JPS61281971A - Flow rate measuring probe - Google Patents

Flow rate measuring probe

Info

Publication number
JPS61281971A
JPS61281971A JP12280985A JP12280985A JPS61281971A JP S61281971 A JPS61281971 A JP S61281971A JP 12280985 A JP12280985 A JP 12280985A JP 12280985 A JP12280985 A JP 12280985A JP S61281971 A JPS61281971 A JP S61281971A
Authority
JP
Japan
Prior art keywords
flow velocity
light
probe
laser
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12280985A
Other languages
Japanese (ja)
Other versions
JPH0677024B2 (en
Inventor
Shizuo Yoshida
静男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KISHIYOU KYOKAI HOKKAIDO HONBU
Original Assignee
NIPPON KISHIYOU KYOKAI HOKKAIDO HONBU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KISHIYOU KYOKAI HOKKAIDO HONBU filed Critical NIPPON KISHIYOU KYOKAI HOKKAIDO HONBU
Priority to JP60122809A priority Critical patent/JPH0677024B2/en
Publication of JPS61281971A publication Critical patent/JPS61281971A/en
Publication of JPH0677024B2 publication Critical patent/JPH0677024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to use a probe outdoors by arranging a semiconductor laser element as a measuring light source in the probe itself to make an optical fiber for light introduction unnecessary. CONSTITUTION:A supply voltage 1 is supplied from an external power source to drive a probe 23 for light transmission. The diffused light emitted from a semiconductor laser element 2 arranged in the probe 23 is converged in parallel by a lens system 3 to form a narrow optical beam. A half mirror 4 on the top face and a mirror 5 on the bottom gace are arranged in the optical path at about 45 deg. to the incident optical beam to convert nthis one narrow optical beam to two optical beams parallel with each other, and these optical beams are condensed by a condensing lens system and are allowed to cross each other at a flow rate measuring point P in a fluid, thus preparing for measurement of the flow rate of the fluid by the Doppler effect. If a photo diode 8 is arranged just after an optical mask 7, the diameter of the pinhole of the mask 7 can be extended within a required flow rate measurement precision and the constitution is simplified.

Description

【発明の詳細な説明】 (技術分野) 本発明は、流体を照射したレーザ光ビーム相互間に流体
が及ぼすドツプラ効果によって生ずる周波数差の変化条
こ基づいて流体の流速を測定するレーザドツプラベロシ
メータ(LDV)に用いる流速測定用プローブに関し、
特に、簡単な構成で組立調整の容易な超小型にし、流体
中の測定点に近接して安定かつ高精度に流体の流速を測
定し得るよう番こしたものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a laser doppler velocity sensor that measures the flow velocity of a fluid based on a change in the frequency difference caused by the Doppler effect exerted by the fluid between laser beams irradiating the fluid. Regarding the flow rate measurement probe used in the meter (LDV),
In particular, it is designed to be ultra-compact with a simple configuration and easy assembly and adjustment, and to be able to stably and accurately measure the flow velocity of a fluid close to a measurement point in the fluid.

(従来技術とその問題点) 水流のIMfill )こ関しては、古(から用いたプ
ロペラ流速計等の機械的手法や熱線流速計等の電気的手
法に替えて、最近は、光学的手法が導入され、水理学的
研究の立場から種々改良が改えられている0かかる流速
の光学的測定方法として断念に開発されたレーザドップ
ラーベロシメータ(LDv)は、レーザ光に及ぼす流速
のドツプラー効果により流速を光学的に精密測定するも
のであるが、従来のレーザドップラーベロシメータは、
完全非接触の流速測定を目指すあまり、幾多の問題があ
るうえに、使用上の簡便さの点で熱線流速計に劣り、価
格の問題とともにその普及を阻害していた。
(Prior art and its problems) IMfill of water flow) In this regard, optical methods have recently been used in place of the old mechanical methods such as propeller current meters and electrical methods such as hot wire current meters. The laser Doppler velocimeter (LDv), which was originally developed as an optical measurement method for such flow velocity, has undergone various improvements from the perspective of hydraulic research. The conventional laser Doppler velocimeter measures the flow velocity optically with precision.
Aiming for completely non-contact flow velocity measurement, there were many problems, and it was inferior to hot wire anemometers in terms of ease of use, and along with the cost issue, this hindered its widespread use.

本発明者は、かかる従来のレーザドップラーペロシメー
タ(LDV)の欠点を除去し、流体流速の光学的手法に
可干渉性が極めて良好なレーザ光を導入して流速の精密
測定を可能にし几し−ザドップラーベロシメータに対し
てさらに元ファイバを導入することにより、従来のLD
Vグローブを格段に小型1こして、従来は測定困難であ
った、密度が急変する境界面近傍の流速測定や、微小な
流体空間を取扱うプラズマ流の流速測定を可能にした特
開昭59−1911$3f12号公報記載の流速測定用
プローブをさきに開発した。
The present inventor has removed the drawbacks of the conventional laser Doppler perosimeter (LDV) and introduced a laser beam with extremely good coherence into the optical method of measuring fluid flow velocity to enable precise measurement of flow velocity. - By introducing an additional fiber to the Doppler velocimeter, the conventional LD
By making the V-globe much smaller, it became possible to measure the flow velocity near interfaces where the density suddenly changes, which was previously difficult to measure, and to measure the flow velocity of plasma flows that deal with minute fluid spaces. We have previously developed a probe for measuring flow velocity described in 1911$3f12.

