有機バインダ
ーの添加量が原料粉体100重量部に対し、0.2〜8
重量部の範囲である特許請求の範囲第1項記載のセラミ
ックスの製造法。 7、前記原料粉体の湿式分散が遊星式ボールミル、回転
式ボールミル、または振動式ボールミルを用いて行なわ
れる特許請求の範囲第1項記載のセラミックスの製造法
[Scope of Claims] 1. Mix the raw material powder in a dispersion treatment liquid containing an organic binder, wet-disperse it into primary particles, separate the dispersion treatment liquid and the dispersion treatment powder, and prepare the dispersion treatment powder. 4000kg body
A method for producing ceramics, characterized by forming at a press forming pressure of /cm^2 or more and firing under normal pressure. 2. The raw material powder is made of aluminum oxide, boron carbide, boron nitride, titanium carbide, titanium nitride, silicon carbide, zirconium oxide, or zirconium oxide partially stabilized with oxides such as yttrium, calcium, hafnium, magnesium, aluminum, etc. The method for producing ceramics according to claim 1, wherein the selected powder is one. 3. The organic binder is methyl cellulose, ethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyvinyl methyl ether, vinyl methyl ether-maleic anhydride copolymer, polyvinyl pyrrolidone, polyvinyl oxazolidone, polyvinyl sulfonic acid, polyethylene oxide, polyethylene imine, polyacrylic. acidic compounds,
Polyacrylamide compounds, gelatin, casein,
The method for producing ceramics according to claim 1, wherein the ceramic is one or a mixture of two or more selected from gum arabic and starch. 4. Claim 1, wherein the dispersion treatment liquid is a mixture of one or more of water and/or water-soluble solvents such as alcohol, and water-insoluble solvents such as carbon tetrachloride and aromatic hydrocarbons.
Method for manufacturing ceramics described in Section 1. 5. The raw material powder concentration in the dispersion treatment liquid is 5 to 70% by weight.
A method for producing ceramics according to claim 1. 6. The amount of organic binder added to the raw material powder in the dispersion treatment liquid is 0.2 to 8 parts by weight per 100 parts by weight of the raw material powder.
The method for producing ceramics according to claim 1, wherein the range is in parts by weight. 7. The method for producing ceramics according to claim 1, wherein the wet dispersion of the raw material powder is performed using a planetary ball mill, a rotary ball mill, or a vibrating ball mill.
JP60123492A 1985-06-08 1985-06-08 Manufacture of ceramics Granted JPS61286260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60123492A JPS61286260A (en) 1985-06-08 1985-06-08 Manufacture of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60123492A JPS61286260A (en) 1985-06-08 1985-06-08 Manufacture of ceramics

Publications (2)

Publication Number Publication Date
JPS61286260A true JPS61286260A (en) 1986-12-16
JPH0532341B2 JPH0532341B2 (en) 1993-05-14

Family

ID=14861967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60123492A Granted JPS61286260A (en) 1985-06-08 1985-06-08 Manufacture of ceramics

Country Status (1)

Country Link
JP (1) JPS61286260A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060967A (en) * 1983-09-09 1985-04-08 日立化成工業株式会社 Manufacture of ceramic mud

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060967A (en) * 1983-09-09 1985-04-08 日立化成工業株式会社 Manufacture of ceramic mud

Also Published As

Publication number Publication date
JPH0532341B2 (en) 1993-05-14

Similar Documents

Publication Publication Date Title
JPH07206520A (en) Preparation of ceramic part of silicon carbide
JPH0159995B2 (en)
US4814302A (en) Stable slip-casting compositions having a base of powders containing finely divided aluminum nitride
KR20080091254A (en) Method for producing carbon-containing silicon carbide ceramic
JP3154313B2 (en) Method and apparatus for manufacturing ceramic sintered body
KR970011315B1 (en) Ceramic powders and preparation thereof
JPS61286260A (en) Manufacture of ceramics
US4318876A (en) Method of manufacturing a dense silicon carbide ceramic
EP0377701B1 (en) Grinding process
JP4047956B2 (en) Method for forming silicon carbide powder
JP3237965B2 (en) Method for producing aluminum nitride powder
JPH0333046A (en) Pulverized body and its production and production of sintered compact using the same
JPH01126276A (en) Production of ceramic sintered body
JP3282500B2 (en) Method for producing slurry for casting
JPS63151607A (en) Production of fine aluminum nitride powder
JPS61263627A (en) Dispersant for ceramic material powdery substance
JPH10297970A (en) Production of silicon carbide-based sintered compact
JPH10245269A (en) Preparation of ceramic slurry
JPH04187555A (en) Preparation of ceramic raw material and apparatus therefor
JPH04357157A (en) Production of granulated ceramic powder for forming
JP3672598B2 (en) Plastic molding slurry composition, method for producing the plastic molding slurry composition, plastic molding clay obtained by subjecting the plastic molding slurry composition to dehydration and kneading, and use of the plastic molding clay Molding method of plastic molded body, plastic molded body molded by the molding method, and dried plastic molded body obtained by drying the plastic molded body
JPS63248771A (en) Silicon carbide base raw material composition for molded body
JPH0323266A (en) Production of silicon carbide-based starting material for sintering
JPH04114958A (en) Alumina container and production thereof
Malghan Silicon nitride powders and their processing