JPS61284657A - Crack inspecting method - Google Patents

Crack inspecting method

Info

Publication number
JPS61284657A
JPS61284657A JP60127633A JP12763385A JPS61284657A JP S61284657 A JPS61284657 A JP S61284657A JP 60127633 A JP60127633 A JP 60127633A JP 12763385 A JP12763385 A JP 12763385A JP S61284657 A JPS61284657 A JP S61284657A
Authority
JP
Japan
Prior art keywords
sensors
circuit
pulse
filters
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60127633A
Other languages
Japanese (ja)
Inventor
Ikuo Kiyonaga
郁夫 清永
Masanori Tanaka
正規 田中
Masatake Tomita
富田 正威
Takao Yoneyama
米山 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Sumitomo Metal Industries Ltd filed Critical Hitachi Ltd
Priority to JP60127633A priority Critical patent/JPS61284657A/en
Publication of JPS61284657A publication Critical patent/JPS61284657A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To exactly evaluate the presence or absence of crack generation and the magnitude thereof by using two pieces a set of acoustic emission (AE) sensors and space filters. CONSTITUTION:The AE sensors 1A and 1C and sensors 1B and 1D are mounted to the two points each in the upper and lower parts of an upper metallic mold 22 in such a manner that the former are positioned on the upper side to face each other and that the latter are positioned on the lower side to face each other. The output signals from the sensors 1A-1D are fed via preamplifiers 2A-2D to a signal processing circuit 3 and the input signal in the circuit 3 is removed of noise through a filter and is inputted as the AE pulse to the space filters 4A, 4B. The AE appearing within the set time among the AE pulses from the sensors 1A-1D is selected as the effective pulse by the filters 4A, 4B and is inputted via an OR circuit 5 to a count circuit 6. The number of the input pulses per unit time and total cumulative number are counted in the circuit 6 and are recorded 7. On the other hand, the count result of the circuit 6 is applied to a comparator 8 by which the result is compared with the reference value for comparison determined by the press load from a control panel. An alarm is triggered if the result exceeds said value. Only the AE generated from the crack is thus detected effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプレス装置等の亀裂をアコースティックエミッ
ションにて検査する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for inspecting cracks in a press device or the like using acoustic emission.

〔従来技術〕[Prior art]

大径鋼管を製造する方法にUO法がある。この方法は鋼
板の幅方向端部を上側へ少し曲げ、次いでU字状をなし
て端部が対向するようにプレス成形し、接合端縁を溶接
して管にする方法である。このような加工に用いられる
プレス装置は溶接構造物のため繰返し加えられる荷重に
より亀裂が生じることがある。従ってプレス装置の異常
を早期に検出するために定期的に診断することが行われ
るがその一手法としてアコースティックエミッションを
利用する方法がある。
The UO method is a method for manufacturing large diameter steel pipes. In this method, the ends of the steel plate in the width direction are slightly bent upward, then press-formed into a U-shape with the ends facing each other, and the joining edges are welded to form a tube. Since the press equipment used for such processing is a welded structure, cracks may occur due to repeated loads. Therefore, periodic diagnostics are performed to detect abnormalities in the press equipment at an early stage, and one method for doing so is to utilize acoustic emissions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この方法は亀裂又はその前駆現象を音響的に捉えんとす
る方法であるが、プレス装置ではその可動部が発する音
、又は被加工材と接触部の摺接音があり、これらの雑音
と亀裂部からのアコースティックエミッションとが混じ
った状態となって、そのために正確な診断ができないと
いう問題点があった。
This method is a method that attempts to acoustically detect cracks or their precursor phenomena, but in press equipment, there are sounds emitted by the moving parts or sounds of sliding contact between the workpiece and the contact part, and these noises and cracks can be detected acoustically. There was a problem in that the acoustic emissions from the other parts were mixed together, making it impossible to make an accurate diagnosis.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような問題点を解決するためになされたも
のであって、21固1組のアコースティックエミッショ
ンのセンサと空間フィルタとを用いることによって規定
される監視領域を亀裂発生の可能性が高い部分に設定し
ておき、雑音を排除して正確に亀裂発生の有無、大小な
どの評価を行なえる亀裂検査方法を提供することを目的
とする。
The present invention has been made to solve these problems, and uses a set of 21 acoustic emission sensors and a spatial filter to monitor a defined monitoring area where there is a high possibility of crack occurrence. The object of the present invention is to provide a crack inspection method that can accurately evaluate the presence or absence of crack occurrence, size, etc., by eliminating noise.

