JPS6128456A - Catalyst for preparing pyromellitic anhydride - Google Patents

Catalyst for preparing pyromellitic anhydride

Info

Publication number
JPS6128456A
JPS6128456A JP14764184A JP14764184A JPS6128456A JP S6128456 A JPS6128456 A JP S6128456A JP 14764184 A JP14764184 A JP 14764184A JP 14764184 A JP14764184 A JP 14764184A JP S6128456 A JPS6128456 A JP S6128456A
Authority
JP
Japan
Prior art keywords
catalyst
component
weight
parts
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14764184A
Other languages
Japanese (ja)
Other versions
JPH0415020B2 (en
Inventor
Shinichi Uchida
内田 伸一
Yojiro Takahashi
高橋 洋次郎
Hisashi Yoshikawa
吉川 寿
Yoji Akazawa
赤沢 陽治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP14764184A priority Critical patent/JPS6128456A/en
Priority to CA000481767A priority patent/CA1261860A/en
Priority to NZ212129A priority patent/NZ212129A/en
Priority to EP85106175A priority patent/EP0163231B1/en
Priority to DE8585106175T priority patent/DE3576074D1/en
Publication of JPS6128456A publication Critical patent/JPS6128456A/en
Priority to US06/841,833 priority patent/US4665200A/en
Publication of JPH0415020B2 publication Critical patent/JPH0415020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for preparing pyromellitic anhydride, by supporting catalystically active components such as vanadium, tin, titanium, phosphorus, niobium, alkali metal oxide or antimony by an inert carrier. CONSTITUTION:As a catalyst for peparting pyromellitic anhydride by the catalyst gaseous phase oxidation of durene or tetraalkyl benzene, 1-20pts.wt. of a vanadium component as V2O5, 99-80pts.wt. of a tin component and/or a titanium component as SnO2+TiO2, 0.02-10pts. by wt. of the sum of both components of a phosphorus component as P2O5, 0.01-5pts.wt. of a niobium component as Nb2O5, 0-1.2pts.wt. of potassium as oxide and 0-10pts.wt of an antimony component as Sb2O5 are supported by an inert carrier. This catalyst prepares pyromellitic acid at high yield in a region low in a special speed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明線デユレンまたは縦素数4以下のアルキル基含有
テトラアルキルベンゼンを空気また杜分子状酸素含有ガ
スによシ接触気相酸化してピロメリット酸または無水ピ
ロメリット酸を製造する上で好適な触媒を提供するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention produces pyromellitic acid or anhydride by catalytic gas phase oxidation of Durene or tetraalkylbenzene containing an alkyl group having a vertical prime number of 4 or less with air or molecular oxygen-containing gas. The present invention provides a catalyst suitable for producing pyromellitic acid.

従来の技術 ピロメリット酸または無水ピロメリット酸を製造する方
法にはデユレンを含むテトラアルキルベンゼンの液相酸
化、液相硝酸酸化、接触気相酸化、ジシアノテレフタレ
ートの加水分解等種々提案されている。とルわけ接触気
相酸化法社工業的に種々の有利性を有しておシ最も有望
なプロセスの1はこれまで数多く提案されているものの
、収率及びその使用条件において非常に不満足の結果を
与える。とくに触媒の使用条件鉱原料ガス濃度を0.1
5〜0.33容量係と非常に低くとり且つ反応ガスの空
間速度を非常に大きくとるという工業的使用において不
利な面が目立つ、例えは特公昭49−20302号、特
公昭49−31972号、特公昭52−3931号公報
等の実施例に記載されている酸化条件としても、デユレ
ン/空気の割合が約lθ〜20 f/NM” (0,1
5〜0.33容景%)で原料ガス中のデユレンの濃度が
低く、原料ガスの空間速度も8.000〜15.000
Hr −”と非常に高い。
BACKGROUND ART Various methods have been proposed for producing pyromellitic acid or pyromellitic anhydride, including liquid phase oxidation of tetraalkylbenzene containing duurene, liquid phase nitric acid oxidation, catalytic gas phase oxidation, and hydrolysis of dicyano terephthalate. Catalytic gas phase oxidation is one of the most promising processes with various industrial advantages, although many proposals have been made to date, with very unsatisfactory results in terms of yield and conditions of use. give. In particular, the conditions for using the catalyst are as follows:
The disadvantage in industrial use is that the volume ratio is very low at 5 to 0.33 and the space velocity of the reactant gas is very high. Even under the oxidation conditions described in the examples of Japanese Patent Publication No. 52-3931, etc., the ratio of durene/air is approximately lθ~20 f/NM” (0,1
5 to 0.33% by volume), the concentration of Duurene in the raw material gas is low, and the space velocity of the raw material gas is also 8.000 to 15.000.
Hr-”, which is very high.

