JPS6128625B2 - - Google Patents

Info

Publication number
JPS6128625B2
JPS6128625B2 JP54091429A JP9142979A JPS6128625B2 JP S6128625 B2 JPS6128625 B2 JP S6128625B2 JP 54091429 A JP54091429 A JP 54091429A JP 9142979 A JP9142979 A JP 9142979A JP S6128625 B2 JPS6128625 B2 JP S6128625B2
Authority
JP
Japan
Prior art keywords
graphite
titanium carbonitride
temperature
powder
graphite member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54091429A
Other languages
Japanese (ja)
Other versions
JPS5617985A (en
Inventor
Taijiro Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9142979A priority Critical patent/JPS5617985A/en
Publication of JPS5617985A publication Critical patent/JPS5617985A/en
Publication of JPS6128625B2 publication Critical patent/JPS6128625B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【発明の詳細な説明】 この発明は、雰囲気ガスとの反応性、並びに被
加熱物との反応性が極めて抑制された、特に高温
炉で使用するための黒鉛部材に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a graphite member particularly for use in a high-temperature furnace, in which reactivity with atmospheric gas and reactivity with objects to be heated is extremely suppressed.

今日、入手の容易さと相俟つて、それの有する
種々の特性のために、黒鉛製品の工業上の使用分
野は非常に多岐にわたつているが、高温における
強度が高いこと、熱伝導性が良いことに加え、比
較的安価に種々の形状を造り得るという性質を有
することから、黒鉛は高温炉の部材としても欠く
ことのできないものとなつている。特に、1300℃
以上の高温の真空炉では、使用できる金属材料が
高価なモリブデン、タングステン、タンタルある
いはこれらの合金に限られるために、これらの炉
においては、黒鉛製のルツボや敷板が広く使用さ
れている。
Today, the industrial use of graphite products is very diverse due to its various properties, coupled with its easy availability, including high strength at high temperatures and good thermal conductivity. In addition, graphite has become indispensable as a component of high-temperature furnaces because it has the property of being able to be manufactured into various shapes at relatively low cost. Especially, 1300℃
In the above-mentioned high-temperature vacuum furnaces, the metal materials that can be used are limited to expensive molybdenum, tungsten, tantalum, or alloys thereof, so graphite crucibles and bottom plates are widely used in these furnaces.

しかしながら、黒鉛部材は雰囲気ガスとの反応
が速く、浸炭性あるいは還元性の雰囲気ガスを、
例えば10-4〜10-1mmHg程度の減圧下においてさ
えも形成したり、さらには黒鉛敷板等の黒鉛部材
と被加熱物との直接接触部において反応を生じた
り、炭素が被加熱物内部へ拡散したりするという
問題があり、そのため、黒鉛部材を使用した高温
炉で、浸炭、還元を避けなら被加熱物を処理する
場合には、黒鉛ルツボの内側に酸化物系などのセ
ラミツクス製円筒をおき、さらに雰囲気ガスを調
整したり、黒鉛敷板の上に酸化物系などのセラミ
ツクス製板を置いて被加熱物と黒鉛敷板の接触を
防ぐなどの手法がとられているが、処理量の低下
や作業の繁雑化などを伴なうのを否めないのが現
状である。
However, graphite members react quickly with atmospheric gases, and can easily absorb carburizing or reducing atmospheric gases.
For example, carbon may be formed even under reduced pressure of about 10 -4 to 10 -1 mmHg, and furthermore, carbon may form at the direct contact part between the graphite member such as a graphite plate and the object to be heated, and carbon may enter the inside of the object to be heated. Therefore, when processing objects to be heated in a high-temperature furnace using graphite members to avoid carburization and reduction, it is necessary to place a cylinder made of oxide-based ceramics inside the graphite crucible. Techniques such as adjusting the atmospheric gas and placing an oxide-based ceramic plate on top of the graphite base plate to prevent contact between the heated object and the graphite base plate have been taken, but the throughput decreases. The current situation is that it is undeniable that this involves increased complexity and complexity of work.