しかしながら、元ファイバを用い次上述の流速測定用グ
ローブには、つぎのような種々の問題点があった0 (1)  従来、離隔して配置した光源からのレーザ元
金測定用グローブ内に導くために元ファイノ(−に注入
する方法として、光源から放射する拡散光を集光し、そ
の集光した個所に光ファイノ(−の入射開口端を正確に
位置させることにより、光源から放射したレーザ″It
、t−できるだけ有効に利用するようにしてい九が、元
ファイバーのコア領域の開口端面が極めて小さいので、
放射レーザ光の一部しかコア領域に注入し得す、損失光
量がかなり大きかった0ま次、元ファイバーの位置が測
定機器の移動時の振動や衝撃などによってわずかでもず
れると、レーザ光の注入状態の維持が困難になり、正確
な注入位置の復元に多大の時間を要し友。
However, the above-mentioned flow velocity measuring globe using the original fiber has various problems as follows. (1) Conventionally, a laser beam from a separately placed light source is guided into the probe for measuring the principal amount. In order to inject the laser beam emitted from the light source into the original phino (-), the diffused light emitted from the light source is focused, and the input aperture of the optical phino (-) is accurately positioned at the focused point. ``It
, t-I try to use it as effectively as possible, but since the open end face of the core region of the original fiber is extremely small,
Only a part of the emitted laser light can be injected into the core region, and the amount of light lost is quite large. It becomes difficult to maintain the condition, and it takes a lot of time to restore the correct injection position.

(2)−万、流体の流速に対応したドツプラー周波数成
分を有するレーザ光を受光するには、ドツプラー効果を
生じさせるために流体の流速測定点を通過させた参照元
ビームと、その参照元ビームと交差させた測定光ビーム
の散乱光との双方を離隔して配置し九九電変換素子によ
り受光する必要があジ、そのためには、受光用元ファイ
バのコア領域開口端を参照元ビームの元軸にN密に一致
させる必要があった。しかしながら、元ファイバーの受
光端面が極めて小さいために、(1)項におけると同様
fこ、特に散乱光の受ft、光量が少なく、また、受光
用元ファイバーの位置ずれの問題があつto(3]  
上述したように流速測定用プローブに必要な元fc元フ
ァイバーに正確に入射させるための可視領域のレーザ光
源としては、従来、ガスレーザ素子を用いていたが、ガ
スレーザ素子は、振動や衝撃に弱くて野外等における使
用には適さず、また、高圧電源を必要とする点に8いて
も野外の使用には適していなかった。
(2) - In order to receive a laser beam having a Doppler frequency component corresponding to the fluid flow velocity, a reference source beam that has passed through the fluid flow velocity measurement point to produce the Doppler effect, and the reference source beam It is necessary to place both the scattered light of the measurement light beam and the scattered light of the intersecting measurement light beam at a distance and receive the light with a multiplier conversion element.To do this, it is necessary to place the aperture end of the core region of the source fiber for light reception at a distance from the scattered light of the reference source beam. It was necessary to match the original axis closely with N. However, since the light-receiving end face of the original fiber is extremely small, as in item (1), the reception of scattered light and the amount of light are small, and there is also the problem of positional shift of the original fiber for light reception. ]
As mentioned above, a gas laser element has conventionally been used as a visible range laser light source to accurately illuminate the original fc fiber required for a flow velocity measurement probe, but gas laser elements are susceptible to vibration and shock. It is not suitable for outdoor use, and even though it requires a high voltage power source, it is not suitable for outdoor use.

(4) 才た、上述のように、元ファイバーの取付位置
のわずかなすれによっても測定不能の状態が生ずるので
、精密な取付位置の設定を必要とするとともに、振動や
衝撃などが生じやすい野外の使用に際しては、測定用機
器の取扱いに細心の注意を要した。
(4) As mentioned above, even a slight deviation in the installation position of the original fiber can cause an unmeasurable condition, so it is necessary to set the installation position precisely, and it is necessary to set the installation position outdoors where vibrations and shocks are likely to occur. When using the measurement equipment, great care was required in handling the measurement equipment.

(本発明の目的) 本発明の目的は、上述した従来の問題点の根源をなす光
導入のための元ファイバーの使用を排除するとともに、
野外の使用に耐えるレーザ光源素子を用いた流速測定用
プローブを提供することにある。
(Objective of the present invention) The object of the present invention is to eliminate the use of original fibers for introducing light, which is the root of the conventional problems mentioned above, and to
An object of the present invention is to provide a flow velocity measuring probe using a laser light source element that can withstand outdoor use.

(本発明による問題点解決の手段) 本発明流速測定用プローブは、上述した諸問題を解決す
るために、半導体レーザ素子と、その半導体レーザ素子
から発散するレーザ光を集束してレーザ光ビームを形成
する集束光学系と、前記レーザ光ビームを分割するとと
もにほぼ直角に屈折させて互いに強度の異なる一対の平
行レーザ光ビームを形成する分割屈折光学系と、前記一
対の平行レーザ光ビームを流速測定点lこ集光する集光
光学系と、前記平行レーザ光ビームのうち強度の弱い方
のレーザ光ビームの軸上に位置して少なくとも前記流速
測定点を通過し九当該し−ザ元ビームを受光する光電変
換素子とを備え、前記平行レーザ光ビームの相互間に作
用する流体の流速のドツプラ効果ζこより前記流速測定
点lこおける流体の流速を測定し得るように構成したこ
とを特徴とするものである。
(Means for solving problems according to the present invention) In order to solve the above-mentioned problems, the current velocity measuring probe of the present invention includes a semiconductor laser element and a laser light beam that is focused by focusing the laser light diverging from the semiconductor laser element. a focusing optical system that splits the laser light beam and refracts it at a substantially right angle to form a pair of parallel laser light beams with different intensities; and a flow velocity measurement of the pair of parallel laser light beams. a condensing optical system that condenses the light at a point l, and a condensing optical system that is located on the axis of the weaker one of the collimated laser beams and passes through at least the flow velocity measurement point, and the source beam is and a photoelectric conversion element that receives light, and is configured such that the flow velocity of the fluid at the flow velocity measurement point l can be measured from the Doppler effect ζ of the fluid flow velocity acting between the collimated laser beams. It is something to do.