本発明に係る亀裂検査方法は、被検査物に発生するアコ
ースティックエミッションを検出し、これに基づいて被
検査物に発生する亀裂の検査をする方法において、アコ
ースティックエミッションを検出するセンサを2個1組
として被検査物に装着し、該センサが出力する信号を空
間フィルタに入力し、空間フィルタにて規定される1次
元的監視空間からのアコースティックエミッションを抽
出することを特徴とする。
A crack inspection method according to the present invention detects acoustic emissions occurring in an object to be inspected, and based on this, inspects cracks occurring in the object to be inspected, in which a set of two sensors for detecting acoustic emissions is used. The sensor is attached to an object to be inspected, inputs the signal output from the sensor to a spatial filter, and extracts acoustic emissions from a one-dimensional monitoring space defined by the spatial filter.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof.

第1図に示すようにプレス装置20は固設された下金型
21と、図示しない油圧シリンダにて昇降される上金型
22とを備え、対向面夫々に形成した半円溝状のダイス
部21a、22a間にU成形された管素材30が対向端
縁を上側に位置させて装入される。
As shown in FIG. 1, the press device 20 includes a lower mold 21 that is fixedly installed, and an upper mold 22 that is raised and lowered by a hydraulic cylinder (not shown), and has semicircular groove-shaped dies formed on each opposing surface. A U-shaped tube material 30 is inserted between the portions 21a and 22a with opposing edges facing upward.

而して上金型の対向側面の上下2個所にアコースティッ
クエミッション(以下AHという)のセンサ1^、IB
、IC,LDがIAとICが上側に位置して正対し、I
BとIDが下側に位置して正対するように装着しである
。センサの装着位置及び数は上述したところに限るもの
ではないが、2個のセンサを1組とし、その位置と、後
述する空間フィルタの設定によって規定される1次元的
監視領域が亀裂発生の可能性の高い処となるようにする
。この実施例ではセンサIAとIBとを1組とし、セン
サIcとIDとを1組としている。
Acoustic emission (hereinafter referred to as AH) sensors 1^ and IB are installed at two locations on the upper and lower sides of the upper mold on opposite sides.
, IC, LD, IA and IC are located above and face each other directly, and I
It is installed so that the B and ID are located at the bottom and face each other directly. Although the mounting position and number of sensors are not limited to those mentioned above, two sensors are used as a set, and the one-dimensional monitoring area defined by the position and the setting of the spatial filter described later is a possible place where cracks may occur. Make it a place with high sexual quality. In this embodiment, sensors IA and IB are used as one set, and sensors Ic and ID are used as one set.

各AEセンサIA、lB、1c、LDからの出力信号は
プリアンプ2A、2B、2C,2Dにて増幅されて信号
処理回路3に入力される。
Output signals from the respective AE sensors IA, 1B, 1c, and LD are amplified by preamplifiers 2A, 2B, 2C, and 2D and input to the signal processing circuit 3.

