JPH0532341B2 - - Google Patents

Info

Publication number
JPH0532341B2
JPH0532341B2 JP60123492A JP12349285A JPH0532341B2 JP H0532341 B2 JPH0532341 B2 JP H0532341B2 JP 60123492 A JP60123492 A JP 60123492A JP 12349285 A JP12349285 A JP 12349285A JP H0532341 B2 JPH0532341 B2 JP H0532341B2
Authority
JP
Japan
Prior art keywords
powder
raw material
dispersion treatment
dispersion
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60123492A
Other languages
Japanese (ja)
Other versions
JPS61286260A (en
Inventor
Fukuji Suzuki
Tatsuo Sato
Tomoyuki Haga
Kaoru Umeya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP60123492A priority Critical patent/JPS61286260A/en
Publication of JPS61286260A publication Critical patent/JPS61286260A/en
Publication of JPH0532341B2 publication Critical patent/JPH0532341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、緻密で均質なセラミツクスの補造法
に関する。曎に詳しくは、原料粉䜓を湿匏で䞀次
粒子に分散凊理本明现曞䞭で、䞀次粒子に分散
させるずは、粒子の凝集䜓を解砕し、凊理液䞭に
分散せしめるこずを意味する。以䞋、同じし、
該分散凊理液ず分散凊理粉䜓ずを分離し、凊理粉
䜓䞭の有機バむンダヌ量を40〜10000p.p.m.ずな
し該分離凊理粉䜓を、4000Kgcm2以䞊のプレス成
圢圧力で成圢し、垞圧焌成しお、緻密で均質なセ
ラミツクス焌結䜓の補造法を提䟛するこずを目的
ずするものである。 埓来の技術 セラミツクス焌結䜓の補造法は、通垞成圢時で
の粉䜓流動性を向䞊させるために、原料粉䜓を有
機バむンダヌず混合分散凊理し、該分散凊理物を
スプレヌドラむしお玄30〜100ÎŒmの倧きさに造粒
するか、又は、有機バむンダヌを含たない分散粉
䜓をスプレヌドラむしお玄30〜100ÎŒmの倧きさの
顆粒粉䜓ずし、該造粒又は顆粒粉䜓を4000Kgcm2
以䞋の成圢圧力で成圢し、成圢物を垞圧で焌成し
おセラミツクス焌結䜓を補造するか又は熱間静圧
焌結HIPやホツトプレス等で加圧焌成しおセ
ラミツクス焌結䜓を補造しおいる。 発明が解決しようずする問題点 原料粉䜓ず有機バむンダヌずを混合分散し、該
分散凊理物をスプレヌドラむした造粒粉䜓では造
造粒䜓衚面に残分又は粉䜓の結合剀ずしお必芁な
量以䞊に倚量の有機バむンダヌが存圚するため
に、このような造粒粉䜓を甚いお成圢し焌成する
ず、有機バむンダヌが脱脂する際セラミツクス焌
結䜓内郚の気孔の原因ずなり緻密で均質な焌結䜓
が埗られない。たた、有機バむンダヌを含たない
分散粉䜓をスプレヌドラむしお顆粒粉䜓ずした堎
合には凝集力が䜎䞋したり或いは顆粒の倧きさが
䞍均䞀にな぀たり、粒子間の凝集力が異なるため
に成圢時になじみが悪く均質な成圢䜓は埗られな
い。そしお、このような䞍均質な成圢䜓を焌成す
るず反りや歪みの原因ずなり、しかも焌結䜓内郚
は緻密で均質にならない。曎に、造粒粉䜓や顆粒
粉䜓を甚いお成圢䜓を加圧焌成しおも䞊蚘ず同䞀
の問題点から緻密で均質な焌結䜓が埗られない。
たた加圧焌成装眮は別の問題点ずしお倧がかりな
ものであ぀たり、コストも非垞に倧ずなるもので
ある等、倚くの欠点がある。 そこで、本発明者らは、埓来のように単に原料
粉䜓ず有機バむンダヌずを混合分散しスプレヌド
ラむしお造粒したり、有機バむンダヌを含たない
分散粉䜓をスプレヌドラむしお顆粒ずした粉䜓ず
するのではなく、セラミツクス焌結䜓の補造工皋
に察する工倫によ぀お䞊蚘の問題点を解決しよう
ず鋭意研究した結果、原料粉䜓を有機バむンダヌ
ず共に湿匏で分散凊理を斜し䞀次粒子に分散さ
せ、該分散液ず分散凊理粉䜓ずを分離し、分離し
た分散凊理粉䜓を4000Kgcm2以䞊のプレス成圢圧
力で成圢し、成圢䜓を垞圧焌成するこずによ぀
お、反りや歪みのないセラミツクス焌結䜓が補造
でき、しかも焌結䜓内郚が埓来になく緻密で均質
であるこずを芋出し、本研究の完成に至぀たもの
である。 問題点を解決するための手段 すなわち、本発明に係るセラミツクスの補造法
は、有機バむンダヌを含有した分散凊理液に原料
粉䜓を混合しお湿匏で䞀次粒子に分散凊理し、該
分散凊理液ず分散凊理粉䜓を分離し、凊理粉䜓䞭
の有機バむンダヌ量を40〜10000p.p.m.ずなし該
分散凊理粉䜓を4000Kgcm2以䞊のプレス成圢圧力
で成圢し、垞圧焌成するこずを特城ずするもので
ある。 本発明に甚いられる原料粉䜓は、酞化アルミニ
りムAl2O3、炭化ホり玠B4C、窒玠ホり玠
BN、炭化チタンTiN、炭化ケむ玠SiC、
酞化ゞルコニりムZrO2、もしくはむツトリり
ム、カルシりム、ハフニりム、マグネシりム、ア
ルミニりム等の酞化物で郚分安定化した酞化ゞル
コニりム等が挙げられる。奜たしくはむツトリり
ム、カルシりム、ハフニりム、アルミニりムの酞
化物で郚分安定化した酞化ゞルコニりムがよい。 原料粉䜓を湿匏で分散凊理する際に甚いられる
分散機ずしおは、遊星匏ボヌルミル、回転匏ボヌ
ルミル、振動匏ボヌルミル等が挙げられるが、奜
たしくは効率のよい遊星匏ボヌルミルがよい。た
た、湿匏分散凊理に添加する有機バむンダヌずし
おは、メチルセルロヌスMC、゚チルセルロ
ヌスEC、カルボキシメチルセルロヌス
CMC、ヒドロキシ゚チルセルロヌスHEC、
ポリビニルアルコヌルPVA、ポリビニルメチ
ル゚ヌテルPVM、ビニルメチル゚ヌテル−無
氎マレむン酞コポリマヌ、ポリビニルピロリドン
PVP、ポリビニルオキサゟリドン、ポリビニ
ルスルホン酞、ポリ゚チレンオキサむド
PEO、ポリ゚チレンむミンPEI、ポリアク
リル酞系、ポリアクリルアマむド系、れラチン、
カれむン、アラビアゎム、柱粉等が挙げられ、こ
れらの皮たたは皮以䞊が甚いられるが、奜た
しくはPVAやMCがよい。曎に、湿匏分散凊理に
泡が立぀時には消泡剀ずしおポリアルキレン誘導
䜓、非むオン界面掻性剀等を添加する。そしお湿
匏分散凊理液ずしおは、氎及び又はアルコヌル
等の氎可溶性溶剀又は四塩化炭玠やベンれン、ト
ル゚ン、キシレン等の芳銙族炭化氎玠、ヘキサン
等の脂肪族炭化氎玠など氎䞍溶性溶剀が代衚的な
ものであり、これらの皮又は皮以䞊が䜿甚さ
れる。湿匏で分散凊理した埌、分散凊理液ず分散
凊理粉䜓ずを分離するには、玙や垃を甚いる
通垞の方法でもよいが、粉䜓の分散性が良奜な堎
合には、限倖過や加圧過又は遠心過機等を
甚いるのが奜たしい。すなわち、分散凊理液ず分
散凊理粉䜓ずを分離しお埗られた分散凊理粉䜓は
プレス成圢時に粉䜓が均䞀になる最䜎必芁量の有
機バむンダヌを各々の䞀次粒子衚面に収着しおお
り、䞔぀垞圧焌成時に完党脱脂するこずが可胜な
量ずするための必須条件である。本発明におい
お、原料粉䜓を湿匏分散凊理するには、特に限定
しないが、予め有機バむンダヌず消泡剀ずを溶解
させた氎溶液及び又は氎溶性溶剀の溶液又は氎
䞍溶性溶剀の溶液に粉䜓濃床が〜70重量、奜
たしくは10〜50重量ずなる劂く原料粉䜓を添加
混合する。重量以䞋では分散凊理粉䜓の補造
効率が悪い。又、70重量以䞊では分散凊理時
に、分散液粘床が䞊昇するために、均䞀に維分散
凊理ができない。曎に、分散凊理する際の有機バ
むンダヌの添加量は原料粉䜓100重量郚に察しお
0.2〜重量郚奜たしくは0.5〜重量郚で分散凊
理を斜す。0.2重量郚以䞋の量では分散凊理粉䜓
の分散性が悪く、粉䜓の䞀次粒子化ができない。
又、重量郚以䞊では分散凊理液ず分散凊理粉䜓
ずに分離した分散凊理粉䜓䞭に倚量の有機バむン
ダヌが残存するために、これを成圢焌成した焌結
䜓では気孔が芋られ緻密で均質なセラミツクスが
埗られない。又、本発明者らは、分散凊理粉䜓䞭
の最適有機バむンダヌ量を求めるために、分散凊
理液ず分散凊理粉䜓ずを分離し、該分離分散凊理
粉䜓を予め105℃にお時間也燥させ、分散凊理
液を蒞発させた。該分散凊理也燥粉䜓を800℃で
焌成し、焌成前埌の重量倉化から分散凊理也燥粉
䜓䞭の有機バむンダヌ量を求めた。又有機バむン
ダヌであるか吊かを確認するために、フヌリ゚倉
換赀倖分光光床蚈FT−IRで分散凊理也燥粉
䜓ず原料粉䜓ずの差スペクトルから確認した。こ
れらの結果から分散凊理粉䜓䞭の有機バむンダヌ
量は40〜10000p.p.m.で、奜たしくは100〜6000p.
p.m.の量である。このバむンダヌ量は、前述の湿
匏分散凊理条件で粉䜓原料を分散凊理し、分散凊
理液から分離するこずにより埗られる。そしお、
この有機バむンダヌの量は原料粉䜓の䞀次粒子の
粒子衚面を均䞀に被芆凊理する最䜎量以䞊の量で
ある。曎に又、分散凊理する際の消泡剀の量は、
分散凊理時の泡が消える量の最䜎量がよく、特に
限定する量ではないが有機バむンダヌを含む分散
液に0.1重量添加で十分である。分散凊理粉䜓
の成圢に際しおは簡䟿で効率的なプレス成圢法が
よい。䜆し成圢圧力は4000Kgcm2以䞊が奜たし
く、4000Kgcm2以䞋のプレス成圢圧力では緻密に
ならずセラミツクス焌結䜓内郚に気孔が芋られ
る。 プレス成圢埌の焌成に぀いおは、倧がかりな
HIP装眮でもよいが、通垞の垞圧焌成で十分であ
る。又、焌成枩床や焌成時間も特に限定しないが
通垞の枩床、䟋えば1300〜2000℃でよく、又、焌
成時間も呚知の数時間で十分である。 実斜䟋 次に実斜䟋及び比范䟋を挙げお、本発明を具䜓
