JPS6128623B2 - - Google Patents

Info

Publication number
JPS6128623B2
JPS6128623B2 JP55005661A JP566180A JPS6128623B2 JP S6128623 B2 JPS6128623 B2 JP S6128623B2 JP 55005661 A JP55005661 A JP 55005661A JP 566180 A JP566180 A JP 566180A JP S6128623 B2 JPS6128623 B2 JP S6128623B2
Authority
JP
Japan
Prior art keywords
weight
stopper
zrm
casting
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55005661A
Other languages
Japanese (ja)
Other versions
JPS56104774A (en
Inventor
Nobuhiko Kaji
Takenobu Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP566180A priority Critical patent/JPS56104774A/en
Publication of JPS56104774A publication Critical patent/JPS56104774A/en
Publication of JPS6128623B2 publication Critical patent/JPS6128623B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鋼の鋳造におけるストツパーヘツド、
ロングストツパー等の高耐用性黒鉛含有ストツパ
ー耐火物の製造法に関するものである。 近年、鋼の歩留向上、コストダウンの観点から
連続鋳造の比率が急速に高まり、ストツパー耐火
物に対する要求も厳しくなつている。 取鍋およびタンデイシユの流量調整用としてス
ライデイングノズルが採用されることが、作業お
よび自動化の容易さから多くなつてきている。し
かし、スライデイングノズルの場合、流出開始時
に自然流出することができず、珪砂等の詰物、ガ
ス吹き込み等によつて自然流出するようにしてい
るが、その効果は完全でなく、また珪砂等の非金
属介在物の原因となり易い物を使用する等の欠点
がある。そのため、従来からのストツパー耐火物
がスライデイングノズルと併用もしくはそのまゝ
使用される場合もあり見直されている。この場
合、使用回数は数チヤージから十数チヤージ連続
的に使用されている。 ストツパーヘツドの場合は溶鋼流による溶損が
耐用性のネツクに、ロングストツパーの場合は先
端の溶損が耐用性のネツクになつているが、それ
以外にスラグによる溶損も無視できない。 従来、黒鉛質ストツパー耐火物はシヤモツトー
粘土−黒鉛系のものが使用されていたが、耐食性
不足のため近年の連鋳化にはまつたく対処できな
かつた。さらに耐スポーリング性も満足するもの
ではなかつた。近年の連鋳化に対処するため、ア
ルミナ−黒鉛系のものが使用されてきてはいる
が、これも耐用性において先端溶損のため十分で
はなかつた。ストツパー耐火物における先端部の
溶損は、溶鋼流による摩耗溶損である。 本発明者らは、溶鋼流による溶損、スラグによ
る溶損を大幅に減少させ、かつ耐スポーリング性
にすぐれた高耐用性ストツパー耐火物を得るため
に鋭意研究した結果、主たる鉱物相がムライト、
バツデライト、コランダムよりなり、Al2O3およ
びZrO2およびSiO2の化学組成が一定範囲内にあ
る溶融もしくは焼成してなる耐火物原料クリンカ
ー(これをZRMと記す。)を使用することによつ
て、上記目的が達成されることを見出し、本発明
を完成するに至つた。 すなわち、本発明は、アルミナ−カーボン質鋳
造用ストツパー耐火物を製造するに当り、主たる
鉱物相がムライト、バツデライト、コランダムよ
りなり、Al2O325〜85重量%、ZrO210〜70重量
%、SiO25〜25重量%の化学組成を有する耐火物
原料5〜80重量%を含有させた原料配合物を混
練、成形、焼成することを特徴とする高耐用性鋳
造用黒鉛質耐火物の製造法である。 本発明者らは、耐スポール性に優れ、かつ耐摩
耗性、耐スラグ性も良好なストツパー耐火物を製
造するため、耐食性良好で、かつ高粘性のガラス
を生成しやすい各種材料について調査検討した結
果、ZRMは微細なジルコニア結晶がムライトま
たはコランダム結晶の内部および周辺に析出し、
ムライトまたはコランダム結晶を保護するように
存在し、優れた耐食性を有していることを見出し
た。 ZRMをこの形態にするためには、電融もしく
は高温焼成(1400℃以上の)することが必要であ
る。ZRMはAl2O3やジルコニア、ジルコンと比較
して耐火度が低くなるため、ガラスを作り易く、
ガラス中にジルコニアが分散した形になり、粘性
も高い。また、ZRM中の熱膨脹係数は7×10-6
と比較的小さく、しかも1000〜1600℃間では2〜
4×10-6と熱膨脹係数が高温側で低くなる特色が
ある。このような理由から、本発明者らは、
ZRMが鋳造用ストツパー耐火物の原料として適
するとの結論に達した。 ZRMを鋳造用ストツパー耐火物に使用する
と、溶鋼流の加熱によつて高粘性のガラスが確実
に作り出され、耐火物の稼動面の熱間性状が良好
にある。また、この高粘性のガラスが稼動面に存
在するので、耐摩耗溶損性が優れたものとなる。
さらに、ZRMを使用しないものは溶損が滑らか
でないため流出停止機能が低下するのに比べ、
ZRMを使用した場合には非常に滑らかな溶損状
態になり、流出停止機能の低下が生じない。 本発明において使用するZRMは、その化学組
成がAl2O325〜85重量%、ZrO210〜70重量%、
SiO25〜25重量%であることが必要である。 ZRM中、ZrO2の含有量が10重量%末満では、
ムライトまたはコランダム結晶内部または周辺に
析出するジルコニアの量が少なく問題がある。70
重量%を超えるとZrO2が単斜結晶で存在するた
め、異常膨脹が表われ、耐スポール性に劣るよう
になり好ましくない。したがつてZRM中、ZrO2
の含有量は10〜70重量%に限定される。 また、ZRM中、Al2O3は25〜85重量%、SiO2
5〜25重量%にそれぞれ限定される。 このような化学組成を有するZRMは、原料配
合物の5〜85重量%を占めるようにする。5重量
%未満では生成される高粘性ガラスの量が少な
く、本発明の目的を達することができない。80重
量%以上では耐スポール性の点で品質が低下す
る。 次に黒鉛粉の添加量は5〜40重量%が好ましく
5重量%未満では耐スポール性が不足し、40重量
%を超えると溶鋼中への黒鉛の溶解性の問題が生
じる。 さらに、本発明においては、従来から用いられ
るカーボンの酸化防止、耐スポール性付与、耐食
性付与等の材料として、以下のようなものを併用
すると好ましい。 カーボンの酸化防止に効果のあるSiC、Si3N4
メタリツクシリコンおよびフエロシリコンより選
ばれた1種以上の添加量は0〜20重量%が好まし
く、これは該物質の酸化により生じるSiO2質ガ
ラスの皮膜効果により黒鉛の酸化防止に寄与する
ものであるが、添加量が20重量%を超えると溶融
金属中への溶解性の問題が生じる。 耐スポール性に寄与する溶融シリカの添加量は
0〜30重量%が好ましく、添加量が30重量%を超
えると溶鋼による溶損の問題を生じる。 耐食性に寄与するAl2O3を70重量%以上含有す
るアルミナ粉の添加量は0〜80重量%が好ましい
が、膨脹性が大きくなる問題もあり、添加量が制
限される。またAl2O3はZRM中にも含まれるの
で、このアルミナ粉は必要に応じて添加する。 カーボンの酸化防止等に効果のある別の材料と