信号処理回路3はプリアンプ出力をフィルタに通して雑
音を除去し、これを増幅検波、パルス化してなるAEパ
ルスを出力する。この回路はAEセンサ又はプリアンプ
の数に応じて4チャネル分設けられている。信号処理回
路3のAEパルス出力は、センサIA、 IBからのも
のが空間フィルタ4Aへ、またセンサIG、 10から
のものが空間フィルタ4Bに入力される。
The signal processing circuit 3 passes the preamplifier output through a filter to remove noise, amplifies and detects the preamplifier output, converts it into a pulse, and outputs an AE pulse. This circuit is provided for four channels depending on the number of AE sensors or preamplifiers. The AE pulse outputs of the signal processing circuit 3 are inputted from sensors IA and IB to a spatial filter 4A, and those from sensors IG and 10 are inputted to a spatial filter 4B.

空間フィルタ4A、4Bは入力される信号のうち設定し
た時間中に現れるもののみを有効なものとして出力する
公知のものである。いまセンサl^、IBからの入力信
号についての設定時間を第2図に基づいて説明する。
The spatial filters 4A and 4B are well-known filters that output only those signals that appear during a set time out of the input signals as valid signals. Now, the setting time for the input signals from the sensor l^ and IB will be explained based on FIG. 2.

第2図はセンサIA、 IBを結ぶ線分(以下X軸とい
う)及びセンサIC,10を結ぶ線分(以下Y軸という
、第4図参照)を含む平面を表わしている。
FIG. 2 represents a plane including a line segment connecting the sensors IA and IB (hereinafter referred to as the X axis) and a line segment connecting the sensors IC and 10 (hereinafter referred to as the Y axis, see FIG. 4).

X軸は上金型22の側面上にある。X軸の中心を通る垂
線Hは両センサIA、 IBが捉えたAE倍信号時間差
がない場合のAH源軌跡の平面(X、Y軸を含む第2図
の平面と直交する平面)を表わしている。
The X axis is on the side surface of the upper mold 22. The perpendicular line H passing through the center of the X-axis represents the plane of the AH source trajectory (the plane perpendicular to the plane in Figure 2 including the X and Y axes) when there is no time difference between the AE multiplied signals captured by both sensors IA and IB. There is.

いま第3図(イ)、(ロ)に示すようにセンサIAが捉
えたAEパルスとセンサIBが捉えたAEパルスとの時
間差がΔT(但しセンサIAの検出が早いものとする)
であり、これに相当するAE伝播距離をΔLとするとこ
の場合のAE源は垂線Hからの距離がΔLのX軸上の点
を通る双曲面(第2図には線で現れる)上にある。
Now, as shown in Figure 3 (a) and (b), the time difference between the AE pulse captured by sensor IA and the AE pulse captured by sensor IB is ΔT (assuming that sensor IA detects it quickly).
If the corresponding AE propagation distance is ΔL, then the AE source in this case is on a hyperboloid (shown as a line in Figure 2) passing through a point on the X-axis whose distance from the perpendicular H is ΔL. .

空間フィルタ4^はセンサIAからのAE倍信号パルス
を基準に、それよりΔT、(伝播距離換算でΔL+)遅
れた時点から、該時点より更にΔT2(伝播距離換算で
ΔL2)遅れた時点までの時間を、ΔT1.ΔT2を可
変として設定できるようにしである。つまりこの時間内
に現れた信号、換言すれば第2図にハツチングを付して
示す、垂線HからΔL1〜ΔL1+ΔL2の領域(両駅
曲面に囲まれた領域)からのAEが有効なものとして出
力されるのである。
The spatial filter 4^ uses the AE multiplied signal pulse from the sensor IA as a reference, and from a point delayed by ΔT (ΔL+ in terms of propagation distance) to a point further delayed by ΔT2 (ΔL2 in terms of propagation distance) from that point. time, ΔT1. This allows ΔT2 to be set as variable. In other words, the signals that appeared within this time, in other words, the AE from the area ΔL1 to ΔL1 + ΔL2 from the perpendicular H (the area surrounded by the curved surfaces of both stations) shown by hatching in Figure 2, are output as valid. It will be done.