すなわち、まず、半導体レーザ素子は、前述し九従来の
グローブfこ2けるガスレーザ素子とは異なり、流速測
定用プローブ自体の中に配置して、送光用元ファイバー
を不要とし、レーザ光を5Y:ファイバーに注入するこ
、!:lこよp生じた諸問題を一挙に解決している。つ
ぎに、集束光学系は、半導体レーザ素子から放射し九拡
散元全有効に利用するために集束してレーザ光ビームを
形成するものであり、例えば、凸レンズ、球レンズおよ
び凸レンズ金もって構成して、それぞれ、拡散元を平行
光fこし、その平行光を近い位置で集束し、さらに、集
束した党を細い元ビームlこ成形し、ざらに、要すれば
、レンズ系の光軸上にピンホールを有する光学マスクを
設けて、レンズ系を通過し次元ビームをピンホール部分
のみに制限する。つぎに、分割屈折光学系は、例えば、
平滑表面および完全反射底面を有して集束光学系の元軸
に対し45°の角度に配置した光学ガラス板よりなシ、
平滑表面がなすハーフミラ−と完全反射底面がなすミラ
ーとによジ、ピンホールを通過した1本のレーザ光ビー
ムを2本のレーザ光ビームに分割するとともに、2本の
レーザ光ビームをほぼ直角に屈折させて平行レーザ光ビ
ームとし、さらに、かかる2本の平光し−ザ元ビームの
うち、平滑表面がなすハーフミラ−lこよシ反射屈折し
たレーザ光ビームを完全反射底面がなすミラーによシ反
射空折したレーザ光ビームよフ弱くして、例えばその強
度比を約3ニアにしておき、ハーフミラ−からのレーザ
光ビームを参照元とするとともに、ミラーからのレーザ
光ビームを後tこ散乱光として用いる。つぎに、集元元
学系は、例えば凸レンズよりなり、分割屈折光学系から
の2本の平行レーザ光ビームを流速測定点に集光させて
互いに交差させる。つぎに、光電変換素子は、例えばピ
ンホールを有する光学マスクを前置したフォトダイオー
ドよシなシ、参照元および参照元と同一の立体角内の散
乱光のみをピンホールを介してフォトダイオードにより
受光して受光光電に応じた電気信号に変換し、流速測定
出刃として取出す。
That is, first, unlike the gas laser element used in the conventional globe f2 described above, the semiconductor laser element is placed inside the flow velocity measurement probe itself, eliminating the need for a source fiber for light transmission, and transmitting the laser beam into the 5Y : Inject into the fiber! :lkoyopThe various problems that arose were solved all at once. Next, the focusing optical system is used to form a laser beam by converging the light emitted from the semiconductor laser element and making effective use of all nine diffusing elements, and is composed of, for example, a convex lens, a spherical lens, and a convex lens. , respectively, collimating the diffused source into parallel light, converging the parallel light at a nearby position, and forming the focused beam into a thin source beam, roughly, if necessary, focusing it on the optical axis of the lens system. An optical mask with holes is provided to confine the dimensional beam passing through the lens system to only the pinhole portion. Next, the split refractive optical system is, for example,
an optical glass plate having a smooth surface and a fully reflective bottom surface and placed at an angle of 45° to the original axis of the focusing optics;
Due to the difference between the half mirror formed by the smooth surface and the mirror formed by the fully reflective bottom surface, one laser beam passing through the pinhole is split into two laser beams, and the two laser beams are split at almost right angles. The laser beam is refracted into a parallel laser beam, and then, among the two flat original beams, the half mirror formed by the smooth surface refracts the laser beam, which is reflected and refracted by the mirror formed by the completely reflective bottom surface. The reflected sky-refracted laser light beam is made weaker, for example, with an intensity ratio of about 3, and the laser light beam from the half mirror is used as a reference source, and the laser light beam from the mirror is later scattered. Use as light. Next, the focusing system is composed of, for example, a convex lens, and focuses the two parallel laser beams from the split refractive optical system onto the flow velocity measurement point and causes them to intersect with each other. Next, the photoelectric conversion element is, for example, a photodiode equipped with an optical mask having a pinhole, and the photodiode converts only the reference source and the scattered light within the same solid angle as the reference source through the pinhole. It receives light, converts it into an electrical signal according to the received photoelectric signal, and takes it out as a flow velocity measurement blade.

(本発明の作用) 以上のように構成する本発明流速測定用グローブは、つ
ぎに列記するような作用をなす。
(Actions of the present invention) The flow rate measuring glove of the present invention configured as described above has the following functions.

(1)測定用光源とする半導体レーザ素子をLDVグロ
ーブに内蔵したことにより、従来外部との接続に用いて
いた元ファイバーを不要にしたので、元ファイバーに元
を注入するときに生じていた元の損失がなくなシ、また
、光7アイバーの位置設定Eこ要していた精密調整が不
要となった。
(1) By incorporating the semiconductor laser element used as the measurement light source into the LDV glove, the original fiber that was conventionally used for connection to the outside is no longer required, so the source fiber that was generated when injecting the source into the original fiber is no longer required. There is no longer any loss, and the precise adjustment that was required to set the position of the optical 7 eye bar is no longer necessary.