して粘土、アルカリ金属、アルカリ土類金属
および硼素より選ばれた1種以上を含む珪酸化合
物、およびリン酸化合物より選ばれた1種以上
の添加量は0〜10重量%が好ましく、これらの物
質はかなり低温度でガラスを作り、黒鉛の酸化防
止、れんがの低気孔化に寄与するが、10重量%を
超えると耐スポーリング性および耐食性が低下す
るため好ましくない。 本発明は、これらよりなる原料配合物を、樹脂
またはピツチを結合剤として、常温または加熱下
で混合し、成形後、非酸化性雰囲気で焼成してな
る高耐用性鋳造用黒鉛質ストツパー耐火物であ
る。 以下、実施例を挙げて説明するが、本発明は、
これらの実施例に限定されるものではない。 実施例1〜14、比較例1〜4 表1、表2に示すような配合で鋳造用ストツパ
ー耐火物を製造した。混合はアイリツヒミキサー
を使用し、成形はラバープレスで1200Kg/cm2の圧
力で成形した焼成はコークス中に埋込む通常の方
法で行なつた。ZRMを配合したストツパー耐火
物は溶鋼流やスラグによる溶損もなく、かつ耐ス
ポーリング性も優れており、従来品より良好な結
果が得られた。
The present invention provides a stopper head for steel casting;
This invention relates to a method for producing highly durable graphite-containing stopper refractories such as long stoppers. In recent years, the proportion of continuous casting has rapidly increased in order to improve steel yield and reduce costs, and the requirements for stopper refractories have also become stricter. Sliding nozzles are increasingly being used to adjust the flow rate of ladles and tundishes due to their ease of operation and automation. However, in the case of a sliding nozzle, natural outflow cannot occur when the outflow starts, and natural outflow is attempted by filling with silica sand or blowing gas, etc., but the effect is not perfect, and silica sand, etc. There are drawbacks such as the use of materials that tend to cause non-metallic inclusions. Therefore, conventional stopper refractories are being reconsidered as they may be used in combination with sliding nozzles or as they are. In this case, the number of times it is used is from several charges to more than ten charges continuously. In the case of a stopper head, the key to its durability is corrosion caused by the flow of molten steel, and in the case of a long stopper, the key to its durability is damage caused by the tip, but in addition to this, corrosion caused by slag cannot be ignored. Conventionally, graphite stopper refractories based on Shiamoto clay-graphite have been used, but due to their lack of corrosion resistance, they have not been able to cope with the recent trend toward continuous casting. Furthermore, the spalling resistance was also not satisfactory. In recent years, alumina-graphite-based materials have been used to cope with continuous casting, but these have also not had sufficient durability due to melting of the tip. The melting loss at the tip of the stopper refractory is due to wear and tear caused by the flow of molten steel. The inventors of the present invention have conducted extensive research to obtain a highly durable stopper refractory that significantly reduces erosion loss due to molten steel flow and slag, and has excellent spalling resistance, and has found that the main mineral phase is mullite. ,
By using clinker (hereinafter referred to as ZRM), a refractory raw material made by melting or firing, which is made of batdellite and corundum and has a chemical composition of Al 2 O 3 , ZrO 2 and SiO 2 within a certain range. The inventors have discovered that the above object can be achieved, and have completed the present invention. That is, in producing an alumina-carbonaceous stopper refractory for casting, the present invention has a main mineral phase consisting of mullite, batdellite, and corundum, 25 to 85% by weight of Al 2 O 3 and 10 to 70% by weight of ZrO 2 . , a high-durability graphite refractory for casting, characterized by kneading, molding and firing a raw material mixture containing 5-80% by weight of a refractory raw material having a chemical composition of 5-25% by weight of SiO 2 . It is a manufacturing method. In order to manufacture a stopper refractory that has excellent spall resistance, wear resistance, and slag resistance, the present inventors investigated and studied various materials that have good corrosion resistance and are easy to form highly viscous glass. As a result, in ZRM, fine zirconia crystals are precipitated inside and around mullite or corundum crystals,