第3図はこれを可能とする空間フィルタ内の回路の機能
を示す説明図である。センサIAからのAEパルスにて
第3図(ハ)に示す如く設定時間幅ΔT1のパルスを切
出すパルス回路及び該パルスの立下りにて立上り、第3
図(ホ)に示すように設定時間ΔT2のパルスを切出す
パルス回路及び第3図(ニ)に示すようにセンサIBか
らの^Eパルスにて設定時間幅ΔT2のパルスを切出す
パルス回路が空間フィルタに設けられている。従って第
3図(ホ)に示すΔT2の時間が監視期間となり、この
間にセンサIBのAHパルスが入力されると、これに呼
応する第3図(ニ)のパルスが現れ、(ニ)。
FIG. 3 is an explanatory diagram showing the function of the circuit within the spatial filter that makes this possible. With the AE pulse from sensor IA, a pulse circuit cuts out a pulse with a set time width ΔT1 as shown in FIG.
As shown in Figure (e), there is a pulse circuit that cuts out a pulse with a set time ΔT2, and as shown in Figure 3 (d), there is a pulse circuit that cuts out a pulse with a set time width ΔT2 using the ^E pulse from sensor IB. provided in the spatial filter. Therefore, the time ΔT2 shown in FIG. 3(e) becomes the monitoring period, and when the AH pulse of sensor IB is input during this period, the corresponding pulse in FIG. 3(d) appears, and (d).

(ホ)の論理積をとるAND回路から第3図(へ)に示
すパルスが出力信号として得られることになる。即ち第
2図に示すハンチング領域にAE発生源があった場合に
のみ第3図(へ)に示す如きパルスが出力されるのであ
る。
The pulse shown in FIG. 3(e) is obtained as an output signal from the AND circuit that performs the logical product of (e). That is, only when there is an AE generation source in the hunting area shown in FIG. 2, a pulse as shown in FIG. 3 is output.

なお上述の説明はセンサIAを基準として述べたが逆に
センサIBを基準として同様に監視領域が設定できる(
第2図右側)。またΔT、=Oと設定する場合はΔT2
のみによって垂線Hを中心とする監視空間を設定できる
(第2図中央)、これら監視領域は択一的に選定できる
ようにしてあり、亀裂発生の可能性が高い処が監視領域
に含まれるように設定すればよい。
Although the above explanation was made using sensor IA as a reference, the monitoring area can be similarly set using sensor IB as a reference (
Figure 2 right). Also, when setting ΔT, = O, ΔT2
It is possible to set a monitoring space centered on the perpendicular line H by using a chisel (center of Figure 2).These monitoring areas can be selected selectively, so that areas with a high possibility of crack occurrence are included in the monitoring area. You can set it to .

このような監視領域の設定はセンサIC,10に係るY
軸についても行なえるようになっている。なお空間フィ
ルタ4A、4Bの監視領域はX軸、Y軸上にて1次元的
に決定されるが、実際に監視される領域は2つの双曲面
で囲まれる3次元の空間であることは言うまでもない。
Setting of such a monitoring area is performed by Y related to the sensor IC, 10.
This can also be done for the axis. Although the monitoring areas of the spatial filters 4A and 4B are determined one-dimensionally on the X and Y axes, it goes without saying that the area actually monitored is a three-dimensional space surrounded by two hyperboloids. stomach.

空間フィルタ4A、4Bの出力は論理和回路5へ入力さ
れ、その出力はカウント回路6に入力される。
The outputs of the spatial filters 4A and 4B are input to an OR circuit 5, and the output thereof is input to a count circuit 6.

カウント回路6は単位時間当たりの入力パルス数及び累
積総数を計数し、これを記録計9に記録させる。
The counting circuit 6 counts the number of input pulses and the cumulative total number per unit time, and causes the recorder 9 to record this.

一方カウント回路60計数結果は比較器8に与えられ、
制御盤から与えられるプレス荷重にて定まる比較基準値
と比較され、これを超える場合は図示しない警報器を作
動させる。
On the other hand, the count result of the count circuit 60 is given to the comparator 8,
It is compared with a comparison reference value determined by the press load given from the control panel, and if it exceeds this value, an alarm (not shown) is activated.