的に明らかにするが、本発明はこれにより限定さ
れるものではない。なお効果の刀定は以䞋の詊隓
法にお評䟡した。 −緻密・均質性詊隓−  走査型電子顕埮鏡による折面芳察 補造したセラミツクス焌結䜓を䞇力で抌え、金
槌で叩いお切断しお折面に金蒞着し、走査型電子
顕埮鏡で折面を芳察し、気孔の有無ず倧きさから
緻密・均質性を肉県刀定した。すなわち、気孔が
無いか又は気孔の倧きさが0.1ÎŒm以䞋の堎合、緻
密で均質なセラミツクス焌結䜓であるず刀定し
た。  焌結䜓の密床枬定 セラミツクス焌結䜓を䞇胜投圱機を甚いお寞法
を蚈り、焌結䜓の䜓積を求めた。又、焌結䜓の重
さを秀り、䜓積ず重さから密床を求め、密床が倧
きい皋緻密であるず刀定した。 実斜䟋  1.2のポリビニルアルコヌルを溶解した氎溶
液70にむツトリダモル添加系郚分安定
化ゞルコニア粉䜓30を混合し、該混合液に消泡
剀ポリアルキレン誘導䜓0.1mlを加え遊星ボ
ヌルミルにお時間分散凊理した。 該分散凊理液を10000r.p.m.で30分間遠心分離
し、分散凊理粉䜓を埗た。 埗られた分散凊理粉䜓を80℃にお日間也燥し
分散凊理粉䜓30を埗た。也燥粉䜓を粉砕し250
メツシナの篩を通過させた。該也燥粉䜓を金型に
充填し、6000Kgcm2の成圢圧力でプレス成圢した
埌、1500℃で時間焌成した。攟冷埌セラミツク
ス焌結䜓を埗た。 比范䟋  実斜䟋ず同䞀条件で分散凊理し該分散凊理液
に粟補氎900mlを加えプロペラ攪拌し分散させた。
該分散液をスプレヌドラむし、平均70ÎŒmの真球
状造粒粉䜓30を埗た。該造粒粉䜓を金型に充填
し、3700Kgcm2の成圢圧力でプレス成圢した埌、
1500℃で時間焌成した。攟冷埌、セラミツクス
焌結䜓を埗た。 実斜䟋  0.5のメチルセルロヌスを溶解した10のメ
タノヌル氎溶液90にむツトリダモル添
加系郚分安定化ゞルコニア粉䜓10を混合し、
該混合液に消泡剀ポリアルキレン誘導䜓0.1
mlを加え遊星ボヌルミルにお時間分散凊理し
た。該分散凊理液を15000r.p.m.で30分間遠心分
離し、分散凊理粉䜓を埗た。埗られた分散凊理粉
䜓を80℃にお日間也燥し、分散凊理粉䜓10を
埗た。也燥粉䜓を粉砕し250メツシナの篩を通過
させた。該也燥粉䜓を金型に充填し、4000Kgcm2
の成圢圧力でプレス成圢した埌、1500℃で時間
焌成した。攟冷埌セラミツクス焌結䜓を埗た。 比范䟋  実斜䟋ず同䞀条件で分散凊理し、該分散凊理
液に10メタノヌル氎溶液240mlを加え、プロペ
ラ攪拌し分散させた。該分散液をスプレヌドラむ
し、平均50ÎŒmの真球状造粒粉䜓10を埗た。該
造粒粉䜓を金型に充填し、3700Kgcm2の成圢圧力
でプレス成圢した埌、1500℃で時間焌成した。
攟冷埌セラミツクス焌結䜓を埗た。 次に補造したセラミツクス焌結䜓の緻密・均質
性詊隓結果を述べる。  走査型電子顕埮鏡による折面芳察 実斜䟋で補造したセラミツクス焌結䜓の折面
を、走査型電子顕埮鏡で芳察した状態を第図に
添付した。比范䟋で補造したセラミツクス焌結
䜓の折面の状態を第図に添付した。実斜䟋で
補造したセラミツクス焌結䜓の折面の状態を第
図に添付した。曎に比范䟋で補造したセラミツ
クス焌結䜓の折面の状態を第図に添付した。添
付した写真は党お䞇倍で芳察したものである。
これら折面の状態から分るように実斜䟋で補造
したセラミツクス焌結䜓第図ず実斜䟋で
補造したセラミツクス焌結䜓第図は、比范
䟋で補造したセラミツクス焌結䜓第図や
比范䟋で補造したセラミツクス焌結䜓第
図に比べ、気孔が0.1ÎŒmよりも小さく非垞に緻
密で均質であるこずが分る。比范䟋や比范䟋
で補造したセラミツクスの焌結䜓には非垞に倧き
い気孔が芋られ、緻密でなく均質性にも劣぀おい
るこずが分る。  焌結䜓の密床枬定 セラミツクス焌結䜓の密床枬定結果を第衚に
瀺した。
(Industrial Application Field) The present invention relates to a method for producing dense and homogeneous ceramics. More specifically, raw material powder is wet-dispersed into primary particles (in this specification, "dispersed into primary particles" means breaking up particle aggregates and dispersing them in a processing liquid). The same applies hereafter) and
Separating the dispersion treatment liquid and the dispersion treatment powder, adjusting the amount of organic binder in the treatment powder to 40 to 10000 p.pm, and molding the separation treatment powder at a press molding pressure of 4000 kg/cm 2 or more, The object of the present invention is to provide a method for producing a dense and homogeneous ceramic sintered body by normal pressure firing. (Prior art) The manufacturing method for ceramic sintered bodies usually involves mixing and dispersing raw material powder with an organic binder and spray-drying the dispersion-treated product in order to improve powder fluidity during molding. Granulate to a size of about 30 to 100 ÎŒm, or spray dry a dispersed powder that does not contain an organic binder to make a granule of a size of about 30 to 100 ÎŒm, and make 4000 kg of the granulated powder / cm2
A ceramic sintered body is manufactured by molding at the following molding pressure and firing the molded product under normal pressure, or a ceramic sintered body is manufactured by pressure firing using hot isostatic pressure sintering (HIP), hot press, etc. are doing. (Problems to be Solved by the Invention) In the case of a granulated powder obtained by mixing and dispersing raw material powder and an organic binder and spray drying the dispersion, there is a residue on the surface of the granule or as a binder for the powder. Because there is a larger amount of organic binder than necessary, if such granulated powder is molded and fired, when the organic binder is degreased, it causes pores inside the ceramic sintered body, resulting in a dense and homogeneous product. A sintered body cannot be obtained. In addition, when a dispersed powder that does not contain an organic binder is spray-dried to form a granular powder, the cohesive force may decrease or the size of the granules may become uneven, or the cohesive force between particles may differ. During molding, it does not fit well and a homogeneous molded product cannot be obtained. Sintering such a non-uniform molded body causes warping and distortion, and furthermore, the inside of the sintered body is dense and not homogeneous. Furthermore, even if a molded body is pressure-fired using granulated powder or granular powder, a dense and homogeneous sintered body cannot be obtained due to the same problem as described above.