本発明者等は、上述のような従来の高温炉用黒
鉛部材にみられる高反応性に後対策として対処す
るのではなく、耐熱性等の諸性質はそのままにし
た状態で、反応性の低い黒鉛部材を作り出し、従
来の高温炉用黒鉛部材の有する問題を根本的に解
決すべく、特に高温雰囲気中での黒鉛の挙動に関
して基礎的な考察を加えて研究を行なつた結果、 (a) 高温雰囲気中においては、黒鉛部材は雰囲気
ガスと接触しているその表面部から順に、該雰
囲気ガスと反応し、そのため徐々に消耗してゆ
くものであること。
Rather than taking countermeasures against the high reactivity found in conventional graphite members for high-temperature furnaces as described above, the inventors of the present invention developed a material with low reactivity while leaving various properties such as heat resistance unchanged. In order to create graphite parts and fundamentally solve the problems of conventional graphite parts for high-temperature furnaces, we conducted research with basic considerations regarding the behavior of graphite, especially in high-temperature atmospheres. (a) In a high-temperature atmosphere, the graphite member reacts with the atmospheric gas starting from the surface part that is in contact with the atmospheric gas, and is therefore gradually consumed.

(b) 黒鉛部材中に、高融点化合物としての炭窒化
チタン粒子が分散含有していると、雰囲気ガス
との反応によつて黒鉛分が徐々に消耗していつ
ても該炭窒化チタン粒子はそのまま残留し、黒
鉛部材の表面部においてその濃度割合が高くな
つて、炭窒化チタン粒子が黒鉛部材表面部を覆
うような形となること。
(b) If titanium carbonitride particles as a high melting point compound are dispersed and contained in a graphite member, the titanium carbonitride particles will remain as they are even if the graphite content is gradually consumed by reaction with atmospheric gas. The titanium carbonitride particles remain and their concentration ratio becomes high on the surface of the graphite member, so that the titanium carbonitride particles cover the surface of the graphite member.

(c) NaCl型の面心立方晶の炭窒化チタンは広い
範囲にわたり非金属成分の含有の少ない組成を
有し、かつ、相互に広い固溶域をもつているた
めに、高温において、炭素、窒素、酸素、およ
び水素を含むガスと平衡組成となり、また、こ
の炭窒化チタンにおける非金属原子の拡散定数
は、1300〜1500℃の範囲では小さいため、雰囲
気ガスとの平衡は炭窒化チタン粒子の表面のみ
にとどまること。したがつて、この時の成分の
移動を伴なう反応は遅く、かつ、わずかな量に
とどまること。すなわち、黒鉛部材の表面に炭
窒化チタン粒子の割合が高まると、黒鉛部材は
雰囲気ガスとの反応が抑制され、また他の部材
と黒鉛部材との接触点における反応がほとんど
起らなくなること。
(c) NaCl-type face-centered cubic titanium carbonitride has a wide range of composition with low content of non-metallic components, and also has a wide mutual solid solution range. It has an equilibrium composition with a gas containing nitrogen, oxygen, and hydrogen, and the diffusion constant of nonmetal atoms in titanium carbonitride is small in the range of 1300 to 1500°C, so the equilibrium with the atmospheric gas is due to the composition of titanium carbonitride particles. Stay only on the surface. Therefore, the reaction accompanied by the movement of components at this time is slow and remains in a small amount. That is, when the proportion of titanium carbonitride particles on the surface of the graphite member increases, the reaction of the graphite member with atmospheric gas is suppressed, and almost no reaction occurs at the contact point between the graphite member and other members.