プレス装置の場合その亀裂は最大応力が働く上金型22
のと面に集中しており、雑音の大部分はダイス部21a
、22aに集中しており、突発型信号のため空間フィル
タ処理により雑音の除去が可能となる。第4図は空間フ
ィルタ4A、 4Bの監視領域を上金型の上部に設定し
たものであり、ハンチングを付した監視領域に亀裂に起
因して発生した八Eのみが有効に検出され、雑音の影響
から解放されることになる。
In the case of a press machine, the crack occurs in the upper mold 22, where the maximum stress is exerted.
Most of the noise is concentrated on the die part 21a.
, 22a, and because they are sudden signals, noise can be removed by spatial filtering. In Figure 4, the monitoring area of spatial filters 4A and 4B is set at the top of the upper mold, and only 8E, which occurred due to cracks, was effectively detected in the hunting area, and the noise was suppressed. You will be freed from influence.

〔効果〕〔effect〕

本発明は以上のように空間フィルタを1次元的に用いて
監視領域を設定するものであるから、監視領域を、雑音
が発生し易い位置を避け、また亀裂が発生し易い位置を
含むように設定することにより雑音に影響されることな
く、精度の高い監視が行なえ、プレス装置が破壊に至る
前に亀裂発生を早期に検知でき、不測の事態に至ること
を防止できる。
Since the present invention uses a spatial filter one-dimensionally to set the monitoring area as described above, the monitoring area is set so as to avoid positions where noise is likely to occur and include positions where cracks are likely to occur. By setting this, highly accurate monitoring can be performed without being affected by noise, and the occurrence of cracks can be detected early before the press equipment breaks down, making it possible to prevent unexpected situations from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に使用する装置の模式図、第
2. 3. 4図は空間フィルタの説明図である。 IA、 IB、 IC,10・・・センサ 3・・・信
号処理回路4A、4B・・・空間フィルタ 6・・・カ
ウント回路7・・・記録部 8・・・比較器 特 許 出願人  住友金属工業株式会社外1名
FIG. 1 is a schematic diagram of the apparatus used to carry out the method of the present invention, and FIG. 3. FIG. 4 is an explanatory diagram of the spatial filter. IA, IB, IC, 10...Sensor 3...Signal processing circuit 4A, 4B...Spatial filter 6...Count circuit 7...Recording section 8...Comparator patent Applicant Sumitomo Metals 1 person outside Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、被検査物に発生するアコースティックエミッション
を検出し、これに基づいて被検査物に発生する亀裂の検
査をする方法において、アコースティックエミッション
を検出するセンサを2個1組として被検査物に装着し、
該センサが出力する信号を空間フィルタに入力し、空間
フィルタにて規定される1次元的監視空間からのアコー
スティックエミッションを抽出することを特徴とする亀
裂検査方法。
1. In a method of detecting acoustic emissions generated in an inspected object and inspecting cracks occurring in the inspected object based on this, a set of two sensors for detecting acoustic emissions is attached to the inspected object. ,
A crack inspection method comprising inputting a signal output by the sensor to a spatial filter and extracting acoustic emissions from a one-dimensional monitoring space defined by the spatial filter.
JP60127633A 1985-06-11 1985-06-11 Crack inspecting method Pending JPS61284657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60127633A JPS61284657A (en) 1985-06-11 1985-06-11 Crack inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127633A JPS61284657A (en) 1985-06-11 1985-06-11 Crack inspecting method

Publications (1)

Publication Number Publication Date
JPS61284657A true JPS61284657A (en) 1986-12-15

Family

ID=14964919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127633A Pending JPS61284657A (en) 1985-06-11 1985-06-11 Crack inspecting method

Country Status (1)