Further, the pressure firing apparatus has many other drawbacks, such as being large-scale and very expensive. Therefore, the present inventors have developed a method of granulating powder by simply mixing and dispersing raw material powder and an organic binder and spray-drying it as in the past, or by spray-drying a dispersed powder that does not contain an organic binder. As a result of intensive research in an attempt to solve the above problems by improving the manufacturing process of ceramic sintered bodies, we have developed a method to wet-disperse raw material powder with an organic binder and disperse it into primary particles. , the dispersion liquid and the dispersion-treated powder are separated, the separated dispersion-treated powder is molded at a press molding pressure of 4000 kg/cm 2 or more, and the molded body is baked under normal pressure to prevent warpage and distortion. This research was completed by discovering that it was possible to produce a ceramic sintered body that was not previously available, and that the inside of the sintered body was denser and more homogeneous than ever before. (Means for Solving the Problems) That is, the method for producing ceramics according to the present invention involves mixing a raw material powder into a dispersion treatment liquid containing an organic binder, wet-dispersing it into primary particles, and performing the dispersion treatment. Separating the liquid and the dispersion-treated powder, adjusting the amount of organic binder in the treated powder to 40 to 10,000 p.pm, molding the dispersion-treated powder at a press molding pressure of 4,000 kg/cm 2 or more, and firing under normal pressure. It is characterized by: The raw material powder used in the present invention includes aluminum oxide (Al 2 O 3 ), boron carbide (B 4 C), boron nitrogen (BN), titanium carbide (TiN), silicon carbide (SiC),
Examples include zirconium oxide (ZrO 2 ), or zirconium oxide partially stabilized with oxides such as yttrium, calcium, hafnium, magnesium, and aluminum. Zirconium oxide partially stabilized with oxides of yttrium, calcium, hafnium, and aluminum is preferred. Examples of the dispersing machine used when dispersing raw material powder in a wet manner include a planetary ball mill, a rotary ball mill, a vibrating ball mill, and the like, but a planetary ball mill is preferable because of its high efficiency. In addition, organic binders added to wet dispersion treatment include methylcellulose (MC), ethylcellulose (EC), carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC),
Polyvinyl alcohol (PVA), polyvinyl methyl ether (PVM), vinyl methyl ether-maleic anhydride copolymer, polyvinyl pyrrolidone (PVP), polyvinyl oxazolidone, polyvinyl sulfonic acid, polyethylene oxide (PEO), polyethylene imine (PEI), polyacrylic acid type, polyacrylamide type, gelatin,
Examples include casein, gum arabic, and starch, and one or more of these may be used, with PVA and MC being preferred. Furthermore, when foam is generated during wet dispersion treatment, a polyalkylene derivative, a nonionic surfactant, etc. are added as an antifoaming agent. Typical wet dispersion treatment liquids include water-soluble solvents such as water and/or alcohol, or water-insoluble solvents such as carbon tetrachloride, aromatic hydrocarbons such as benzene, toluene, and xylene, and aliphatic hydrocarbons such as hexane. One or more of these may be used. After wet dispersion treatment, the dispersion treatment liquid and the dispersion treatment powder can be separated by the usual method using paper or cloth, but if the powder has good dispersibility, ultraviolet filtration or It is preferable to use a pressurized filter, a centrifugal filter, or the like. In other words, the dispersion-treated powder obtained by separating the dispersion-treated liquid and the dispersion-treated powder has the minimum necessary amount of organic binder adsorbed on the surface of each primary particle to make the powder uniform during press molding. , and is an essential condition for achieving an amount that allows complete degreasing during normal pressure firing. In the present invention, in order to wet-disperse the raw material powder, it is possible to apply the powder to an aqueous solution in which an organic binder and an antifoaming agent are dissolved in advance, and/or a solution of a water-soluble solvent, or a solution of a water-insoluble solvent. The raw material powder is added and mixed so that the concentration is 5 to 70% by weight, preferably 10 to 50% by weight. If it is less than 5% by weight, the production efficiency of the dispersed powder is poor. Furthermore, if it exceeds 70% by weight, the viscosity of the dispersion increases during dispersion treatment, making it impossible to uniformly disperse fibers. Furthermore, the amount of organic binder added during dispersion treatment is based on 100 parts by weight of raw material powder.