(d) したがつて、黒鉛に上記炭窒化チタン粒子を
分散含有せしめた黒鉛部材は、高温下における
雰囲気ガスとの反応性ならびにこれと接触する
他部材との反応性が極めて低くなり、高温炉で
使用する黒鉛部材として好適なものであるこ
と。
(d) Therefore, graphite parts containing the titanium carbonitride particles dispersed in graphite have extremely low reactivity with atmospheric gas at high temperatures and with other parts that come into contact with it, and cannot be used in high-temperature furnaces. be suitable as a graphite member for use in

以上(a)〜(d)に示される知見を得たのである。 The findings shown in (a) to (d) above were obtained.

したがつて、この発明は上記知見にもとづいて
なされたものであり、高温炉用黒鉛部材に、炭窒
化チタンを1〜10重量%の割合で分散含有せし
め、雰囲気ガスとの反応性ならびに被加熱物との
反応性を抑制したこと、すなわち、高温炉用黒鉛
部材に帰因する浸炭性と還元性を特に抑制したこ
とに特徴を有するものである。
Therefore, this invention has been made based on the above knowledge, and contains titanium carbonitride dispersed in a graphite member for a high temperature furnace at a ratio of 1 to 10% by weight, thereby improving reactivity with atmospheric gas and heating. It is characterized by suppressing reactivity with substances, that is, by particularly suppressing carburizing properties and reducing properties caused by graphite members for high-temperature furnaces.

なお、この発明の高温炉用黒鉛部材において、
炭窒化チタン粒子の含有量1〜10重量%と限定し
たのは、前記炭窒化チタン粒子の含有量が1%未
満では、浸炭および還元等の反応を抑制する効果
が十分でなく、一方10%を越えて含有させると、
高温炉用黒鉛部材に要求される所定の強度を確保
することができないという理由にもとづくもので
ある。
In addition, in the graphite member for high temperature furnace of this invention,
The content of titanium carbonitride particles is limited to 1 to 10% by weight because if the content of titanium carbonitride particles is less than 1%, the effect of suppressing reactions such as carburization and reduction will not be sufficient. If it is contained in excess of
This is based on the fact that the specified strength required for graphite members for high-temperature furnaces cannot be secured.

さらに、この発明の黒鉛部材は、従来の黒鉛部
材の製造条件とほとんど同じ条件で製造すること
ができる。すなわち、まず、第一工程のカーボン
粉末混合時に窒化チタンおよび炭窒化チタンのう
ちの1種または2種を微粉末の状態で混入し、つ
いでこの結果得られた混合物を成形し、乾燥した
後、温度700〜1100℃で予備焼成し、引続いて通
電焼結等の手段により温度2000〜3000℃で黒鉛化
することによつて製造される。なお、カーボン粉
末や混合剤の種類など、最終製品に及ぼす要因は
多様であるが、適切な出発原料と製造条件を選べ
ば、従来黒鉛部材と同等の高密度のものを製造す
ることができる。また、窒化チタン粉末および炭
窒化チタン粉末は、粒度0.5〜5μmをもち、特
に高温で合成され、粉砕により微粉化されたもの
を出発原料として使用するのがよく、この場合黒
鉛部材において1.0〜20μmの粒度に粒成長した
ものとなる。さらに、この場合出発原料としての
窒化チタン粉末および炭窒化チタン粉末には、黒
鉛化の条件にもよるが、脱室と炭化が一般的に起
り、窒化チタンは炭窒化チタンとなるが、低温の
黒鉛化温度を適用すれば脱窒が少ないので、黒鉛
化後の炭窒化チタン粒子における窒素含有量を高
含有状態に保持するためには低温で黒鉛化するの
がよい。
Furthermore, the graphite member of the present invention can be manufactured under almost the same manufacturing conditions as conventional graphite members. That is, first, one or two of titanium nitride and titanium carbonitride is mixed in a fine powder state during the carbon powder mixing in the first step, and the resulting mixture is then molded and dried. It is produced by pre-calcining at a temperature of 700 to 1100°C and then graphitizing at a temperature of 2000 to 3000°C by means such as electric sintering. Although there are various factors that affect the final product, such as the type of carbon powder and mixture, if appropriate starting materials and manufacturing conditions are selected, it is possible to manufacture a product with the same high density as conventional graphite members. In addition, titanium nitride powder and titanium carbonitride powder have a particle size of 0.5 to 5 μm, and it is preferable to use those synthesized at high temperatures and pulverized by pulverization as starting materials. In this case, the particle size of the graphite member is 1.0 to 20 μm. The grains have grown to a grain size of . Furthermore, in this case, titanium nitride powder and titanium carbonitride powder used as starting materials generally undergo venting and carbonization, depending on the graphitization conditions, and titanium nitride becomes titanium carbonitride. If the graphitization temperature is applied, denitrification will be reduced, so in order to maintain a high nitrogen content in the titanium carbonitride particles after graphitization, it is preferable to graphitize at a low temperature.