本発明の解決しようとする問題点 上述の如く、被酸化物質が原料ガス中において低濃度で
あシ、しかも原料ガスの空間速度を高くとるというプロ
セス条件下では、1つには、空気または分子状酸素含有
ガスの反応器から持ち去る顕熱をそのような希薄なデユ
レンの酸化反応熱でまかないきれないこと、したがって
酸化反応器が自立しないため外部よシ加熱の必要のある
こと、さらに1つに線、高い空間速度は一見工業的に有
利なように見えるが酸化反応の工業的実施においては触
媒の充填層高として実質的に1メートル以上、好ましく
は1.5メートル以上が必要となるため、そのような高
い空間速度の下では反応管内でのガスの線速度が速くな
シ、結果的に触媒層の圧力損失が異常に高くなるといっ
た不利益がある。
Problems to be Solved by the Present Invention As mentioned above, under process conditions in which the oxidized substance is at a low concentration in the raw material gas and the space velocity of the raw material gas is high, one of the problems is that air or molecular Furthermore, the sensible heat carried away from the reactor of the oxygen-containing gas cannot be covered by the heat of the oxidation reaction of such a dilute Duurene, and therefore the oxidation reactor cannot stand on its own, requiring external heating. At first glance, a high space velocity seems to be industrially advantageous, but in industrial implementation of oxidation reactions, the height of the catalyst packed bed is substantially required to be 1 meter or more, preferably 1.5 meters or more. Under such a high space velocity, the linear velocity of the gas within the reaction tube is high, resulting in an abnormally high pressure loss in the catalyst layer, which is disadvantageous.

すなわち、ブロアーまたはコンフ詔丈−を駆動するため
のタービンまたはモーターへの蒸気量または電気量の増
大さらに加熱源エネルギーの増大につながシ高い空間速
度かつ低濃度での接触酸化は経済的とは云えないわけで
ある。
That is, catalytic oxidation at high space velocities and low concentrations is not economical, as it requires an increase in the amount of steam or electricity for the turbine or motor to drive the blower or compressor, and also increases the energy of the heating source. That's not to say there isn't.

従って、本発明の目的は空間速度2000〜6.0OO
Hr−”の比較的低い域でその分テトラアルキルベンゼ
ン/空気または分子状酸素含有ガスを従来よシ高く20
〜60y/NM”とした条件下で高い収率で無水ピロメ
リット酸およびまたはピロメリット酸を製造するための
触媒を提供することである。
Therefore, the object of the present invention is to achieve a space velocity of 2000 to 6.0OO.
In a relatively low Hr-” region, the amount of tetraalkylbenzene/air or molecular oxygen-containing gas is higher than that of conventional methods.
It is an object of the present invention to provide a catalyst for producing pyromellitic anhydride and/or pyromellitic acid in high yield under conditions of ˜60y/NM''.

問題点を解決するための手段 本発明者ら紘、これ゛らの問題点を解決するために種々
触媒の改良について検討を加えた結果、五酸化バナジウ
ム(VzOs)と二酸化錫(SnOz)との混合物に助
触媒として五塩化ニオブ(Nb20s)、五酸化リン(
PzOs)、カリウム、セシウム、ルビジウムおよびタ
リウムよりなる群より選ばれたl成分また祉それ以上の
酸化物(MeO2)よりなる触媒活性物質を不活性担体
に′担持せしめた触媒が本発明の目的に沿うことを発見
した。
Means for Solving the Problems In order to solve these problems, the present inventors, Hiro and others, investigated improvements to various catalysts and found that the combination of vanadium pentoxide (VzOs) and tin dioxide (SnOz) Niobium pentachloride (Nb20s) and phosphorus pentoxide (
The object of the present invention is to provide a catalyst in which an inert carrier supports a catalytically active substance consisting of a l component selected from the group consisting of PzOs), potassium, cesium, rubidium, and thallium, and an oxide (MeO2) of a higher oxidation level. I found that it fits.

さらに、SnO2+TiO2の一部をTtOiにおき替
えてもV @ Os / S n O2系触媒と同等あ
るい紘それ以上の本発明目的に沿うことを見い出した。
Furthermore, it has been found that even if a part of SnO2+TiO2 is replaced with TtOi, the object of the present invention can be achieved as much as or even better than the V@Os/SnO2-based catalyst.

また、上記のV z Os / S n Ox系もしく
はv!0@/S n 02 /T i O2系触媒に適
当量のS b z Osを添加することによシ、触媒が
よシ低温度域で有効に作動することも見い出した。
In addition, the above-mentioned VzOs/SnOx system or v! It has also been found that by adding an appropriate amount of S b z Os to the 0@/S n 02 /T i O2-based catalyst, the catalyst can operate more effectively in a lower temperature range.