The dispersion treatment is carried out in an amount of 0.2 to 8 parts by weight, preferably 0.5 to 5 parts by weight. If the amount is less than 0.2 parts by weight, the dispersibility of the dispersion-treated powder will be poor and the powder will not be able to be converted into primary particles.
In addition, if it is 8 parts by weight or more, a large amount of organic binder remains in the dispersion-treated powder that is separated into the dispersion-treated liquid and the dispersion-treated powder, so that the sintered body formed by molding and firing this binder has pores and is dense. Homogeneous ceramics cannot be obtained. In addition, in order to determine the optimum amount of organic binder in the dispersion-treated powder, the present inventors separated the dispersion-treated liquid and the dispersion-treated powder, and preliminarily heated the separated and dispersion-treated powder at 105°C for 8 hours. It was dried and the dispersion treatment liquid was evaporated. The dispersion-treated dry powder was fired at 800°C, and the amount of organic binder in the dispersion-treated dry powder was determined from the weight change before and after firing. In addition, in order to confirm whether or not it was an organic binder, confirmation was made using a Fourier transform infrared spectrophotometer (FT-IR) based on the difference spectrum between the dispersion-treated dry powder and the raw material powder. From these results, the amount of organic binder in the dispersion-treated powder is 40 to 10,000 p.pm, preferably 100 to 6,000 p.m.
It is the amount of pm. This amount of binder can be obtained by dispersing the powder raw material under the above-mentioned wet dispersion treatment conditions and separating it from the dispersion treatment liquid. and,
The amount of the organic binder is at least the minimum amount that uniformly coats the surface of the primary particles of the raw material powder. Furthermore, the amount of antifoaming agent during dispersion treatment is
The minimum amount at which bubbles disappear during dispersion treatment is preferable, and although the amount is not particularly limited, it is sufficient to add 0.1% by weight to the dispersion containing the organic binder. When molding the dispersed powder, a simple and efficient press molding method is preferred. However, the molding pressure is preferably 4000 Kg/cm 2 or more, and if the press molding pressure is 4000 Kg/cm 2 or less, the ceramic sintered body will not be dense and pores will be observed inside the ceramic sintered body. Regarding firing after press forming, extensive
Although a HIP device may be used, ordinary pressure firing is sufficient. Further, the firing temperature and firing time are not particularly limited, but may be a normal temperature, for example, 1300 to 2000°C, and a known firing time of several hours is sufficient. (Examples) Next, Examples and Comparative Examples will be given to specifically clarify the present invention, but the present invention is not limited thereto. The effectiveness was evaluated using the following test method. - Density/Homogeneity Test - 1 Observation of the folded surface using a scanning electron microscope The produced ceramic sintered body was held in a vise and cut by hitting it with a hammer, gold was deposited on the folded surface, and the folded surface was observed using a scanning electron microscope. The material was observed and its density and homogeneity were determined visually based on the presence and size of pores. That is, if there were no pores or the size of pores was 0.1 Όm or less, it was determined that the ceramic sintered body was dense and homogeneous. 