ついで、この発明を実施例により説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 それぞれ平均粒径0.8μmをもつように粉砕し
た窒化チタン粉末、コークス粉、およびカーボン
粉を7:38:55の重量割合に配合し、これに溶剤
を加えて混練機にて混合した後、板状および円筒
状の成形体を成形し、温度150℃にて乾燥した。
ついで、これらの成形体を水素雰囲気炉中で、毎
時100℃の昇温速度で加熱し、温度900℃に1時間
保持して予備焼成し、引続いて通電加熱炉に挿入
し、アルゴン雰囲気中で、通電して温度2500℃に
加熱し、1時間保持して黒鉛化することによつて
板状および円筒状の本発明黒鉛部材を製造した。
この結果得られた本発明黒鉛部材においては、黒
鉛化中に窒化チタンに脱窒炭化が起つて炭窒化チ
タンが形成し、この結果の炭窒化チタン粒子は、
平均粒径:6μmを有すると共に、8重量%の割
合で分散含有するものであり、かつTiC0.7N0.3
平均組成をもつことがX線回折分析により確認さ
れた。ついで、これらの黒鉛部材に機械加工を施
して、内径100mm×肉厚5mmの寸法をもつた円筒
体と、この中に置く5枚の板材とし、これをルツ
ボおよび敷板として使用し、真空雰囲気中、加熱
保持温度1450℃の条件で炭化タングステン
(WC)−10%Co焼結合金を製造した。
Example 1 Titanium nitride powder, coke powder, and carbon powder, each pulverized to have an average particle size of 0.8 μm, were blended in a weight ratio of 7:38:55, a solvent was added, and the mixture was mixed in a kneader. Thereafter, plate-shaped and cylindrical molded bodies were formed and dried at a temperature of 150°C.
Next, these molded bodies were heated in a hydrogen atmosphere furnace at a rate of temperature increase of 100°C per hour, held at a temperature of 900°C for 1 hour for preliminary firing, and then inserted into an electric heating furnace and heated in an argon atmosphere. Then, the graphite members of the present invention in the form of plates and cylinders were manufactured by applying electricity to heat the material to a temperature of 2500° C., and maintaining it for 1 hour to graphitize it.
In the graphite member of the present invention obtained as a result, denitrification carbonization occurs in titanium nitride during graphitization to form titanium carbonitride, and the resulting titanium carbonitride particles are
It was confirmed by X-ray diffraction analysis that the particles had an average particle size of 6 μm, were dispersed in a proportion of 8% by weight, and had an average composition of TiC 0.7 N 0.3 . Next, these graphite members were machined to form a cylindrical body with dimensions of 100 mm inner diameter x 5 mm wall thickness, and 5 plates placed inside this. These were used as a crucible and a bottom plate, and were placed in a vacuum atmosphere. A tungsten carbide (WC)-10% Co sintered alloy was manufactured under the conditions of heating and holding temperature of 1450℃.