本発明触媒についてさらに詳しく述べれば、(1)  
バナジウム成分がV2O,とじて1〜20重量部、好ま
しくは1〜10重量部、スズ成分またはスズ成分とチタ
ン成分がSnO2+TiO2+Tt02として99〜8
0重量部、好ましくは99〜90重量部、上記成分の合
計100重量部に対しリン成分がP * Osとして0
.02〜10重量部、ニオブ成分がN b 20 sと
して0.01〜5重量部、カリウム、セシウム、ルビジ
ウムおよびタリウム、よりなる群から選ばれた少なくと
も1種の成分が酸化物として0〜1.2重量部さらにア
ンチモン成分がS b x Osとして0〜10重量部
含有されてなる触媒活性物質を不活性担体、に担持せし
めてなるデユレンまたはテトラアルキルベンゼンの接触
気相酸化による無水ピロメリット酸製造用触媒、さらに
(2)  スズ成分とチタン成分の重量比がTie、/
S nOz = 4以下であることを特徴とする上記(
1)記載の触媒として特定される。
To describe the catalyst of the present invention in more detail, (1)
The vanadium component is V2O, 1 to 20 parts by weight, preferably 1 to 10 parts by weight, and the tin component or the tin and titanium components are 99 to 8 as SnO2+TiO2+Tt02.
0 parts by weight, preferably 99 to 90 parts by weight, the phosphorus component is 0 as P*Os relative to the total of 100 parts by weight of the above components.
.. 02 to 10 parts by weight of the niobium component, 0.01 to 5 parts by weight as N b 20 s, and 0 to 1.0 parts of at least one component selected from the group consisting of potassium, cesium, rubidium, and thallium as an oxide. For the production of pyromellitic anhydride by catalytic gas phase oxidation of durene or tetraalkylbenzene, comprising a catalytically active material containing 2 parts by weight and 0 to 10 parts by weight of an antimony component in the form of S b x Os, supported on an inert carrier. catalyst, and (2) the weight ratio of tin component and titanium component is Tie, /
The above (which is characterized in that S nOz = 4 or less)
1) Identified as the catalyst described above.

さらにつけ加えるならは本発明者らは、上記0VzOs
  5no2またはvx Os −S n 02 /T
 t Oz系に上記の助触媒を加えた多成分系触媒にお
いて、V2O1iとSnO2またはT [02/S n
 02の合計100重量部に対して0.1−10重量部
、とくに0.5〜5重量部のS b 20 sを添加せ
しめて得た触媒が添加しない触媒にくらべて20〜30
℃最適反応温度の低下することを見い出し、触媒寿命上
有利な触媒を完成したものである。
In addition, the present inventors have discovered that the above 0VzOs
5no2 or vxOs-Sn02/T
In a multicomponent catalyst in which the above promoter is added to the tOz system, V2O1i and SnO2 or T[02/Sn
The catalyst obtained by adding 0.1 to 10 parts by weight, especially 0.5 to 5 parts by weight of S b 20 s to 100 parts by weight in total of 02 has a 20 to 30
It was discovered that the optimum reaction temperature can be lowered in °C, and a catalyst that is advantageous in terms of catalyst life has been completed.

触媒を構成する各元素線硝酸塩、炭酸塩、硫酸塩、有機
酸塩等加熱によシ分解し各々の酸化物に変化する原料よ
シ準備される。しかし5no2は、硫酸塩、硝酸塩、炭
酸塩等の錫塩を予め適当な温度にて焼成して得られたS
nO2+TiO2粉末を出発原料とするのが好ましい。
Raw materials such as nitrates, carbonates, sulfates, and organic acid salts of each element constituting the catalyst are prepared, which are oxidised by heating and converted into their respective oxides. However, 5no2 is produced by baking tin salts such as sulfates, nitrates, and carbonates at an appropriate temperature.
It is preferable to use nO2+TiO2 powder as the starting material.

とくに好ましくは、硫酸第1錫を600〜900℃で2
〜10時間焼成して得られた平均粒径が0.01〜1ミ
クロン、比表面積が5〜100m”/f、とくに8〜6
o?F+2/lのSnO2が触媒原料として使用される
。Ti0zも予めチタン化合物を加熱処理して得られた
アナターゼ型のTtO*粉末を出発原料とするのが好ま
しく、とくに好ましくは、イルメナイトを硫酸で溶解し
、これに加熱水蒸気を導き沈殿させて得た含水酸化チタ
ンを600〜900℃の温度にて2〜10時間焼成して
得られた平均粒径が実質的に0.4〜0.7ミクロン、
比表面積が5〜100 ?FI ”/l %とくに10
〜60m”/fの多孔性アナターゼTtOz粉末が使用
される。
Particularly preferably, stannous sulfate is heated at 600 to 900°C.
The average particle size obtained by firing for ~10 hours is 0.01~1 micron, the specific surface area is 5~100 m''/f, especially 8~6
o? F+2/l SnO2 is used as catalyst raw material. It is preferable that TiOz is also made from anatase-type TtO* powder obtained by heat-treating a titanium compound in advance as a starting material, and particularly preferably, it is obtained by dissolving ilmenite in sulfuric acid and introducing heated steam into the solution to precipitate it. The average particle size obtained by firing hydrous titanium oxide at a temperature of 600 to 900°C for 2 to 10 hours is substantially 0.4 to 0.7 microns,
Is the specific surface area 5-100? FI”/l% especially 10
~60 m''/f porous anatase TtOz powder is used.