(2)  従来は流速の2次元測定全目的としていたの
で、参照元ビームに対し、直角方向に偏心し友2本のレ
ーザ光ビームを形成するために8個のピンホールを有す
る光学マスクを使用していた。したがって、ピンホール
を外れた元は利用されなかったが、不発F!ALDV 
7’ローブでは1次元測定に徹し、ハーフミラ−により
レーザ光ビームを2分割しているので、jf、itの損
失が格段に軽減された◇(8)  光電変換素子をLD
vグローブの受光部に内厳したことによシ、プローブ自
体の外径は約12n程度にも大きくなり、流体の超微細
構造の測定にはやや不適切とはなるものの、従来も、プ
ローブの流体中挿入に耐える機械的強度を確保するため
に外径18鰭程度の外筺に収容していたのであるから、
形状寸法上の性能低下は生ぜず、受光用元ファイバーを
使用せずに受光用光学マスクを使用可能としたので、′
受光に3けるグローブの配置が容易となり、受光量を増
大させることが可能となった0 (4)  以上のように、元ファイバーの不使用により
光学系の配置に対するff密さが緩和され、多少の振動
や衝撃による光学系の位置ずれが生じても正確な信号検
出が可能となり、野外に3ける流体流速の測定が容易と
なつ九〇 (5)従来各部に生じていた光量の損失をかなり軽減す
ることができ友ので、測定に直接使用し得る光量が大幅
に増大し、測定結果の信号検出が容易になり、さらに、
かかる光強度の増大により、清水等の散乱粒子含有の少
ない流体についても明確にドツプラー効果による光強度
の変化の検出測定が可能になるとともに、濁水の流速測
定fこおける信号処理も、信号増幅度が小さくてすむの
で、容易となった。
(2) Conventionally, the purpose was to measure two-dimensional flow velocity, so an optical mask with eight pinholes was used to form two laser beams eccentrically perpendicular to the reference source beam. Was. Therefore, the original that missed the pinhole was not used, but the unexploded F! ALDV
In the 7' lobe, we focused on one-dimensional measurement, and the laser beam was divided into two by a half mirror, so the loss of jf and it was significantly reduced.◇(8) The photoelectric conversion element was converted into LD
Due to the strict specifications placed on the light-receiving part of the v-globe, the outer diameter of the probe itself has become as large as approximately 12 nm, making it somewhat inappropriate for measuring the ultrafine structure of fluids. In order to ensure mechanical strength to withstand insertion into fluid, it was housed in an outer casing with an outer diameter of about 18 fins.
There is no performance deterioration in terms of shape and dimensions, and the optical mask for light reception can be used without using the original fiber for light reception, so
(4) As mentioned above, by not using the original fiber, the FF density for the optical system arrangement is eased, and the amount of light received can be increased. Accurate signal detection is possible even if the optical system is misaligned due to vibration or impact, making it easy to measure fluid flow velocity outdoors. This greatly increases the amount of light that can be used directly for measurement, making it easier to detect the measurement result signal, and
This increase in light intensity makes it possible to clearly detect and measure changes in light intensity due to the Doppler effect even in fluids with low scattering particle content, such as fresh water. This is easy because it can be small.

(6)  使用するレーザ光源を従来のガスレーザ素子
から半導体レーザ素子に変更したので、ガスレーザ素子
の駆動に従来使用した高電圧電源が不要となり、それだ
け消費電力を低減し得るとともiこ、衝撃等に弱いガス
レーザ素子の不使用により野外等の測定に適した流速測
定用プローブとすることができる。
(6) Since the laser light source used has been changed from the conventional gas laser element to a semiconductor laser element, the high voltage power supply conventionally used to drive the gas laser element is no longer required, which can reduce power consumption accordingly. By not using a gas laser element that is susceptible to oxidation, the flow velocity measurement probe can be made suitable for outdoor measurements.

特に、つぎの諸点において、本発明流速測定用グローブ
は、野外測定用として従来に比し格段に優れている。
In particular, the flow velocity measuring glove of the present invention is far superior to conventional gloves for outdoor measurements in the following points.

())  本発明によるLDVプローブは、流体中の流
速測定点には非接触であるから、流体の流れの状態をほ
ぼ乱すことなく所望の流速を、野誓においても精密に行
なうことができる。
()) Since the LDV probe according to the present invention does not make contact with the flow velocity measurement point in the fluid, it is possible to accurately measure the desired flow velocity even in the wild without substantially disturbing the fluid flow state.

(8)  本発明グローブも、レーザドップラーベロシ
メータ(LDV)の原理的特長である瞬時流速の測定が
可能であり、したがって、河川等に生ずる乱流について
も流速測定か可能である。
(8) The glove of the present invention can also measure instantaneous flow velocity, which is a fundamental feature of a laser Doppler velocimeter (LDV), and therefore can also measure flow velocity of turbulent flows that occur in rivers and the like.

(9)  本発明グローブは、原理的には流速の絶対測
定を行なうのであるから、流れの状態や測定機器の摩耗
などによる測定精度劣化のおそれがない。
(9) Since the glove of the present invention basically performs absolute measurement of flow velocity, there is no risk of deterioration of measurement accuracy due to flow conditions or wear of measuring equipment.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

まず、本発明流速測定用グローブを用い危流体流速測定
系全体の構成配置を第6図に示して説明する。
First, the overall configuration and arrangement of a hazardous fluid flow velocity measurement system using the flow velocity measurement glove of the present invention will be described with reference to FIG.

図示の全体構成に8いては、本発明流速測定用プローブ
のうち、光透出用プローブ28を、流速音測定すべき流
体20を介して対向させた受光用プローブ24と一体構
収にして、外部の測定系各構成要素に接続しである。す
なわち、レーザ光源用電源21から電源電圧22を供給
した測定用グローブ−こ内蔵したレーザ光源から放射し
た2本のレーザ元ビームを、流体20内の測定点Pに集
光させ念後に、2本のレーザ元ビームのうち参照元ビー
ムの直進方向に位置させである受光用プローブ24内の
フォトダイオードに入射した光成分は、参照元と散乱光
との相互干渉に流体の流速が及ぼすドツプラー効果に基
づいて生じ次ビート周波数成分を含んでおシ、かかる入
射光成分の光電変換出力の電気信号25t−増幅器26
により増幅したうえで帯域フィルタ2フによりドツプラ
ー効果によるビート周波数成分のみを抽出し、さらに、
周波数−電圧変換器286cよシビート周波数成分が有
するビート周波数に比例し交電圧信号を取出して演算器
29により所要の流速測定データを算出するように構成
しである。
In the illustrated overall configuration 8, among the flow velocity measuring probes of the present invention, the light transmitting probe 28 is integrated with the light receiving probe 24 facing across the fluid 20 to be measured, It is connected to each component of the external measurement system. That is, two laser beams emitted from a laser light source built in a measurement glove supplied with a power supply voltage 22 from a power supply 21 for the laser light source are focused on a measuring point P in the fluid 20, and then, just in case, the two laser beams are Of the laser source beam, the light component incident on the photodiode in the light receiving probe 24, which is located in the straight direction of the reference source beam, is affected by the Doppler effect caused by the flow velocity of the fluid on the mutual interference between the reference source and the scattered light. The electric signal 25t containing the next beat frequency component generated based on the photoelectric conversion output of the incident light component - the amplifier 26
After amplification, only the beat frequency component due to the Doppler effect is extracted using a bandpass filter 2F, and further,
The frequency-voltage converter 286c extracts an alternating voltage signal proportional to the beat frequency of the beat frequency component, and the arithmetic unit 29 calculates required flow velocity measurement data.