2 Measurement of density of sintered body The dimensions of the ceramic sintered body were measured using a universal projector, and the volume of the sintered body was determined. In addition, the weight of the sintered body was measured, and the density was determined from the volume and weight, and it was determined that the higher the density, the denser it was. Example 1 30 g of Ittriya (added 3 mol%) partially stabilized zirconia powder was mixed with 70 g of an aqueous solution in which 1.2 g of polyvinyl alcohol was dissolved, and 0.1 ml of an antifoaming agent (polyalkylene derivative) was added to the mixed solution. Dispersion treatment was performed in a ball mill for 2 hours. The dispersion treatment liquid was centrifuged at 10,000 rpm for 30 minutes to obtain a dispersion treatment powder. The obtained dispersed powder was dried at 80° C. for 2 days to obtain 30 g of dispersed powder. Grind dry powder 250
passed through the mesh sieve. The dry powder was filled into a mold, press-molded at a molding pressure of 6000 kg/cm 2 , and then baked at 1500° C. for 1 hour. After cooling, a ceramic sintered body was obtained. Comparative Example 1 A dispersion treatment was carried out under the same conditions as in Example 1, and 900 ml of purified water was added to the dispersion treatment liquid, followed by stirring with a propeller for dispersion.
The dispersion was spray-dried to obtain 30 g of perfectly spherical granulated powder with an average diameter of 70 ÎŒm. After filling the granulated powder into a mold and press-molding it at a molding pressure of 3700 kg/cm 2 ,
It was baked at 1500°C for 1 hour. After cooling, a ceramic sintered body was obtained. Example 2 10 g of Ittriya (3 mol% addition) partially stabilized zirconia powder was mixed with 90 g of a 10% aqueous methanol solution in which 0.5 g of methylcellulose was dissolved.
Add antifoaming agent (polyalkylene derivative) 0.1 to the mixed liquid.
ml was added and subjected to dispersion treatment for 2 hours in a planetary ball mill. The dispersion treatment liquid was centrifuged at 15000 rpm for 30 minutes to obtain a dispersion treatment powder. The obtained dispersed powder was dried at 80° C. for 2 days to obtain 10 g of dispersed powder. The dry powder was ground and passed through a 250 mesh sieve. The dry powder is filled into a mold and 4000Kg/cm 2
After press molding at a molding pressure of 1,000 yen, it was fired at 1500°C for 1 hour. After cooling, a ceramic sintered body was obtained. Comparative Example 2 A dispersion treatment was carried out under the same conditions as in Example 2, and 240 ml of a 10% methanol aqueous solution was added to the dispersion treatment liquid, followed by stirring with a propeller for dispersion. The dispersion was spray-dried to obtain 10 g of perfectly spherical granulated powder with an average size of 50 Όm. The granulated powder was filled into a mold, press-molded at a molding pressure of 3700 Kg/cm 2 , and then fired at 1500° C. for 1 hour.
After cooling, a ceramic sintered body was obtained. Next, we will discuss the results of tests on the density and homogeneity of the manufactured sintered ceramics. 1 Observation of the folded surface using a scanning electron microscope The folded surface of the ceramic sintered body produced in Example 1 was observed using a scanning electron microscope in FIG. 1. The state of the folded surface of the ceramic sintered body manufactured in Comparative Example 1 is attached to FIG. The state of the folded surface of the ceramic sintered body produced in Example 2 was
Attached to the figure. Furthermore, the state of the folded surface of the ceramic sintered body produced in Comparative Example 2 is attached in FIG. All the attached photos were observed at 10,000x magnification.
As can be seen from the state of these folded surfaces, the ceramic sintered body manufactured in Example 1 (Figure 1) and the ceramic sintered body manufactured in Example 2 (Figure 3) are different from the ceramic sintered body manufactured in Comparative Example 1. The sintered body (Figure 2) and the ceramic sintered body manufactured in Comparative Example 2 (Figure 4)
Compared to Figure), it can be seen that the pores are smaller than 0.1 ÎŒm and are extremely dense and homogeneous. Comparative example 1 and comparative example 2
It can be seen that the ceramic sintered body produced by the method has very large pores, and is not dense and has poor homogeneity. 2. Density measurement of sintered bodies Table 1 shows the density measurement results of ceramic sintered bodies.