Country Link
JP (1) JPS61284657A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310857A (en) * 1991-04-09 1992-11-02 Pub Works Res Inst Ministry Of Constr Method for detecting development of crack of steel bridge structure using ae method
US8316712B2 (en) 2010-11-19 2012-11-27 Margan Physical Diagnostics Ltd. Quantitative acoustic emission non-destructive inspection for revealing, typifying and assessing fracture hazards
RU2715476C2 (en) * 2018-02-07 2020-02-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Method of assessing degree of destruction of materials during acoustic emission control of friction of solid, liquid and gaseous bodies
US11073498B2 (en) 2018-07-13 2021-07-27 Kabushiki Kaisha Toshiba Detection system, detection device, and detection method
US11385203B2 (en) 2019-01-09 2022-07-12 Kabushiki Kaisha Toshiba Detection device, detection system, detection method, and information processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549257A (en) * 1978-10-04 1980-04-09 Oiles Industry Co Ltd Preparation of sliding portion material coated with synthetic resin
JPS5549256A (en) * 1978-10-04 1980-04-09 Mitsubishi Plastics Ind Acryl resin laminated metallic plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549257A (en) * 1978-10-04 1980-04-09 Oiles Industry Co Ltd Preparation of sliding portion material coated with synthetic resin
JPS5549256A (en) * 1978-10-04 1980-04-09 Mitsubishi Plastics Ind Acryl resin laminated metallic plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310857A (en) * 1991-04-09 1992-11-02 Pub Works Res Inst Ministry Of Constr Method for detecting development of crack of steel bridge structure using ae method
US8316712B2 (en) 2010-11-19 2012-11-27 Margan Physical Diagnostics Ltd. Quantitative acoustic emission non-destructive inspection for revealing, typifying and assessing fracture hazards
RU2715476C2 (en) * 2018-02-07 2020-02-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Method of assessing degree of destruction of materials during acoustic emission control of friction of solid, liquid and gaseous bodies
US11073498B2 (en) 2018-07-13 2021-07-27 Kabushiki Kaisha Toshiba Detection system, detection device, and detection method
US11385203B2 (en) 2019-01-09 2022-07-12 Kabushiki Kaisha Toshiba Detection device, detection system, detection method, and information processing device

Similar Documents

Publication Publication Date Title
CA1105126A (en) Apparatus for the in-situ detection and location of flaws in welds
US4419562A (en) Nondestructive real-time method for monitoring the quality of a weld
JPS609759Y2 (en) Online shock monitoring device for pressurized water reactors
US4024522A (en) Acoustic emission system for welding flaw detection
JPS61284657A (en) Crack inspecting method
US3919883A (en) Method and apparatus for detecting progressive cracks in materials
CN202083674U (en) Large-scale thermal state casting and forging piece thermal treatment crack on-line detector
JPS6243565A (en) Real time monitoring of welding defect
JPH0763694A (en) Nondestructive inspection apparatus for spot-welded part
AT520121B1 (en) Method of ultrasonic inspection of the cast strand for the presence of superficial and subsurface defects and the device for this purpose
JPS61284656A (en) Crack inspecting method
CN110988138B (en) Weld assembly quality detection device and method
JP4212419B2 (en) Mold crack initiation prediction system
JP6373012B2 (en) Engine diagnostic device
JP2727132B2 (en) Press machine with built-in crack detection unit in tool
CN112975075A (en) System for monitoring a welding process
JPS62196418A (en) Method for detecting abnormality in bearing
JP2005305541A (en) Method and apparatus for monitoring/controlling die machining
JP2806087B2 (en) Mold crack prevention device
JP3090997B2 (en) Abnormal diagnostic device for rotating parts
JPS60247500A (en) Device for preventing crack of press-formed goods
JPH03191859A (en) Crack detecting apparatus
JPS62108154A (en) Method for diagnosing weld zone in flash butt welding
CN115290751A (en) Sleeve quality detection method and device
JPS61284658A (en) Crack detector