It has been found that it exists to protect mullite or corundum crystals and has excellent corrosion resistance. In order to make ZRM into this form, it is necessary to perform electric melting or high-temperature firing (1400°C or higher). ZRM has a lower fire resistance than Al 2 O 3 , zirconia, and zircon, so it is easier to make glass.
Zirconia is dispersed in the glass and has high viscosity. Also, the coefficient of thermal expansion in ZRM is 7×10 -6
It is relatively small, and between 1000 and 1600℃, it is 2~
It is characterized by a coefficient of thermal expansion of 4×10 -6 , which decreases on the high temperature side. For these reasons, the present inventors
It was concluded that ZRM is suitable as a raw material for stopper refractories for casting. When ZRM is used in stopper refractories for casting, highly viscous glass is reliably created by heating the molten steel flow, and the hot properties of the working surfaces of the refractories are good. Furthermore, since this highly viscous glass is present on the operating surface, it has excellent abrasion and erosion resistance.
Furthermore, compared to those that do not use ZRM, the melting loss is not smooth and the ability to stop leakage is reduced.
When ZRM is used, the melting state is very smooth and the outflow stop function does not deteriorate. The ZRM used in the present invention has a chemical composition of 25 to 85% by weight of Al2O3 , 10 to 70% by weight of ZrO2 ,
5-25% by weight of SiO2 is required. When the ZrO 2 content in ZRM is less than 10% by weight,
There is a problem in that the amount of zirconia precipitated inside or around mullite or corundum crystals is small. 70
If it exceeds % by weight, ZrO 2 exists in the form of monoclinic crystals, resulting in abnormal expansion and poor spalling resistance, which is not preferable. Therefore, during ZRM, ZrO 2
The content is limited to 10-70% by weight. Furthermore, in ZRM, Al2O3 is limited to 25 to 85% by weight, and SiO2 is limited to 5 to 25% by weight. ZRM having such a chemical composition should account for 5 to 85% by weight of the raw material formulation. If it is less than 5% by weight, the amount of high viscosity glass produced is too small to achieve the object of the present invention. If it exceeds 80% by weight, the quality will deteriorate in terms of spall resistance. Next, the amount of graphite powder added is preferably 5 to 40% by weight, and if it is less than 5% by weight, the spalling resistance will be insufficient, and if it exceeds 40% by weight, problems will arise in the solubility of graphite in molten steel. Furthermore, in the present invention, it is preferable to use the following materials in combination with conventionally used materials for preventing oxidation of carbon, imparting spalling resistance, imparting corrosion resistance, etc. SiC, Si 3 N 4 , which is effective in preventing carbon oxidation,