担体としては通常の不活性担体であればいずれでも用い
ることが出来るが、好ましくは、見掛気孔率5〜50係
、比表面積57F! 2/ f以下、とくに1m27?
以下のアルミニウム含有量が10重量%以上、とくに3
重量係以下、SiC含有量が50重重量板上、とくに8
0重量%以上の無機多孔性担体が使用され、sic純度
純度9稈担体の形状はとくに限定されず、球、リング、
円柱、円錐、プドル状で見掛は外径として平均3〜15
m程度のものが適宜使用される。
Any ordinary inert carrier can be used as the carrier, but preferably, the apparent porosity is 5 to 50, and the specific surface area is 57F! 2/ f or less, especially 1m27?
The following aluminum content is 10% by weight or more, especially 3
Below weight ratio, SiC content is 50 weight board, especially 8
An inorganic porous carrier of 0% by weight or more is used, and the shape of the carrier is not particularly limited, and may be a sphere, a ring,
Cylindrical, conical, or poudre-shaped, with an average outer diameter of 3 to 15 mm.
A material of about m is used as appropriate.

触媒活性物質の担体への担持法は従来公知の方法ですな
わち、噴霧担持法、含浸担持法等で実施されるが、好ま
しくは150〜250℃の温度に加熱せられた担体に触
媒液または触媒スラリー液を噴霧して触媒活性物質の担
持が行なわれる。
The method of supporting the catalytically active substance on the carrier is carried out by a conventionally known method, such as a spraying method, an impregnation method, etc., but it is preferable to apply a catalyst liquid or a catalyst to a carrier heated to a temperature of 150 to 250°C. The catalytically active substance is supported by spraying the slurry liquid.

触媒活性物質性担体の見掛体積1000Cに対して3〜
50f1好ましくは5〜15F担持される。このように
して得られた担持体を空気流通下300〜650℃、好
ましくは400〜600℃の温度において1〜10時間
、好ましくは2〜6時間焼成して触媒が得られる。
3 to 3 for the apparent volume of 1000C of the catalytically active material carrier
50f1, preferably 5 to 15F is supported. The catalyst thus obtained is calcined under air flow at a temperature of 300 to 650°C, preferably 400 to 600°C, for 1 to 10 hours, preferably 2 to 6 hours.

7’ wレンまた唸テトラアルキルベンゼンからピロメ
リット酸または無水ピロメリット酸への反応速度は非常
に速いので、デユレンまたはテトラアルキルベンゼン/
分子状酸素含有ガスの割合を高めて操業する場合、触媒
層前半部で殆んどの反応が進行し結果的にその部位に高
い熱点( hot 5pot )が生じ選択性を低下せ
しめると同時に触媒の劣化を促進する。このため、触媒
層前半部を担体で希釈するとか、触媒活性物質の担持量
を減じるとか、触媒の粒径を大きくするとか、触媒活性
を抑制するとかの従来公知の手段によりその部位での反
応量を抑制し熱点の温度の高声が低くなるようにして触
媒を使用することができる。触媒活性のコントロールは
、上記の触媒活性物質の範囲内で、バナジウム含有量、
アルカリ金属含有量セよびリン含有量を変化させ、ある
いは使用するSnO2+TiO2、Ti0zの比春面積
を変化させ適宜性なうことができる。
7' W-rene Also, since the reaction rate from tetraalkylbenzene to pyromellitic acid or pyromellitic anhydride is very fast,
When operating with a high proportion of molecular oxygen-containing gas, most of the reaction proceeds in the first half of the catalyst layer, resulting in a high hot spot (hot 5pot) in that region, reducing selectivity and at the same time increasing the catalyst's efficiency. Accelerate deterioration. For this reason, the reaction at that site can be prevented by conventionally known means such as diluting the first half of the catalyst layer with a carrier, reducing the amount of catalytically active material supported, increasing the particle size of the catalyst, or suppressing the catalytic activity. Catalysts can be used in such a way that the amount of heat is reduced and the temperature at the hot spot becomes less loud. Catalytic activity can be controlled by changing the vanadium content,
The alkali metal content and the phosphorus content can be changed, or the relative area of SnO2+TiO2 or Ti0z used can be changed as appropriate.

作用効果性 このようにして得られた触媒は溶融塩の如き熱媒に囲ま
れた多管式反応塔に充填して使用されるが、熱媒の温度
は340〜440℃、とくに360〜400℃に保持さ
れ、反応管は15〜40■、とくに20〜30調の内径
のものが使用される。
Functionality The catalyst thus obtained is used by being packed in a multitubular reaction tower surrounded by a heating medium such as a molten salt, and the temperature of the heating medium is 340 to 440°C, particularly 360 to 400°C. The reaction tube is maintained at a temperature of 15 to 40 mm, preferably 20 to 30 mm.