つぎに、上述した流体流速測定系の要部をなす本発明流
速測定用グローブの詳細な構成8よび作用を第1図につ
き詳細に説明する。第1図に要部を模式的に示す本発明
流速測定用プローブのうち、光透出用プローブ28に2
いては、外部電源から電源電圧1を供給して駆動する半
導体レーザ素子2から放出する拡散光を、後述するよう
に構成したレンズ系8により平行に集束して細い元ビー
ムを形成するO力)かる1本の細い光ビームを、例えば
透明ガラス板の底面を鏡面にして構成した互いに平行な
表面のハーフミラ−令と底面のミラー5とを入射光ビー
ムにほぼ45°傾斜させて光路中に配置することによシ
、互いに平行な2本の平行光ビームに変換し、さらに、
集光量レンズ系6により集光して流体20中の流速測定
点Pで互いに交差させ、ドツプラー効果による流体20
の流速測定に備え為。
Next, the detailed structure 8 and operation of the flow rate measuring glove of the present invention, which constitutes the main part of the above-mentioned fluid flow rate measuring system, will be explained in detail with reference to FIG. Of the current velocity measuring probes of the present invention whose main parts are schematically shown in FIG.
In this case, the diffused light emitted from the semiconductor laser element 2, which is driven by supplying the power supply voltage 1 from an external power supply, is focused in parallel by a lens system 8 configured as described later to form a narrow original beam. For example, a half-mirror with mutually parallel surfaces configured with a mirrored bottom surface of a transparent glass plate and a mirror 5 on the bottom surface are arranged in the optical path at an angle of approximately 45 degrees to the incident light beam. By doing this, it is converted into two parallel light beams that are parallel to each other, and further,
The light is focused by the light focusing lens system 6 and is made to intersect with each other at the flow velocity measurement point P in the fluid 20, so that the light is focused on the fluid 20 by the Doppler effect.
In preparation for flow velocity measurement.

上述のような基本的構成を有する光透出用グローブのう
ち、半導体レーザ素子2からの拡散ft、1−集束シて
レーザ光ビームにするレンズ系8は、例えば第2図に示
すように、凸レンズ9、球レンズ108よび凸レンズ1
1を組合わせて構成することができ、凸レンズ9は光源
からの拡散光の拡散角を小さくし、球レンズ10はその
拡散光を直近の距離に集束し、凸レンズ11はその集束
光を平行光にする0かかる構成のレンズ系8により、光
源とする半導体レーザ素子2からの拡散光の光量が細い
元ビームに集中して取出される0つぎに、ハーフミラ−
舎とミラー5とは、上述した1本のレーザ光ビームを、
互いに光量の異なる互いに平行な2本の平行光ビームに
変換するとともに、その進行方向上はぼ直角に屈折させ
ている。かかる作用をなすハーフミラ−4とミラー5と
は、例えば適切な透過度の平滑表面を有する厚さ8.5
111のガラス板の底面t−鏡面にし、表面の反射率2
よび透過にと底面の全反射との組合わせによシ、表面が
なすハーフミラ−4と底面がなすミラー5とによってそ
れぞれ形成する2本のレーザ光ビームの元童比を適切に
設定することができるが、通常は、ハーフミラ−4から
の反射ビームの方が弱い。
In the light transmitting glove having the basic configuration as described above, the lens system 8 which diffuses and focuses the light from the semiconductor laser element 2 into a laser beam is, for example, as shown in FIG. Convex lens 9, ball lens 108 and convex lens 1
The convex lens 9 reduces the diffusion angle of the diffused light from the light source, the spherical lens 10 focuses the diffused light to the nearest distance, and the convex lens 11 converts the focused light into parallel light. With the lens system 8 having such a configuration, the amount of diffused light from the semiconductor laser element 2 serving as a light source is concentrated into a narrow original beam and extracted.Next, a half mirror is used.
The housing and mirror 5 transmit the above-mentioned single laser beam,
The light beams are converted into two parallel light beams having different amounts of light and are refracted almost at right angles in the direction of travel. The half mirror 4 and the mirror 5 that perform this function are, for example, 8.5 mm thick and have smooth surfaces with appropriate transmittance.
The bottom surface of the glass plate 111 is made into a mirror surface, and the reflectance of the surface is 2.
By combining the transmission and total reflection at the bottom surface, it is possible to appropriately set the original ratio of the two laser beams formed by the half mirror 4 formed by the front surface and the mirror 5 formed by the bottom surface. However, the reflected beam from the half mirror 4 is usually weaker.

上述のようにして互い膓こ平行に構成したハーフミラ−
噛とミラー5とは、第3図1こ示すようlこ、入射光ビ
ームに対して45°の角度をなして配置し、入射光ビー
ムを、はぼ直角に屈折し九ハーフミラ−4からの弱い参
照元ビームB□とミラー5からの格段に強い元ビームB
2とに変換する0なお、後者の光ビームB、は、流体2
0を照射して散乱させ、その散乱光の一部を参照元ビー
ムとともに取出してドツプラー効果により流速を測定す
るのに用いる0 すなわ・ち、第4図に示すように、周波数f0の元ビー
ムが、流速Uの流体の流れの方向に対しほぼ直角に入射
すると、その流体の流速Uが光ビームに対してドツプラ
ー効果を及ぼし、入射方向Eこ直進する光成分の周波数
は、入射光と同じ周波数f1のままであるが、流体によ
り散乱して他の方向に向う散乱光の周波数は、入射方向
となす進行方向の角度に厄じて変化した他の周波数f、
となる。
Half mirrors configured with their sides parallel to each other as described above
The half mirror 5 is arranged at an angle of 45° with respect to the incident light beam, as shown in FIG. Weak reference beam B□ and much stronger source beam B from mirror 5
Note that the latter light beam B, converts into fluid 2 and 0.
0 is irradiated and scattered, and a part of the scattered light is taken out along with the reference source beam and used to measure the flow velocity by the Doppler effect. In other words, as shown in Figure 4, the original beam of frequency f0 is incident almost perpendicularly to the direction of the flow of a fluid with a flow velocity U, the flow velocity U of the fluid exerts a Doppler effect on the light beam, and the frequency of the light component traveling straight in the direction of incidence E is the same as that of the incident light. Although the frequency remains the same as f1, the frequency of the scattered light that is scattered by the fluid and goes in another direction is another frequency f, which has changed due to the angle between the direction of incidence and the direction of travel.
becomes.