The amount of one or more selected from metallic silicon and ferrosilicon is preferably 0 to 20% by weight, as this contributes to the prevention of oxidation of graphite due to the film effect of SiO2 glass produced by oxidation of the substance. However, if the amount added exceeds 20% by weight, problems arise with solubility in molten metal. The amount of fused silica added, which contributes to spalling resistance, is preferably 0 to 30% by weight; if the amount added exceeds 30% by weight, problems of melting loss due to molten steel occur. The amount of alumina powder containing 70% by weight or more of Al 2 O 3 , which contributes to corrosion resistance, is preferably added in an amount of 0 to 80% by weight, but there is also the problem of increased expansion, so the amount added is limited. Furthermore, since Al 2 O 3 is also included in ZRM, this alumina powder is added as necessary. A silicic acid compound containing one or more selected from clay, an alkali metal, an alkaline earth metal, and boron as another material effective in preventing oxidation of carbon, and an amount of one or more selected from a phosphoric acid compound. is preferably 0 to 10% by weight; these substances form glass at fairly low temperatures and contribute to preventing graphite from oxidizing and reducing the porosity of bricks; however, if it exceeds 10% by weight, spalling resistance and corrosion resistance decrease. It is not desirable because it The present invention provides a highly durable graphite stopper refractory for casting, which is obtained by mixing a raw material mixture consisting of these materials with resin or pitch as a binder at room temperature or under heating, molding, and firing in a non-oxidizing atmosphere. It is. The present invention will be described below with reference to Examples.
The present invention is not limited to these examples. Examples 1 to 14, Comparative Examples 1 to 4 Stopper refractories for casting were manufactured using the formulations shown in Tables 1 and 2. Mixing was performed using an Eiritzhi mixer, and molding was performed using a rubber press at a pressure of 1200 kg/cm 2 .Calcination was performed by the usual method of embedding in coke. Stopper refractories containing ZRM have no erosion damage due to molten steel flow or slag, and have excellent spalling resistance, giving better results than conventional products.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ−カーボン質鋳造用ストツパー耐火
物を製造するに当り、主たる鉱物相がムライト、
バツデライト、コランダムよりなり、Al2O325〜
85重量%、ZrO210〜70重量%、SiO25〜25重量%
の化学組成を有する耐火物原料5〜80重量%を含
有させた原料配合物を混練、成形、焼成すること
を特徴とする高耐用性鋳造用黒鉛質ストツパー耐
火物の製造法。
1 When producing alumina-carbon based stopper refractories for casting, the main mineral phase is mullite,
Made of batsdellite and corundum, Al 2 O 3 25~
85% by weight, ZrO2 10-70% by weight, SiO2 5-25% by weight
1. A method for producing a highly durable graphite stopper refractory for casting, which comprises kneading, molding, and firing a raw material mixture containing 5 to 80% by weight of a refractory raw material having a chemical composition of:
JP566180A 1980-01-23 1980-01-23 High endurance graphitic stopper refractories for casting Granted JPS56104774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP566180A JPS56104774A (en) 1980-01-23 1980-01-23 High endurance graphitic stopper refractories for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP566180A JPS56104774A (en) 1980-01-23 1980-01-23 High endurance graphitic stopper refractories for casting