触媒は1〜3.5メートル、とくに1.5〜3メートル
の層高に充填され空気または酸素濃度10〜21容量係
、水蒸気θ〜15容量係容量部不活性ガスよりなる分子
状酸素含有ガスにデユレンまたはテトラアルキルベンゼ
ンを20〜6。
The catalyst is packed to a bed height of 1 to 3.5 meters, especially 1.5 to 3 meters, and is filled with a molecular oxygen-containing gas consisting of air or oxygen concentration of 10 to 21 volume parts and water vapor θ to 15 volume parts of inert gas. 20 to 6 of Duurene or tetraalkylbenzene.

t/NM”−分子状酸素含有ガスの割合で混合し120
〜160℃に予熱されたガスを空間速度2.000〜6
,000Hr  1で導き接触酸化せしめる。
t/NM” - mixed at a ratio of molecular oxygen-containing gas 120
Gas preheated to ~160°C at a space velocity of 2.000~6
,000 hours for catalytic oxidation.

無水ピロメリットはデユレンよfi、1)0〜120重
量係の収率で得られる。効果性について実施例をもって
さらに詳しく説明する。
Anhydrous pyromellit can be obtained with a yield of 1) 0 to 120% by weight. The effectiveness will be explained in more detail with examples.

実施例 1 硫酸第1錫を800℃にて4時間熱分解して比表面積1
8m”/lのSnowを得た。これを気流粉砕し平均粒
子径0.18 ミクロンのSnowとしこれを触媒原料
とした。
Example 1 Stannous sulfate was thermally decomposed at 800°C for 4 hours to reduce the specific surface area to 1
Snow of 8 m''/l was obtained. This was air-pulverized to obtain Snow with an average particle size of 0.18 microns, which was used as a catalyst raw material.

水6400CC中に蓚酸200fを溶解させ、これにメ
タバナジン酸アンモニウム121.8 f 。
Dissolve 200 f of oxalic acid in 6400 cc of water, and add 121.8 f of ammonium metavanadate to this.

第2リン酸アンモニウム15.35F、塩化ニオブ19
.27 fおよび硝酸セシウム5.249を添加し十分
攪拌した。これに上記Sn0.18001Fを加え、乳
化機によシ触媒スラリー液を調製した。
Diammonium phosphate 15.35F, niobium chloride 19
.. 27 f and 5.249 g of cesium nitrate were added and thoroughly stirred. The above Sn0.18001F was added to this, and a catalyst slurry liquid was prepared using an emulsifier.

外部加熱式の回転炉中に見掛気孔率42%の平均直径5
■、平均長さ6簡のペレット状SiC自焼結担体(比表
面積0.4 m”/f )を2000田入れ150〜2
00℃に予熱した。これに上記触媒スラリーを散布し触
媒活性物質を180を担持せしめたのち空気流通下で5
50℃の温度で6時間焼成して触媒−人を得た。
Average diameter 5 with apparent porosity 42% in externally heated rotary furnace
■, Pellet-like SiC self-sintering carrier with an average length of 6 pieces (specific surface area 0.4 m”/f) was put into 2000 pieces of 150~2
Preheated to 00°C. The above catalyst slurry was sprayed on this to support 180% of the catalytically active substance, and then 5% of the catalyst slurry was applied under air circulation.
The catalyst was calcined at a temperature of 50° C. for 6 hours to obtain a catalyst.

一方、第2リン酸アンモニウムの添加量を27.63 
tとした以外は触媒−Aの場合と同様にし触媒−Bが調
製された。
On the other hand, the amount of dibasic ammonium phosphate added was 27.63
Catalyst-B was prepared in the same manner as catalyst-A except that t was changed.

410℃に保持された溶融塩浴に浸された内径251)
1)%長さ3.5メートルの鉄製反応管に先ず触媒−B
を1.5メートルの高さに充填し、次いでその上に触媒
−人を1.5メートルの高さに充填した。
Internal diameter 251) immersed in a molten salt bath held at 410°C
1) Catalyst-B was first placed in an iron reaction tube with a length of 3.5 meters.
was packed to a height of 1.5 meters, and then the catalyst was packed above it to a height of 1.5 meters.

反応管上部よシデユレン/空気の割合が30f/NM”
である混合ガスを140℃に予熱し空間速度4.000
Hr−”(s’rp)で通じたところ1)3.4重量鳴
の収率で無水ピロメリット酸が得られた。
At the top of the reaction tube, the siderene/air ratio is 30f/NM.
The mixed gas is preheated to 140℃ and the space velocity is 4.000.
1) Pyromellitic anhydride was obtained in a yield of 3.4 weight tons.

実施例 2 水5oocc中に塩酸200CCを溶解させ、これに五
酸化バナジウム10f1第1リン酸アンモニウム1.6
2 Fおよび硫酸カリウム0.28 tを添加し十分攪
拌した。これに硫酸第1錫42.74 tと平均粒子径
0.5ミクロン、比表面積20m”/fの多孔性アナタ
ーゼ型TtOx 60tとを加え、乳化機によシ触媒ス
ラリー液を調製した。
Example 2 Dissolve 200 cc of hydrochloric acid in 5 oocc of water, and add 10 f1 of vanadium pentoxide, 1.6 cc of monoammonium phosphate,
2 F and 0.28 t of potassium sulfate were added and thoroughly stirred. To this, 42.74 t of stannous sulfate and 60 t of porous anatase type TtOx having an average particle diameter of 0.5 microns and a specific surface area of 20 m''/f were added, and a catalyst slurry liquid was prepared using an emulsifier.