【衚】 第衚の密床枬定結果から分るように実斜䟋
及び実斜䟋で補造したセラミツクス焌結䜓の密
床は5.95以䞊で理論密床の99に達し、非垞に緻
密であるこずが分る。これに比べお比范䟋及び
比范䟋で補造したセラミツクス焌結䜓の密床は
5.4皋床であり、理論密床の90ず緻密でないこ
ずが分る。 実斜䟋  0.25のポリビニルアルコヌルを溶解した氎溶
液50にむツトリダモル添加系郚分安定
化ゞルコニア粉䜓50を混合し、該混合液に消泡
剀ポリアルキレン誘導䜓0.1mlを加えお遊星
ボヌルミルにお時間分散凊理した。該分散凊理
液を10000r.p.m.で30分間遠心分離し、分散凊理
粉䜓を埗た。埗られた分散凊理粉䜓を50℃で日
間也燥し分散凊理粉䜓50を埗た。也燥粉䜓を粉
砕し100メツシナの篩を通過させた。該也燥粉䜓
を金型に充填し、5000Kgcm2の成圢圧力でプレス
成圢した埌、1500℃で時間焌成した。攟冷埌セ
ラミツクス焌結䜓を埗た。この焌結䜓に぀いお
も、走査型電子顕埮鏡による折面芳察䟋瀺しお
ないがを行な぀た結果、緻密で均質なセラミツ
クス焌結䜓であ぀た。 発明の効果 本発明の補造方法によれば、緻密で均質なセラ
ミツクス焌結䜓を簡䟿に埗るこずができる。 本発明によ぀お補造される緻密で均質なセラミ
ツクス焌結䜓は匷床が高くなり、靭性も高くなる
こずから、電磁気材料や硬質材料、匷床材料、光
孊材料、生化孊材料、高粟密加工材料の補造に最
適である。
[Table] As seen from the density measurement results in Table 1, Example 1
The density of the ceramic sintered body produced in Example 2 was 5.95 or higher, reaching 99% of the theoretical density, indicating that it was extremely dense. In comparison, the density of the ceramic sintered bodies manufactured in Comparative Example 1 and Comparative Example 2 was
It can be seen that the density is about 5.4, which is 90% of the theoretical density, which is not dense. Example 3 50 g of an aqueous solution containing 0.25 g of polyvinyl alcohol dissolved therein was mixed with 50 g of Ittriya (3 mol% addition) partially stabilized zirconia powder, and 0.1 ml of an antifoaming agent (polyalkylene derivative) was added to the mixture. Dispersion treatment was carried out for 2 hours using a planetary ball mill. The dispersion treatment liquid was centrifuged at 10,000 rpm for 30 minutes to obtain a dispersion treatment powder. The obtained dispersed powder was dried at 50° C. for 3 days to obtain 50 g of dispersed powder. The dry powder was ground and passed through a 100 mesh sieve. The dry powder was filled into a mold, press-molded at a molding pressure of 5000 kg/cm 2 , and then baked at 1500° C. for 1 hour. After cooling, a ceramic sintered body was obtained. This sintered body was also subjected to folded surface observation using a scanning electron microscope (not shown), and as a result, it was found to be a dense and homogeneous ceramic sintered body. (Effects of the Invention) According to the manufacturing method of the present invention, a dense and homogeneous ceramic sintered body can be easily obtained. The dense and homogeneous ceramic sintered body manufactured by the present invention has high strength and toughness, so it can be used for electromagnetic materials, hard materials, strength materials, optical materials, biochemical materials, and high-precision processed materials. Ideal for manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は実斜䟋で補造したセラミツクス焌結
䜓折面の走査型電子顕埮鏡写真である。第図は
比范䟋で補造したセラミツクス焌結䜓折面の走
査型電子顕埮鏡写真である。第図は実斜䟋で
補造したセラミツクス焌結䜓折面の走査型電子顕
埮鏡写真である。第図は比范䟋で補造したセ
ラミツクス焌結䜓折面の走査型電子顕埮鏡写真で
ある。
FIG. 1 is a scanning electron micrograph of a folded surface of the ceramic sintered body produced in Example 1. FIG. 2 is a scanning electron micrograph of a folded surface of the ceramic sintered body produced in Comparative Example 1. FIG. 3 is a scanning electron micrograph of the folded surface of the ceramic sintered body produced in Example 2. FIG. 4 is a scanning electron micrograph of the folded surface of the ceramic sintered body produced in Comparative Example 2.

