JPS6128437B2 - - Google Patents

Info

Publication number
JPS6128437B2
JPS6128437B2 JP57149811A JP14981182A JPS6128437B2 JP S6128437 B2 JPS6128437 B2 JP S6128437B2 JP 57149811 A JP57149811 A JP 57149811A JP 14981182 A JP14981182 A JP 14981182A JP S6128437 B2 JPS6128437 B2 JP S6128437B2
Authority
JP
Japan
Prior art keywords
laser
workpiece
processing
output
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57149811A
Other languages
Japanese (ja)
Other versions
JPS5939492A (en
Inventor
Minoru Kobayashi
Tooru Takahama
Susumu Hoshinochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57149811A priority Critical patent/JPS5939492A/en
Publication of JPS5939492A publication Critical patent/JPS5939492A/en
Publication of JPS6128437B2 publication Critical patent/JPS6128437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam

Description

【発明の詳細な説明】 この発明は、レーザによる溶融を施す加工にお
いて終了時に発生するクレータを防止するレーザ
加工方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser processing method that prevents craters from occurring at the end of laser melting processing.

第1図は、従来のレーザ加工装置である。図に
おいて1はレーザ出力を制御するためのコントロ
ーラ、2は電源、3はレーザ発振器、4はレーザ
ビーム、5はレーザビーム4の方向を変える全反
射鏡、6は集光レンズ、7は加工ヘツド、8は被
加工物、9は被加工物8を支持し移動させる加工
台である。
FIG. 1 shows a conventional laser processing device. In the figure, 1 is a controller for controlling laser output, 2 is a power supply, 3 is a laser oscillator, 4 is a laser beam, 5 is a total reflection mirror that changes the direction of the laser beam 4, 6 is a condenser lens, and 7 is a processing head. , 8 is a workpiece, and 9 is a processing table that supports and moves the workpiece 8.

次に動作について説明する。レーザ発振器3か
ら放出されたレーザビーム4は全反射鏡5により
曲げられ、集光レンズ6に垂直に入射する。集光
レンズ6で集光されたビームは加工ヘツド7を通
過して被加工物8の表面に照射される。同時に、
加工ヘツド7にはシールドガスが導入されており
ビームと同軸上に放出され加工が行なわれる。レ
ーザビーム4の照射終了時、つまりレーザによる
溶融を施す加工の終了時には、コントローラ1に
よる電源2の制御によりレーザ出力を徐々に下げ
ていく。これはクレータが残るのをある程度おさ
える働きをもつが、完全にはなくならない欠点を
もつていた。
Next, the operation will be explained. A laser beam 4 emitted from a laser oscillator 3 is bent by a total reflection mirror 5 and enters a condenser lens 6 perpendicularly. The beam focused by the condenser lens 6 passes through the processing head 7 and is irradiated onto the surface of the workpiece 8. at the same time,
A shielding gas is introduced into the processing head 7 and is emitted coaxially with the beam to perform processing. At the end of the irradiation with the laser beam 4, that is, at the end of the laser melting process, the controller 1 controls the power supply 2 to gradually lower the laser output. Although this had the effect of suppressing the remaining craters to some extent, it had the drawback that it could not completely eliminate them.

この現象を第2図、第3図によつて詳しく説明
する。第2はレーザ出力を横軸に、溶融深さを縦
軸にとつて示した第1図に示すレーザ加工装置の
特性図である。この図から明らかなように、レー
ザ出力を連続的に減少させて加工を行つても溶融
深さは直線的にならず、ある出力のところで急に
変化し遷移点Aを生じる。この原因は出力が遷移
点Aを生じるところよりも大のときは溶融が穿孔
形で進むのに対して、出力が小さくなると溶融が
熱伝導形で進むためである。したがつて加工終了
時にレーザ出力のみを減少させて溶接加工した場
合の被加工物8の状態は第3図a,bのようにな
る。第3図aは被加工物の溶接断面図、第3図b
は被加工物の溶接部表面図を示し、この図から明
らかなようにレーザ出力のみを連続的に減少させ
て加工を行なつても上記遷移点Aのところで溶融
深さが急に変化しクレータCが生じていた。
This phenomenon will be explained in detail with reference to FIGS. 2 and 3. The second is a characteristic diagram of the laser processing apparatus shown in FIG. 1, with the laser output plotted on the horizontal axis and the melting depth plotted on the vertical axis. As is clear from this figure, even if processing is performed by continuously decreasing the laser output, the melting depth does not become linear, but suddenly changes at a certain output, resulting in a transition point A. The reason for this is that when the power is greater than the point at which the transition point A occurs, melting proceeds in a perforation manner, whereas as the power becomes smaller, melting proceeds in a heat conduction manner. Therefore, when welding is performed by reducing only the laser output at the end of the welding, the state of the workpiece 8 will be as shown in FIGS. 3a and 3b. Figure 3a is a welded cross-sectional view of the workpiece, Figure 3b
shows a surface view of the welded part of the workpiece, and as is clear from this figure, even if processing is performed by continuously decreasing only the laser output, the fusion depth changes suddenly at the transition point A, resulting in a crater. C had occurred.