外部よシ加熱できる蒸発皿の中に上記触媒スラリーおよ
び見掛気孔率48係、比表面積0.3m ” / tで
アルミニウム含有量がA tz Osとして8%、Si
C含有量75係およびStO,ty%よりなる平均直径
6mの球状多孔性担体を1000ω加え、担体を攪拌し
ながら触媒活性物質を160f濃縮付着させたのち、5
80℃の温度にて8時間焼成した。
The above catalyst slurry was placed in an evaporation dish that could be heated externally, with an apparent porosity of 48, a specific surface area of 0.3 m''/t, an aluminum content of 8% as AtzOs, and a Si
A spherical porous carrier having an average diameter of 6 m and having a C content of 75% and StO, ty% was added at 1000Ω, and while stirring the carrier, the catalytically active substance was concentrated and deposited at 160f, and then
It was baked at a temperature of 80° C. for 8 hours.

このようにして調製された触媒を405℃に保持された
内径20m+の反応管に2.5メートルの層高に充填し
、デユレン/空気の割合が40f/NM”である混合ガ
スを空間速度3,000Hr−”で通じたところ1)2
.1重量係の収率で無水ピロメリット酸が得られた。
The catalyst prepared in this manner was packed into a reaction tube with an inner diameter of 20 m+ maintained at 405°C to a bed height of 2.5 m, and a mixed gas having a Duurene/air ratio of 40 f/NM was charged at a space velocity of 3. ,000Hr-” 1) 2
.. Pyromellitic anhydride was obtained with a yield of 1% by weight.

実施例 3 水6400C1m中に蓚#120Fを溶解させ、これに
VIOs 55.7 f、 NbCl 1)56.1 
? 、第2リン酸アンモニウム9.02 f %硫酸ル
ビジウム7.21P、硫酸タリウム2.33f、粉末状
酸化アンチモン(SbzOs) 55.7 yを添加し
十分攪拌した。これに実施例1におけると同様にして得
られたSnO2+TiO2930Fと実施例2における
と同様にしてえられたTtO,870fとを加え乳化機
によシ触媒スラリー液を調製した。
Example 3 Melon #120F was dissolved in 6400C1m of water, and VIOs 55.7f, NbCl1) 56.1
? , diammonium phosphate (9.02 f%), rubidium sulfate (7.21 P), thallium sulfate (2.33 f), and powdered antimony oxide (SbzOs) (55.7 y) were added and thoroughly stirred. To this were added SnO2+TiO2930F obtained in the same manner as in Example 1 and TtO, 870f obtained in the same manner as in Example 2, and an emulsifier was used to prepare a catalyst slurry.

外部加熱式の回転炉中に見掛気孔率40係、平均外径7
m1平均内径4m、平均長さ7調、その組成が酸化マグ
ネシウム(MgO)xO%、Sing 20憾および5
iC70%(いずれも重量%)よりなる多孔性リング状
担体2.000CCを入れ、150〜200℃に予熱し
た。これに上記スラリーを散布し、触媒活性物質を15
0を担持せしめ、空気流゛運上500℃の温度にて4時
間焼成して触媒−Cを得た。
Apparent porosity 40, average outer diameter 7 in an externally heated rotary furnace
m1 average inner diameter 4 m, average length 7 scales, its composition is magnesium oxide (MgO) x O%, Sing 20 and 5
2.000 CC of a porous ring-shaped carrier made of 70% iC (all percentages by weight) was placed and preheated to 150 to 200°C. The above slurry was sprinkled on this, and 15% of the catalytically active material was added.
Catalyst-C was obtained by supporting 0 and calcining it at a temperature of 500° C. for 4 hours under air flow.

一方、硝酸ルビジウムおよび硫酸タリウムを添加し々い
以外は触媒−〇の場合と同様にして触媒−〇を得た。
On the other hand, catalyst -0 was obtained in the same manner as in the case of catalyst -0, except that rubidium nitrate and thallium sulfate were added little.

380℃に保持された溶融塩浴中に浸された内径25−
1長さ3,5メートルの鉄製反応管に先ず触媒−Dを1
メートルの層高に、次いでその上に触媒−Cを1メート
ルの層高に充填した。
I.D. 25- immersed in a molten salt bath held at 380°C.
1. First, 1 portion of catalyst-D was added to a 3.5 meter long iron reaction tube.
A bed height of 1 meter was then filled with Catalyst-C above it to a bed height of 1 meter.