Claims (1)

【特蚱請求の範囲】  有機バむンダヌを含有した分散凊理液に原料
粉䜓を混合しお湿匏で䞀次粒子に分散凊理し、該
分散凊理液ず分散粉䜓を分離し、凊理粉䜓䞭の有
機バむンダヌ量を40〜10000p.p.m.ずなし、該凊
理粉䜓を4000Kgcm2以䞊のプレス成圢圧力で成圢
し、垞圧焌成するこずを特城ずするセラミツクス
の補造法。  前蚘原料粉䜓が酞化アルミニりム、炭化ホり
玠、窒玠ホり玠、炭化チタン、窒化チタン、炭化
ケむ玠、酞化ゞルコニりム、もしくはむツトリり
ム、カルシりム、ハフニりム、マグネシりム、ア
ルミニりム等の酞化物で郚分安定化した酞化ゞル
コニりムから遞ばれたの粉䜓である特蚱請求の
範囲第項蚘茉のセラミツクスの補造法。  前蚘有機バむンダヌがメチルセルロヌス、゚
チルセルロヌス、カルボキシメチルセルロヌス、
ヒドロキシ゚チルセルロヌス、ポリビニルアルコ
ヌル、ポリビニルメチル゚ヌテル、ビニルメチル
゚ヌテル−無氎マレむン酞コポリマヌ、ポリビニ
ルピロリドン、ポリビニルオキサゟリドン、ポリ
ビニルスルホン酞、ポリ゚チレンオキサむド、ポ
リ゚チレンむミン、ポリアクリル酞系化合物、ポ
リアクリルアマむド系化合物、れラチン、カれむ
ン、アラビアゎム、柱粉から遞ばれた皮たたは
皮以䞊の混合物である特蚱請求の範囲第項蚘
茉のセラミツクスの補造法。  前蚘分散凊理液が氎及び又はアルコヌル等
氎可溶性溶剀、四塩化炭玠、芳銙族炭化氎玠等氎
䞍溶性溶剀の皮たたは皮以䞊の混合液である
特蚱請求の範囲第項蚘茉のセラミツクスの補造
法。  前蚘分散凊理液䞭の原料粉䜓濃床が〜70重
量である特蚱請求の範囲第項蚘茉のセラミツ
クスの補造法。  前蚘分散凊理液䞭の原料粉䜓に察する有機バ
むンダヌの添加量が原料粉䜓100重量郚に察し、
0.2〜重量郚の範囲である特蚱請求の範囲第
項蚘茉のセラミツクスの補造法。  前蚘原料粉䜓の湿匏分散が遊星匏ボヌルミ
ル、回転匏ボヌルミル、たたは振動匏ボヌルミル
を甚いお行なわれる特蚱請求の範囲第項蚘茉の
セラミツクスの補造法。
[Scope of Claims] 1. Raw material powder is mixed into a dispersion treatment liquid containing an organic binder, wet-dispersed into primary particles, the dispersion treatment liquid and the dispersed powder are separated, and the organic 1. A method for producing ceramics, which comprises adjusting the amount of binder to 40 to 10,000 p.pm, molding the treated powder at a press molding pressure of 4,000 Kg/cm 2 or more, and firing under normal pressure. 2 The raw material powder is selected from aluminum oxide, boron carbide, boron nitrogen, titanium carbide, titanium nitride, silicon carbide, zirconium oxide, or zirconium oxide partially stabilized with an oxide such as yttrium, calcium, hafnium, magnesium, or aluminum. 1. A method for producing ceramics according to claim 1, wherein the ceramic is a powder made of: 3 The organic binder is methylcellulose, ethylcellulose, carboxymethylcellulose,
Hydroxyethyl cellulose, polyvinyl alcohol, polyvinyl methyl ether, vinyl methyl ether-maleic anhydride copolymer, polyvinyl pyrrolidone, polyvinyl oxazolidone, polyvinyl sulfonic acid, polyethylene oxide, polyethylene imine, polyacrylic acid compounds, polyacrylamide compounds, gelatin, casein The method for producing ceramics according to claim 1, wherein the ceramic is one or a mixture of two or more selected from , gum arabic, and starch. 4. The ceramic according to claim 1, wherein the dispersion treatment liquid is a mixture of one or more of water and/or water-soluble solvents such as alcohol, and water-insoluble solvents such as carbon tetrachloride and aromatic hydrocarbons. manufacturing method. 5. The method for producing ceramics according to claim 1, wherein the concentration of the raw material powder in the dispersion treatment liquid is 5 to 70% by weight. 6 The amount of organic binder added to the raw material powder in the dispersion treatment liquid is 100 parts by weight of the raw material powder,
Claim 1 in the range of 0.2 to 8 parts by weight
Method for manufacturing ceramics described in Section 1. 7. The method for producing ceramics according to claim 1, wherein the wet dispersion of the raw material powder is performed using a planetary ball mill, a rotary ball mill, or a vibrating ball mill.
JP60123492A 1985-06-08 1985-06-08 Manufacture of ceramics Granted JPS61286260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60123492A JPS61286260A (en) 1985-06-08 1985-06-08 Manufacture of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60123492A JPS61286260A (en) 1985-06-08 1985-06-08 Manufacture of ceramics