し九がって、第5図に示すよう番こ、ともに周波数f1
を有する参照元ビームB1と測定光ビームB。
Therefore, as shown in Fig. 5, both frequencies are f1.
A reference beam B1 and a measuring light beam B having a reference source beam B1 and a measuring light beam B.

と全圧いに交差して流体中の測定点Pに入射させると、
参照光ビームB0の入射方向に進む光成分は、入射方向
に直進した周波数f0の参照光B0の成分と、入射方向
から角度θだけ外れて参照元ビームの入射方向番こ進む
測定光ビームB2中、交差角θ′2よび流速Uに応じた
周波数fgt−有する散乱光成分との合成’+酸成分な
る0かかる周波数f0゜f、に比して周波数差f□〜f
、が十分に小さいと、この合成光成分中には、周波数差
の絶対値If、−f、Iに相当するビート周波数成分が
含まれ、このビード周波数から流体の流速uを算出し得
るようlこなる。なお、かかるドツプラー効果による流
体流速測定の原理は従来ど′J6りであり、その詳細説
明は省略する。
When it crosses the total pressure and enters the measuring point P in the fluid,
The light component of the reference light beam B0 that travels in the direction of incidence is the component of the reference light B0 of frequency f0 that travels straight in the direction of incidence, and the component of the measurement light beam B2 that deviates from the direction of incidence by an angle θ and travels in the direction of incidence of the reference source beam. , the frequency fgt according to the intersection angle θ'2 and the flow velocity U - the synthesis with the scattered light component having '+ the acid component, which is the frequency f0゜f, the frequency difference f□~f.
, is sufficiently small, this synthesized light component contains a beat frequency component corresponding to the absolute value If, -f, I of the frequency difference, and the flow velocity u of the fluid can be calculated from this bead frequency. This will happen. The principle of fluid flow rate measurement using the Doppler effect is the same as in the prior art, and detailed explanation thereof will be omitted.

つぎに、上述のようにして、流速測定点Pから参照元ビ
ームB0の直進方向lこ向う合成光成分のみを、第1図
に示したようlこ、適切な開孔を設けた光学マスク7を
こより抽出して、例えばフォトダイオードよりなる光電
変換素子8(こより捕捉し、電気信号に変換する。
Next, as described above, only the combined light component from the flow velocity measurement point P in the straight direction of the reference beam B0 is transmitted through an optical mask 7 provided with an appropriate aperture as shown in FIG. is extracted from this, captured by a photoelectric conversion element 8 (for example, a photodiode), and converted into an electrical signal.

従来の流速測定用グローブに8ける受光用グローブでは
、上述の合成光成分を光ファイバーの開口端面によ)受
光して外部の光電子増倍器に導いていたが、元ファイバ
ーの開口口径は50〜200μm8度で極めて小さく、
参照元ビームを正確に捕捉し得るように位置決めをする
のに極めて精密な位置調整を要し、また、振動や衝撃に
よって受光用元ファイバーの位置がわずかでもずれると
測定不能を来たしてい念。ざらに、光ファイバーの開口
端面では、元の入射角によっては入射光の反射が生じて
捕捉し得なくなるので、受光用元ファイバーと参照元ビ
ームとの元軸を正確に一致させる必要があり、元ファイ
バーの位置調整に一層の1[IJit−要する。かかる
従来の受光用プローブの構成に対し、上述のよう5こ光
電変換素子、例えば、フォトダイオードを直接に組込ん
でピンホールを有する光学マスクにより所要の受光成分
を抽出するように構成すると、光学マスク7の直後にフ
ォトダイオード8を配置すれば、光学マスク7のピンホ
ールの口径を所要の流速測定精度内で十分に大きく設定
することができ、構成が簡単になるのみならず、構成要
素の位置i!11整が格段に容易となり、振動や熱膨張
などに基づくわずかな位置ずれや変形によって流速測定
不能の事態を生ずるおそれが全(なくなる。
In the conventional light-receiving glove for measuring flow velocity, the above-mentioned combined light component is received by the aperture end face of the optical fiber and guided to an external photomultiplier, but the aperture diameter of the original fiber is 50~ Extremely small at 200 μm and 8 degrees.
Extremely precise positioning is required to accurately capture the reference beam, and please be aware that if the receiving fiber's position shifts even slightly due to vibration or shock, measurement may be impossible. Roughly speaking, depending on the original incident angle, the aperture end face of an optical fiber may reflect the incident light and make it impossible to capture it, so it is necessary to precisely align the original axes of the receiving fiber and the reference beam. It takes one more IJit to align the fiber. In contrast to the configuration of such a conventional light-receiving probe, if five photoelectric conversion elements, such as photodiodes, are directly incorporated as described above and the required light-receiving components are extracted using an optical mask having pinholes, the optical By arranging the photodiode 8 immediately after the mask 7, the diameter of the pinhole in the optical mask 7 can be set sufficiently large within the required flow rate measurement accuracy, which not only simplifies the configuration but also reduces the number of components. Position i! 11 alignment becomes much easier, and there is no possibility of a situation in which flow velocity cannot be measured due to slight positional deviation or deformation due to vibration or thermal expansion.

つぎに、本発明流速測定用プローブの性能を、室内水路
における従来慣用の流速計との比較2よび実河川におけ
る実測の結果について検討する。
Next, the performance of the current velocity measurement probe of the present invention will be examined in comparison with a conventional current velocity meter in an indoor waterway and results of actual measurements in an actual river.