Publications (2)

Publication Number Publication Date
JPS56104774A JPS56104774A (en) 1981-08-20
JPS6128623B2 true JPS6128623B2 (en) 1986-07-01

Family

ID=11617284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP566180A Granted JPS56104774A (en) 1980-01-23 1980-01-23 High endurance graphitic stopper refractories for casting

Country Status (1)

Country Link
JP (1) JPS56104774A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064787A (en) * 1989-11-20 1991-11-12 Magneco/Metrel, Inc. Ramming compositions
CN112521136A (en) * 2020-12-01 2021-03-19 北京金隅通达耐火技术有限公司 Castable for hazardous waste disposal industry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045811A (en) * 1973-08-31 1975-04-24
JPS5123527A (en) * 1974-08-22 1976-02-25 Hyomen Kako Kenkyusho Kk Funtaitoryonyoru tomakukeiseihoho
JPS5516995A (en) * 1978-07-17 1980-02-06 Sulzer Ag Operating method and apparatus of loom with drafting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045811A (en) * 1973-08-31 1975-04-24
JPS5123527A (en) * 1974-08-22 1976-02-25 Hyomen Kako Kenkyusho Kk Funtaitoryonyoru tomakukeiseihoho
JPS5516995A (en) * 1978-07-17 1980-02-06 Sulzer Ag Operating method and apparatus of loom with drafting apparatus

Also Published As

Publication number Publication date
JPS56104774A (en) 1981-08-20

Similar Documents

Publication Publication Date Title
JPS5919067B2 (en) High durability casting nozzle
JPH0657619B2 (en) Carbon-containing refractory
US5403794A (en) Alumina-zirconia refractory material and articles made therefrom
CN115417661B (en) Tundish dry material, tundish working lining and preparation method thereof
CN114195529B (en) High-strength magnesia refractory mortar for refining ladle
JPS6348828B2 (en)
JP2874831B2 (en) Refractory for pouring
JPS6128623B2 (en)
CN113461411B (en) Oxidation-resistant aluminum silicon carbide carbon brick and preparation method thereof
CA2216528A1 (en) Use of a water-containing fire-resistant ceramic casting material
JP2002167283A (en) Monolithic refractory of iron spout for blast furnace
JPH0352423B2 (en)
JPH0952169A (en) Refractory for tuyere of molten steel container
JPH0243701B2 (en)
JPS6050748B2 (en) Manufacturing method of highly corrosion resistant continuous casting nozzle
JP3212856B2 (en) Irregular cast refractories and their moldings
JPS5842144B2 (en) graphite casting nozzle
CN115093206B (en) Special castable for ladle lining
WO1984000158A1 (en) Magnesia-carbon-silicon carbide refractory
KR100417712B1 (en) Steel Filling Material
JPS59146975A (en) Plate refractories for sliding nozzle
JPS5855379A (en) Refractory castable for ladle lining
JPH06172044A (en) Castable refractory of alumina spinel
JP2001030047A (en) Immersion nozzle having sliding surface
JPS63157746A (en) Submerged nozzle for continuous casting