また、比較の目的で、従来の黒鉛ルツボおよび
黒鉛敷板を使用し、同一条件でWC−10%Co焼結
合金を製造した。
For comparison purposes, a WC-10%Co sintered alloy was manufactured under the same conditions using a conventional graphite crucible and graphite bed plate.

この結果、従来の黒鉛部材を用いた場合には、
敷板と焼結合金との間に明らかな浸炭反応が見ら
れたのに対して、本発明黒鉛部材を使用した場合
には、このような浸炭反応は全く見られなかつ
た。
As a result, when using conventional graphite members,
While a clear carburizing reaction was observed between the base plate and the sintered alloy, no such carburizing reaction was observed when the graphite member of the present invention was used.

実施例 2 出発原料として、平均粒径:2μmを有する炭
窒化チタン粉末(X線回折分析による平均組成:
TiC0.5N0.5)、粒度:−100メツシユのコークス
粉、および同一100メツシユの黒鉛粉を用い、こ
れらを7:50:43の重量割合に配合する以外は、
実施例1におけると同一の条件で、板状および円
筒状の本発明黒鉛部材を製造した。
Example 2 As a starting material, titanium carbonitride powder having an average particle size of 2 μm (average composition according to X-ray diffraction analysis:
TiC 0.5 N 0.5 ), coke powder with a particle size of -100 mesh, and graphite powder with the same 100 mesh were used, except that they were mixed in a weight ratio of 7:50:43.
Plate-shaped and cylindrical graphite members of the present invention were manufactured under the same conditions as in Example 1.

この結果得られた本発明黒鉛部材は、平均粒
径:7μmを有する炭窒化チタン粒子を9重量%
の割合で分散含有するものであり、かつ前記炭窒
化チタン粒子は、X線回折分析でTiC0.75N0.25
平均組成を示すものであつた。
The resulting graphite member of the present invention contains 9% by weight of titanium carbonitride particles having an average particle size of 7 μm.
The titanium carbonitride particles were found to have an average composition of TiC 0.75 N 0.25 in X - ray diffraction analysis.

また、この結果得られた本発明黒鉛部材を、実
施例1におけると同一の条件で使用したところ、
同様に焼結合金との間に浸炭反応は全く見られな
かつた。
Furthermore, when the graphite member of the present invention obtained as a result was used under the same conditions as in Example 1,
Similarly, no carburizing reaction was observed with the sintered alloy.

実施例 3 出発原料として、実施例1、2で用いたと同じ
平均粒径:0.8μmを有する窒化チタン粉末およ
び同2μmを有する炭窒化チタン粉末、さらに同
じく粒度:−100メツシユのコークス粉、および
同一100メツシユの黒鉛粉を用い、これらを2:
2:52:44の重量割合で配合する以外は、実施例
1におけると同一の条件で、板状および円筒状の
本発明黒鉛部材を製造した。
Example 3 As starting materials, titanium nitride powder with the same average particle size of 0.8 μm and titanium carbonitride powder with the same average particle size of 2 μm as used in Examples 1 and 2, and coke powder with the same particle size of −100 mesh, and the same Using 100 mesh graphite powder, combine these 2:
Plate-shaped and cylindrical graphite members of the present invention were manufactured under the same conditions as in Example 1 except that the weight ratio was 2:52:44.

この結果得られた本発明黒鉛部材は、平均粒
径:7μmを有する炭窒化チタン粒子を5重量%
の割合で分散含有するものであり、かつ前記炭窒
化チタン粒子は、X線回折分析でTiC0.7N0.3の平
均組成を示した。
The resulting graphite member of the present invention contains 5% by weight of titanium carbonitride particles having an average particle size of 7 μm.
The titanium carbonitride particles had an average composition of TiC 0.7 N 0.3 in X-ray diffraction analysis.

また、この結果得られた本発明黒鉛部材を、実
施例1におけると同一の条件で使用したところ、
同様に焼結合金との間に浸炭反応は全く見られな
かつた。
Furthermore, when the graphite member of the present invention obtained as a result was used under the same conditions as in Example 1,
Similarly, no carburizing reaction was observed with the sintered alloy.