一方レーザ出力を一定としレーザ出力の焦点位
置のみを変化させた場合の焦点位置と溶融深さの
関係は第4図に示す特性図となり、焦点位置が加
工表面よりも上下方向にずれたある値になるとや
はり遷移点Aを生じることがわかつた。したがつ
て加工終了時にレーザ出力の焦点位置のみを変化
させて溶融加工した場合の被加工物の状態は第5
図a,bのようになる。第5図aは被加工物の溶
接断面図、第5図bは被加工物の溶接部表面図、
第5図cはレーザ出力の焦点位置と加工表面との
関係を示す図である。この第5図から明らかなよ
うにレーザ出力を一定とし、焦点位置のみを変化
させて加工を行なつても上記遷移点Aのところで
溶融深さが急に変化し、クレータCが生じること
になる。
On the other hand, when the laser output is kept constant and only the focus position of the laser output is changed, the relationship between the focus position and the melting depth is shown in the characteristic diagram shown in Figure 4. It was found that transition point A occurs when Therefore, when melt processing is performed by changing only the focus position of the laser output at the end of processing, the state of the workpiece is as follows.
It will look like Figures a and b. Figure 5a is a welded sectional view of the workpiece, Figure 5b is a surface view of the welded part of the workpiece,
FIG. 5c is a diagram showing the relationship between the focal position of the laser output and the processed surface. As is clear from Fig. 5, even if processing is performed by keeping the laser output constant and changing only the focal point position, the melt depth will suddenly change at the transition point A, resulting in the formation of a crater C. .

この発明は上記のものの欠点を除去するため、
加工終了時に被加工物表面におけるレーザビーム
出力を連続的に減少させると共にビームを連続的
にデフオーカスしていき、溶融深さが徐々に安定
に浅くなるようにしてクレータが発生することの
ないようにしたレーザ加工装置を提供することを
目的としている。
This invention eliminates the drawbacks of the above,
At the end of processing, the laser beam output on the workpiece surface is continuously reduced and the beam is continuously defocused, so that the melting depth gradually and stably becomes shallower to prevent craters from forming. The purpose of the present invention is to provide a laser processing device with

以下、この発明の一実施例を図について説明す
る。第6図において10は、集光レンズ6を内蔵
し加工ヘツド7を被加効物8及び加工台9に垂直
な軸(Z軸)で駆動させる駆動機構である。パル
スモータにより、11のコントローラからの制御
信号で加工ヘツド及び集光レンズは駆動される構
造になつている。その他の構造は従来と同様であ
る。溶融を施す加工が終了する際、コントローラ
11からの指示によりこの駆動機構が働き、レー
ザビームの焦点位置と被加工物表面の間隔が徐々
に変えられ、十分パワー密度が下がつた時点で最
後にレーザビームが電源2の操作により止められ
る。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 6, reference numeral 10 denotes a drive mechanism that incorporates a condensing lens 6 and drives the processing head 7 along an axis (Z-axis) perpendicular to the workpiece 8 and the processing table 9. The processing head and condensing lens are driven by a pulse motor using control signals from 11 controllers. Other structures are the same as before. When the melting process is completed, this drive mechanism operates according to instructions from the controller 11, and the distance between the focal position of the laser beam and the surface of the workpiece is gradually changed, and when the power density has sufficiently decreased, the drive mechanism is activated. The laser beam is stopped by operating the power source 2.