Publications (2)

Publication Number Publication Date
JPS61286260A JPS61286260A (en) 1986-12-16
JPH0532341B2 true JPH0532341B2 (en) 1993-05-14

Family

ID=14861967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60123492A Granted JPS61286260A (en) 1985-06-08 1985-06-08 Manufacture of ceramics

Country Status (1)

Country Link
JP (1) JPS61286260A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060967A (en) * 1983-09-09 1985-04-08 日立化成工業株匏䌚瀟 Manufacture of ceramic mud

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060967A (en) * 1983-09-09 1985-04-08 日立化成工業株匏䌚瀟 Manufacture of ceramic mud

Also Published As

Publication number Publication date
JPS61286260A (en) 1986-12-16

Similar Documents

Publication Publication Date Title
JPH0768066B2 (en) Heat resistant composite and method for producing the same
CN108249924B (en) Silicon carbide ceramic, preparation method thereof and Al-SiC composite material
JPH07206520A (en) Preparation of ceramic part of silicon carbide
KR970011315B1 (en) Ceramic powders and preparation thereof
WO2007086427A1 (en) Method for producing carbon-containing silicon carbide ceramic
CN108218433A (en) A kind of Spray granulation method of silicon carbide powder
JPH0532341B2 (en)
US4318876A (en) Method of manufacturing a dense silicon carbide ceramic
JPH06144918A (en) Production of ceramic granulated powder and production of ceramic sintered body
KR102348171B1 (en) Manufacturing method of yttrium oxide powder for plasma spray
CN109111232A (en) A kind of Spray granulation method of silicon carbide powder
JP2505179B2 (en) High-strength atmospheric pressure sintered silicon nitride sintered body and method for producing the same
JP4047956B2 (en) Method for forming silicon carbide powder
RU2793109C1 (en) Vacuum-tight low-conductivity ceramic material and method for its production
JPH0733548A (en) Production of ceramic filter
CN108083810A (en) A kind of Spray granulation method of silicon carbide powder
JP3282500B2 (en) Method for producing slurry for casting
KR100232059B1 (en) Molding method of silicon carbide-carbon black system for reaction-sintered sic
JPH10297970A (en) Production of silicon carbide-based sintered compact
JP4122550B2 (en) Manufacturing method of SiC sintered body
JPH04187555A (en) Preparation of ceramic raw material and apparatus therefor
JPH04357157A (en) Production of granulated ceramic powder for forming
JPS63151607A (en) Production of fine aluminum nitride powder
JP4789293B2 (en) SiC sintered body
JPH10245269A (en) Preparation of ceramic slurry