本発明流速測定用プローブがその動作原理とする流体流
速が入射光の周波数に及ぼすドツプラ効果1こよって流
体透過光に生ずるビート周波数はドラグラシフト量ν。
The Doppler effect 1 that the fluid flow velocity exerts on the frequency of the incident light, which is the operating principle of the flow velocity measurement probe of the present invention, causes the beat frequency generated in the fluid transmitted light to be the drag-grain shift amount ν.

1こ等しいので、流速Uは、入射光の波長λ、媒質の屈
折率n、入入射上ビーム交差角θについて、 λ  ・θ U−/2ns1nTIν。
Since they are equal to 1, the flow velocity U is λ · θ U−/2ns1nTIν, where λ is the wavelength of the incident light, n is the refractive index of the medium, and is the intersecting angle of the incident beam θ.

なる式で表わされる。It is expressed by the following formula.

−1、従来流体流速の測定に慣用されている熱膜流速計
(HFV)、すなわち、流体中に展張し友金属細線に電
流を通して加熱したときの電流による発熱量と流れによ
る放熱量との平衡温度となる金属細線の流れの冷却作用
による抵抗の変化に基づいて流速を求める流速測定計は
、低流速から高流速に到る広い測定範囲で点測定が可能
であシ、周波数応答が優れているので、従来流体の計測
に多用されているが、汚れに弱<、顎熱電流用コードを
長くし得す、発熱1こよシ気泡が発生し易い等の理由か
ら実河川の測定には適さないとされていた。室内水路ζ
こおいて、本発明流速測定用プローブとかかる熱膜流速
計とを用い、同一流体について同時に、流速変動を測定
した結果を第7図(a)と(b)とにそれぞれ示し、パ
ワースペクトルを測定した結果を第8図(alとΦ)と
にそれぞれ示す。第7図から明らかなと′j6シ、双方
の流速変動測定結果はよく一致しているが、パワースペ
クトルlこついては、低゛中周波数領域ではよく一致し
ているが、本発明プローブによ、り 2.OHz  近
傍に現われている高周波数領域のピークが熱膜流速計に
よっては顕著に現われては3らず、本発明プローブでは
充分なレベルの電気出力が得られるのに反し、熱膜流速
計では、電気出力が微弱であるため、信号対ノイズ比が
劣化し、高周波数領域の測定に誤差が生じ次結果の相違
と認められる。以上の比較結果からすれば、本発明流速
測定用グローブは室内水路に3ける流速測定に要求され
る所要の周波数応答特性を有していることは明らかであ
る。
-1. The hot film velocimeter (HFV), which has been conventionally used to measure fluid flow velocity, has an equilibrium between the amount of heat generated by the current and the amount of heat dissipated by the flow when a thin wire of a friendly metal is spread in a fluid and heated by passing an electric current through it. Flow velocity meters that measure flow velocity based on the change in resistance due to the cooling effect of the flow of a thin metal wire, which changes temperature, can perform point measurements over a wide measurement range from low flow velocities to high flow velocities, and have excellent frequency response. However, it is not suitable for measuring actual rivers because it is not easily soiled, requires a long cable for thermal current, and tends to generate heat and bubbles. It was said that there was no such thing. Indoor waterway ζ
Here, the results of simultaneously measuring flow velocity fluctuations of the same fluid using the flow velocity measuring probe of the present invention and such a hot film anemometer are shown in FIGS. 7(a) and (b), respectively, and the power spectra are shown. The measured results are shown in FIG. 8 (al and Φ). It is clear from Fig. 7 that the two flow velocity fluctuation measurement results are in good agreement, but the power spectra are in good agreement in the low to medium frequency range, but the probe of the present invention has ri 2. The peak in the high frequency region that appears near OHz does not appear prominently in the hot film anemometer, and the probe of the present invention can obtain a sufficient level of electrical output. Since the electrical output is weak, the signal-to-noise ratio deteriorates, causing errors in measurements in the high frequency range, which is recognized as the difference in the following results. From the above comparison results, it is clear that the flow rate measurement glove of the present invention has the required frequency response characteristics required for flow rate measurement in indoor waterways.

−万、従来、同様に慣用されているCM−2型電気流速
計、すなわち、流体中に位置するプロペラの流れによる
回転に基づく発電出力を流速値として指示する流速計と
の比較を実河川に8ける測定結果について行なったが、
本発明グローブと0N−2型電気流速計とを用い、同一
流体について同時に、低流速域の流速変動を測定した結
果を第9図((転)と(1))とにそれぞれ示し、同じ
く低流速域のパワースペクトルを測定した結果を第10
図((転)a中)とにそれぞれ示し、ま次、高流速域の
流速変動を測定した結果を第11図(a) 、:(1)
)とにそれぞれ示し、同じく高流速域のパワースペクト
ルを測定した結果を第12図(a)とΦ)とにそれぞれ
示す。
- 10,000, compared with the CM-2 type electric current meter, which is also commonly used in the past, that is, a current meter that indicates the power generation output based on the rotation of the flow of a propeller located in the fluid as a flow velocity value. I conducted the measurement results in 8.
Using the glove of the present invention and the 0N-2 type electric current meter, the flow velocity fluctuations of the same fluid were simultaneously measured in the low flow velocity range. The results are shown in Figure 9 ((Rotation) and (1)), respectively. The results of measuring the power spectrum in the flow velocity region are shown in the 10th
The results of measuring the flow velocity fluctuations in the high flow velocity region are shown in Figure 11 (a) and (1).
12(a) and Φ) respectively show the results of measuring the power spectrum in the high flow velocity region.

それぞれの測定結果を比較するに、第9図(a) 、 
(b)に示した低流速域の流速変動については両者はほ
ぼ一致しているが、第10図(al 、 (b)に示し
た低流速域のパワースペクトルについては、両者間にあ
まり共通性が見出せず、特に、0.2Hz よp高周波
数領域における後者の減衰が著しい。−万、第11図(
a) 、 (b)に示した高流速域の流速変動について
も、両者はほぼ一致しているが、第12図(a) ” 
To compare the respective measurement results, Fig. 9(a),
Although the flow velocity fluctuations in the low flow velocity region shown in (b) are almost the same, the power spectra in the low flow velocity region shown in Figure 10 (al) and (b) have little in common between the two. The attenuation of the latter is particularly remarkable in the high frequency range of 0.2 Hz.
Regarding the flow velocity fluctuations in the high flow velocity region shown in a) and (b), they are almost in agreement, but Fig. 12 (a)
.