反応管上部よりデユレン/分子状酸素含有ガス(酸素i
o%、水蒸気10%、N2バランス)の割合が40f/
NM” である混合ガスを空間速度3.500Hr−1
で通じたところ1)7.3重量%の収率で無水ピロメリ
ット酸が得られた。
Durene/molecular oxygen-containing gas (oxygen i) is introduced from the top of the reaction tube.
o%, water vapor 10%, N2 balance) ratio is 40f/
NM" mixed gas at a space velocity of 3.500 Hr-1
1) Pyromellitic anhydride was obtained in a yield of 7.3% by weight.

発明の効果 実施例1〜3に示す如く、従来の触媒はその使用条件中
デユレン/分子状酸素含有ガス(空気も含む)の割合は
10〜2ot/NM”という非常に低く非常に希薄な被
酸化物濃度であったが本発明触媒におけるそれは20〜
40 f/NM’と非常に高い濃度範囲で有効に活性を
維推する。
Effects of the Invention As shown in Examples 1 to 3, the conventional catalyst has a very low ratio of durene/molecular oxygen-containing gas (including air) of 10 to 2 ot/NM'' under its usage conditions, and is a very dilute coating. The oxide concentration was 20~20 for the catalyst of the present invention.
It maintains its activity effectively in a very high concentration range of 40 f/NM'.

空間速度も3,000〜4.000Hr−1で従来の触
媒に対するそれよシも低く、触媒の工業的使用において
空気予熱に要するエネルギーおよび送風エネルギーは大
幅に軽減される。
The space velocity is also lower than that of conventional catalysts at 3,000 to 4,000 Hr-1, and the energy required for air preheating and blowing energy in industrial use of the catalyst is significantly reduced.

もちろん本発明触媒を5,000〜8.000Hr−1
という空間速度で使用することも可能である仁とはいう
までもない。
Of course, using the catalyst of the present invention for 5,000 to 8,000 Hr-1
Needless to say, it is possible to use it at such a spatial velocity.

もつとも、空間速度が3,000〜4.000Hr −
1であってもピロメリット酸または無水ピロメリット酸
の空時収率(S、T、Y、)は120〜175f / 
L −Ca t−Hrであシ、デユレン/分子状酸素含
有ガスの割合が高いため従来の触媒にくらべてむしろ高
い水準が維持されていることは明らかである。
However, if the space velocity is 3,000 to 4,000 Hr −
1, the space-time yield (S, T, Y,) of pyromellitic acid or pyromellitic anhydride is 120 to 175 f/
It is clear that in L-Cat-Hr, the ratio of durene/molecular oxygen-containing gas is high, so that a rather high level is maintained compared to conventional catalysts.

Claims (2)

【特許請求の範囲】[Claims] (1)バナジウム成分がV_2O_5として1〜20重
量部、スズ成分またはスズ成分とチタン成分がSnO_
2+TiO_2として99〜80重量部、上記成分の合
計100重量部に対しリン成分がP_2O_5として0
.02〜10重量部、ニオブ成分がNb_2O_5とし
て0.01〜5重量部、カリウム、セシウム、ルビジウ
ムおよびタリウムよりなる群から選ばれた少なくとも1
種の成分が酸化物として0〜1.2重量部さらにアンチ
モン成分がSb_2O_3として0〜10重量部含有さ
れてなる触媒活性物質を不活性担体に担持せしめてなる
デユレンまたはテトラアルキルベンゼンの接触気相酸化
による無水ピロメリツト酸製造用触媒。
(1) The vanadium component is 1 to 20 parts by weight as V_2O_5, and the tin component or the tin and titanium components are SnO_
99 to 80 parts by weight as 2+TiO_2, and 0 phosphorus component as P_2O_5 for the total 100 parts by weight of the above components.
.. 02 to 10 parts by weight, the niobium component is 0.01 to 5 parts by weight as Nb_2O_5, and at least one selected from the group consisting of potassium, cesium, rubidium, and thallium.
Catalytic gas-phase oxidation of durene or tetraalkylbenzene in which a catalytically active material containing 0 to 1.2 parts by weight of a seed component as an oxide and 0 to 10 parts by weight of an antimony component as Sb_2O_3 is supported on an inert carrier. catalyst for the production of pyromellitic anhydride.
(2)スズ成分とチタン成分の重量比がTiO_2/S
nO_2=4以下であることを特徴とする特許請求の範
囲(1)記載の触媒。
(2) The weight ratio of tin component and titanium component is TiO_2/S
The catalyst according to claim (1), characterized in that nO_2 = 4 or less.
JP14764184A 1984-05-21 1984-07-18 Catalyst for preparing pyromellitic anhydride Granted JPS6128456A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14764184A JPS6128456A (en) 1984-07-18 1984-07-18 Catalyst for preparing pyromellitic anhydride
CA000481767A CA1261860A (en) 1984-05-21 1985-05-17 Method for the preparation of pyromellitic acid or its anhydride
NZ212129A NZ212129A (en) 1984-05-21 1985-05-20 Supported catalyst composition
EP85106175A EP0163231B1 (en) 1984-05-21 1985-05-20 Catalyst for use in preparation of pyromellitic acid and/or pyromellitic anhydride
DE8585106175T DE3576074D1 (en) 1984-05-21 1985-05-20 CATALYST FOR USE IN THE PRODUCTION OF PYROMELLITHIC ACID AND / OR PYROMELLITHIC ACID ANHYDRIDE.
US06/841,833 US4665200A (en) 1984-05-21 1986-03-20 Method for preparing pyromellitic acid and/or pyromellitic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14764184A JPS6128456A (en) 1984-07-18 1984-07-18 Catalyst for preparing pyromellitic anhydride