上述のように、この発明の黒鉛部材は、浸炭性
や還元性などの反応性が抑制された特性をもつほ
か、黒鉛自身のもつ特性も具備するので、特に高
温炉の構成部材として使用した場合にすぐれた性
能を発揮するのである。
As mentioned above, the graphite member of the present invention not only has properties such as carburizing and reducing properties that suppress reactivity, but also has the properties of graphite itself, so it is particularly effective when used as a component of a high-temperature furnace. It shows excellent performance.

Claims (1)

【特許請求の範囲】[Claims] 1 高温炉用黒鉛部材に、炭窒化チタン粒子を1
〜10重量%の割合で分散含有させたことを特徴と
する高温炉用黒鉛部材。
1 Titanium carbonitride particles are added to a graphite member for a high temperature furnace.
A graphite member for a high-temperature furnace characterized by containing dispersed graphite at a rate of ~10% by weight.
JP9142979A 1979-07-18 1979-07-18 Graphite member for high temperature furnace Granted JPS5617985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9142979A JPS5617985A (en) 1979-07-18 1979-07-18 Graphite member for high temperature furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9142979A JPS5617985A (en) 1979-07-18 1979-07-18 Graphite member for high temperature furnace

Publications (2)

Publication Number Publication Date
JPS5617985A JPS5617985A (en) 1981-02-20
JPS6128625B2 true JPS6128625B2 (en) 1986-07-01

Family

ID=14026123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9142979A Granted JPS5617985A (en) 1979-07-18 1979-07-18 Graphite member for high temperature furnace

Country Status (1)

Country Link
JP (1) JPS5617985A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319215A (en) * 1986-07-14 1988-01-27 Japan Steel Works Ltd:The Method for compression molding of resin molded article
JP4537632B2 (en) * 2001-09-25 2010-09-01 新日本製鐵株式会社 Carbonaceous refractory and method for producing the same
JP4377165B2 (en) 2003-06-18 2009-12-02 株式会社クレハ High temperature heating metal molded body support member and method for manufacturing the same

Also Published As

Publication number Publication date
JPS5617985A (en) 1981-02-20

Similar Documents

Publication Publication Date Title
Radhakrishnan et al. Synthesis and high-temperature stability of Ti3SiC2
US5322824A (en) Electrically conductive high strength dense ceramic
IE45842B1 (en) Method of producing high density silicon carbide product
US4237085A (en) Method of producing a high density silicon carbide product
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
Landwehr et al. Processing of ZrC–Mo Cermets for High‐Temperature Applications, Part I: Chemical Interactions in the ZrC–Mo System
JPS6128625B2 (en)
JPH0280318A (en) Synthesis of refractory metal boride having predetermined particle dimension
US5283214A (en) Increasing AlN thermal conductivity via pre-densification treatment
US3194635A (en) Method for the production of aluminum refractory material
JPS6212663A (en) Method of sintering b4c base fine body
JPH0253388B2 (en)
US3141737A (en) Method for the preparation of aluminum nitride refractory material
JP2004039372A (en) Diamond granular body containing nitrogen and boron having conductivity and fluidized-bed electrode using the diamond granular body
JPH0138075B2 (en)
JP2846375B2 (en) Aluminum nitride powder and method for producing the same
JPS62270468A (en) Aluminum nitride base sintered body
JPS643830B2 (en)
Smoak Sintering silicon carbide in boron containing atmosphere
JPH0535106B2 (en)
WO1989000984A1 (en) SINTERED CERAMIC PRODUCT COMPRISING SILICON CARBIDE AND SiAlON POLYTYPOID
JP3240130B2 (en) Thermistor material and thermistor element
JPS61256907A (en) Preparation of alpha type silicon nitride
JPS6126566A (en) Method of sintering sic composite body
JPH0411504B2 (en)