上記構成におけるレーザビーム4の照射終了
時、つまりレーザによる溶融を施す加工の終了時
の動作を第7図において説明する。加工終了時に
は従来と同様コントローラ11による電源2の制
御によりレーザ出力を連続して徐々に減少してい
く。この場合ビーム出力は安定化領域で連続的に
減少させるとよい。このレーザ出力の減少によつ
て領域aまでは溶融深さは実線で示すように徐々
に直線的に浅くなつていく。しかしてレーザ出力
をそのまま減少していくと第2図で説明したよう
に破線で示すように溶融深さに遷移点Aが生じる
が、この発明においては遷移点が生じる前のビー
ム出力がまだ大きいときに併せてレーザビームを
連続してデフオーカスしてパワー強度を下げてい
く。したがつて、レーザ出力の減少とデフオーカ
スを併用した領域bにおいては、被加工物表面の
出力密度(パワー強度)はデフオースしない場合
よりも下がることになり、溶融深さは従来よりも
浅くなる。このためレーザ出力が小さい領域でも
実線で示すように直線となり、加工終了時の溶融
深さは全体として1本の直線状となる。
The operation at the end of irradiation with the laser beam 4 in the above configuration, that is, at the end of the laser melting process will be described with reference to FIG. At the end of processing, the laser output is continuously and gradually reduced by controlling the power supply 2 by the controller 11 as in the conventional case. In this case, the beam power may be reduced continuously in the stabilization region. As the laser output decreases, the melting depth gradually becomes shallower linearly up to region a, as shown by the solid line. However, if the laser output continues to decrease, a transition point A will occur at the melting depth as shown by the broken line as explained in Figure 2, but in this invention, the beam output is still large before the transition point occurs. At the same time, the laser beam is continuously defocused to lower the power intensity. Therefore, in region b where a reduction in laser output and defocusing are used together, the power density (power intensity) on the workpiece surface is lower than when no defocusing is used, and the fusion depth is shallower than before. Therefore, even in a region where the laser output is small, the shape becomes a straight line as shown by the solid line, and the melting depth at the end of processing becomes a single straight line as a whole.

なお前記説明はビームのデフオーカス時点を遷
移点が生じる僅か前のビーム出力をある程度減少
した時点で述べたが、ビーム出力を減少し始める
と同時にデフオーカスを開始しても、すなわち領
域a,b全体に亘つてデフオーカスしても溶融深
さは同様に1本の直線状となる。
In the above explanation, the beam defocus point is defined as the moment when the beam output is reduced to a certain extent just before the transition point occurs, but even if the defocus starts at the same time as the beam output starts to decrease, that is, the whole areas a and b Even after defocusing, the melting depth remains in the same straight line.

またビームをデフオーカスすることでビームの
断面積は広くなることから被加工物8への熱影響
部も広くなることがあるが、デフオーカスしてい
る時には電源制御によりビーム出力は小さくなつ
ているからその影響は少ない。
Also, when the beam is defocused, the cross-sectional area of the beam becomes wider, so the heat-affected zone on the workpiece 8 may also become wider, but when the beam is defocused, the power supply control reduces the beam output. The impact is small.

第8図はこの発明の方法によつて溶融加工した
場合の被加工物8の状態を示すもので、第8図a
は被加工物の溶接断面図、第8図bは被加工物の
溶接部表面図を示す。この図から明なかなように
レーザ出力の減少と焦点位置の変化を併用した場
合は、溶接終了時には途中で遷移点が発生しない
ため、溶融深さが連続してなめらかとなりクレー
タが発生しないことが確認された。
FIG. 8 shows the state of the workpiece 8 when melt-processed by the method of the present invention, and FIG.
8b shows a welded cross-sectional view of the workpiece, and FIG. 8b shows a surface view of the welded part of the workpiece. As is clear from this figure, when reducing the laser output and changing the focal position, there is no transition point in the middle at the end of welding, so the fusion depth is continuous and smooth, and no craters occur. confirmed.