Publications (2)

Publication Number Publication Date
JPS6128456A true JPS6128456A (en) 1986-02-08
JPH0415020B2 JPH0415020B2 (en) 1992-03-16

Family

ID=15434926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14764184A Granted JPS6128456A (en) 1984-05-21 1984-07-18 Catalyst for preparing pyromellitic anhydride

Country Status (1)

Country Link
JP (1) JPS6128456A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906783A1 (en) * 1997-10-03 1999-04-07 Nippon Shokubai Co., Ltd. Catalyst for catalytic oxidation use
EP2135671A2 (en) 2008-06-19 2009-12-23 Mitsubishi Gas Chemical Company, Inc. Catalyst and method for producing carboxylic acid and/or carboxylic anhydride in the presence of the catalyst
CN111097466A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Preparation method of catalyst for preparation of pyromellitic anhydride
CN114643052A (en) * 2020-12-21 2022-06-21 中国石油化工股份有限公司 Catalyst for synthesizing pyromellitic dianhydride and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013349A (en) * 1973-05-04 1975-02-12
JPS5411270A (en) * 1977-06-27 1979-01-27 Ariake Hamamoto Treating of konbu and like to discolor
JPS5622582A (en) * 1979-07-30 1981-03-03 Hitachi Ltd Starter for current type inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013349A (en) * 1973-05-04 1975-02-12
JPS5411270A (en) * 1977-06-27 1979-01-27 Ariake Hamamoto Treating of konbu and like to discolor
JPS5622582A (en) * 1979-07-30 1981-03-03 Hitachi Ltd Starter for current type inverter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906783A1 (en) * 1997-10-03 1999-04-07 Nippon Shokubai Co., Ltd. Catalyst for catalytic oxidation use
EP2135671A2 (en) 2008-06-19 2009-12-23 Mitsubishi Gas Chemical Company, Inc. Catalyst and method for producing carboxylic acid and/or carboxylic anhydride in the presence of the catalyst
US8357625B2 (en) 2008-06-19 2013-01-22 Mitsubishi Gas Chemical Company, Inc. Catalyst and method for producing carboxylic acid and/or carboxylic anhydride in the presence of the catalyst
CN111097466A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Preparation method of catalyst for preparation of pyromellitic anhydride
CN111097466B (en) * 2018-10-25 2023-03-03 中国石油化工股份有限公司 Preparation method of catalyst for preparation of pyromellitic anhydride
CN114643052A (en) * 2020-12-21 2022-06-21 中国石油化工股份有限公司 Catalyst for synthesizing pyromellitic dianhydride and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0415020B2 (en) 1992-03-16

Similar Documents

Publication Publication Date Title
US4879387A (en) Method for manufacture of phthalic anhydride
KR950009710B1 (en) Catalyst and process for producing phthalic anhydride
JPS603307B2 (en) Method for producing phthalic anhydride
EP0447267B1 (en) Catalyst for producing phthalic anhydride
US4665200A (en) Method for preparing pyromellitic acid and/or pyromellitic anhydride
US5229527A (en) Method for production of phthalic anhydride by vapor-phase oxidation of mixture of ortho-xylene with naphthalene
CN102612406A (en) Multilayer catalyst for producing carboxylic acids and/or carboxylic acid anhydrides with vanadium antimonate in at least one catalyst layer, and method for producing phthalic acid anhydride with a low hot-spot temperature
JPS591378B2 (en) Catalyst for phthalic anhydride production
US3870655A (en) Catalyst for the preparation of anthraquinone
JPS6128456A (en) Catalyst for preparing pyromellitic anhydride
US4469878A (en) Method for manufacture of phthalic anhydride
JPS6037108B2 (en) Method for producing phthalic anhydride
JP2592490B2 (en) Aromatic hydrocarbon oxidation method
JPS608860B2 (en) Catalyst for phthalic anhydride production
JPH0413026B2 (en)
JP3298609B2 (en) Catalyst for producing phthalic anhydride and method for producing phthalic anhydride using the same
JPH04114745A (en) Catalyst for preparing phthalic anhydride and preparation of phthalic anhydride using the catalyst
JPH04215843A (en) Catalyst for manufacturing phthalic anhydride
JPS61100543A (en) Production of anthraquinone
JP2003012664A (en) Method for producing acid anhydride
JPS63208575A (en) Production of cyanopyridine
JPS6121729A (en) Catalyst for oxidizing aromatic compound
JP2563995B2 (en) Catalyst
KR830000350B1 (en) Catalyst for the production of futal anhydride
JPH0218900B2 (en)