以上のように、この発明は、加工の終了時にレ
ーザビーム出力を連続的に減少させると共に、レ
ーザビームの焦点位置と被加工物表面の相対的位
置を連続的に離れる方向に移動させるようにした
から、加工終了時にクレータの発生しない良質な
加工ができるという効果がある。
As described above, in the present invention, the laser beam output is continuously decreased at the end of processing, and the focal position of the laser beam and the relative position of the surface of the workpiece are continuously moved away from each other. Therefore, it is possible to perform high-quality machining without creating a crater at the end of machining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザ加工装置を示す構成図、
第2図は第1図に示す装置の加工特性図、第3図
a,bは第1図に示す装置によつて加工された被
加工物の溶接断面図および溶接部表面図、第4図
はレーザ出力の焦点位置のみを変化させた場合の
加工特性図、第5図a,b,cは第4図の加工特
性図によつて加工された場合の被加工物の溶接断
面図、溶接部表面図および焦点位置と加工面表面
との関係図である。第6図はこの発明の一実施例
によるレーザ加工装置のブロツク系統図、第7図
は第6図に示す装置の加工特性図、第8図a,b
は第6図に示す装置によつて加工された被加工物
の溶接断面図および溶接部表面図である。 図において、1はレーザ出力をコントロールす
るコントローラ、2は電源、3はレーザ発振器、
4はレーザビーム、5は全反射鏡、6は集光レン
ズ、7は加工ヘツド、8は被加工物、9は加工
台、10は加工ヘツド又はレンズの駆動機構(パ
ルスモータ内蔵)、11はレーザ出力及び加工ヘ
ツド等の駆動機構をコントロールするコントロー
ラである。なお、図中、同一符号は、同一又は相
当部分を示す。
Figure 1 is a configuration diagram showing a conventional laser processing device.
Figure 2 is a processing characteristic diagram of the apparatus shown in Figure 1, Figures 3a and b are welded cross-sectional views and welded part surface views of the workpiece processed by the apparatus shown in Figure 1, and Figure 4. 5 is a processing characteristic diagram when only the focal position of the laser output is changed, and FIGS. FIG. 3 is a partial surface view and a relationship diagram between the focal position and the processed surface. FIG. 6 is a block diagram of a laser processing device according to an embodiment of the present invention, FIG. 7 is a processing characteristic diagram of the device shown in FIG. 6, and FIGS. 8a and b
7 is a welded cross-sectional view and a welded part surface view of a workpiece processed by the apparatus shown in FIG. 6. FIG. In the figure, 1 is a controller that controls laser output, 2 is a power supply, 3 is a laser oscillator,
4 is a laser beam, 5 is a total reflection mirror, 6 is a condenser lens, 7 is a processing head, 8 is a workpiece, 9 is a processing table, 10 is a drive mechanism for the processing head or lens (with built-in pulse motor), 11 is a This is a controller that controls the laser output and drive mechanisms such as the processing head. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 被加工物にレーザビームを照射して、溶融を
施す加工において、前記レーザビーム照射停止時
にレーザビーム出力を連続的に減少させると共
に、前記レーザビームの焦点位置と前記被加工物
表面の相対的位置を連続に離れる方向に移動させ
ることを特徴とするレーザ加工方法。
1. In processing in which a workpiece is irradiated with a laser beam and melted, the laser beam output is continuously decreased when the laser beam irradiation is stopped, and the relative position of the focus position of the laser beam and the surface of the workpiece is A laser processing method characterized by moving the position in a continuous direction.
JP57149811A 1982-08-27 1982-08-27 Laser working method Granted JPS5939492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57149811A JPS5939492A (en) 1982-08-27 1982-08-27 Laser working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149811A JPS5939492A (en) 1982-08-27 1982-08-27 Laser working method

Publications (2)

Publication Number Publication Date
JPS5939492A JPS5939492A (en) 1984-03-03
JPS6128437B2 true JPS6128437B2 (en) 1986-06-30

Family

ID=15483222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149811A Granted JPS5939492A (en) 1982-08-27 1982-08-27 Laser working method

Country Status (1)

Country Link
JP (1) JPS5939492A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140788A (en) * 1986-12-03 1988-06-13 Japan Nuclear Fuel Co Ltd<Jnf> Crater treating method for co2 laser welding
WO2005102543A1 (en) * 2004-04-23 2005-11-03 Tsukasa Industry Co., Ltd. Powder sorting device
JP5946209B2 (en) * 2012-05-08 2016-07-05 株式会社日本製鋼所 Laser annealing equipment with sheet resistivity measurement mechanism

Also Published As

Publication number Publication date
JPS5939492A (en) 1984-03-03

Similar Documents

Publication Publication Date Title
JP5114874B2 (en) Laser welding method and laser welding apparatus
EP1199128B1 (en) Laser machining apparatus
JP3534806B2 (en) Laser cutting method and apparatus
JP2718795B2 (en) Method for fine processing of work surface using laser beam
JP2010207839A (en) Laser beam welding equipment and laser beam welding method
JP4915315B2 (en) Laser welding method and laser welding apparatus
JPH03180294A (en) Laser beam cutting machine
JPH07236985A (en) Laser beam cutting method and device therefor
JPS6128437B2 (en)
JP2007125576A (en) Method and device for fine welding by laser beam
JPS60199585A (en) Laser welding machine
JP2002301583A (en) Laser welding method and equipment
JP2880061B2 (en) Laser processing
JPH0484684A (en) Laser welding method
JP6416801B2 (en) Laser processing machine with processing head approach function
JPS60216987A (en) Laser welding method
WO2020246504A1 (en) Laser welding device and laser welding method using same
JP2875626B2 (en) Laser piercing method
JP2623355B2 (en) Laser processing method and laser processing apparatus
WO2023149458A1 (en) Laser welding method and laser welding device
JPH04284993A (en) Laser beam machine
JPH0557469A (en) Laser beam processing
WO2023085156A1 (en) Laser processing method and laser processing machine
JP2618730B2 (en) Laser processing method and laser processing apparatus
JP2501594B2 (en) Focus position adjustment method of laser processing machine