■)lこ示し友高流速域のパワースペクトルlこついて
は、後者に存在するピークはすべて前者■こ存在してい
るが、前者に存在する0、5N2以上の高周波数域にお
けるピークが後者には現われてSらず、後者の高周波数
域におけるスペクトルの急激な減少を示している。なお
、前者すなわち本発明プローブによる測定結果は、I 
Hz  近傍までレベルが減少せず、理論どおりの一−
乗則に近いパワースペクトルを示している。
■) The power spectrum in the high flow velocity region shown here is the problem.All the peaks that exist in the latter are also present in the former. S does not appear, indicating a sharp decrease in the spectrum in the latter high frequency range. Note that the former, that is, the measurement results using the probe of the present invention, are I
Hz, the level does not decrease to around 1-Hz, as per the theory.
It shows a power spectrum close to a power law.

以上の結果からすれば、0N−2型電気流速計が、プロ
ペラの回転特性その他により、短周期の流速変動には追
従し得ないと認められるのに対し、本発明グローブは広
い周波数頭に亘って正確な流速測定を行ない得ることは
明らかである。
Based on the above results, it is recognized that the 0N-2 type electric current meter cannot follow short-period fluctuations in flow velocity due to the rotational characteristics of the propeller, etc., whereas the glove of the present invention can track over a wide frequency range. It is clear that accurate flow rate measurements can be made using

なお、実河川に8いて、本発明流速測定用プローブの設
置深度を順次に変化させて流速プロフィルを測定した結
果によれば、実河川における流れの場の特徴を本発明プ
ローブによりほぼ忠実に把握し得るものと認められる。
Furthermore, according to the results of measuring the flow velocity profile in an actual river by sequentially changing the installation depth of the current velocity measurement probe of the present invention, it was found that the characteristics of the flow field in an actual river could be almost faithfully grasped by the probe of the present invention. It is recognized that this is possible.

すなわち、従来型の流速計は、短周期の流速変動を捕え
ることが困難であシ、河川乱流の周期特性の解明にかな
りの制限があったのに対し、不発明流速測定用プローブ
によれば、0.4秒程度の短周期から数十秒の長周期流
速変動まで存在を確認することができ7t。
In other words, it was difficult for conventional current meters to capture short-period fluctuations in flow velocity, and there were considerable limitations in elucidating the periodic characteristics of river turbulence. For example, we were able to confirm the existence of flow velocity fluctuations ranging from short periods of about 0.4 seconds to long periods of several tens of seconds.

(発明の効果) 以上の#1.明から明らかなように、本発明によれば、
レーザ元ビームによりドツプラー効果に基づく流体流速
の測定を行なう流速測定用グローブを従来に比し格段に
簡単な構成により、従来のように各構成要素の取付は位
置の精密vI41Mを要することなく、容易に製作する
ことができ、しかも、室内水路2よび実河川における流
体流速の測定に用いて、従来は測定困難であった広い周
波数域に亘る流体流速の測定並びに広い周期範囲に亘る
流速変動の測定を極めて忠実に行ない得るという格別の
効果が得られる。
(Effect of the invention) Above #1. As is clear from the description, according to the present invention,
The flow velocity measuring glove, which measures fluid flow velocity based on the Doppler effect using a laser source beam, has a much simpler configuration than conventional ones, making it easy to install each component without the need for positional precision vI41M as in the conventional case. In addition, it can be used to measure fluid flow velocity in indoor waterways and actual rivers, and can be used to measure fluid flow velocity over a wide frequency range, which was previously difficult to measure, and to measure flow velocity fluctuations over a wide periodic range. The special effect of being able to carry out these tasks with great fidelity is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明流速測定用プローブの構成例を模式的に
示す線図、 第2図は同じくその光透出用グローブ内の集束光学系の
構成例を模式的に示す線図、 第8図は同じくその光送出用グローブ内の分割屈折光学
系の構成例を模式的に示す線図、第4図はドツプラー効
果に基づく流体流速測定の原理を模式的に示す線図、 第5図は本発明プローブによるドツプラー効果に基づく
流体流速測定の態様を模式的に示す線図、第6図は本発
明プローブを用いた流体流速測定系の全体構成の例を模
式的Eこ示す線図1第7図(a)および(至))は不発
明グローブ2よび従来の熱膜流速計による流速変動の測
定結果をそれぞれ示す特性曲線図、 第8図(a)8よび(b)は同じくそのパワースペクト
ルの測定結果をそれぞれ示す特性曲線図、第9図(a)
3よび(b)は本発明プローブおよび従来の0M−2型
流速測足器1こよる低周波数域曙速変動の測定結果をそ
れぞれ示す特性曲線図、第10図(a) ji5よび(
b)は同じ(その低周艮数域のパワースペクトルの測定
結果をそれぞれ示す特性曲線図、 第11図((転)および中)は同じくその高周波数域の
流速変動の測定結果をそれぞれ示す特性曲線図、第12
図(a)2よび(blは同じくその高周波数域のパワー
スペクトルの測定結果をそれぞれ示す特性曲線図である
。 l・・・電源電圧     2・・・半導体レーザ素子
3.6・・・レンズ系    4・・・ノー−7ミラー
5・・・ミラー       7・・・光学マスク8・
・・光電変換素子   9,11・・・凸レンズ10・
・・球レンズ 20・・・流体       21・・・レーザ光源用
電源22・・・電源電圧    23・・・光透出用グ
ローブ24・・・受光用プローブ  25・・・電気信
号26・・・増幅器      2)・・・帯域フィル
タ28・・・周波数−電圧変換装置 29・・・演算器 第1図 第2図 第3図 第4図 第5図 ^                        
I−−■          ρ
FIG. 1 is a diagram schematically showing a configuration example of the current velocity measuring probe of the present invention, FIG. 2 is a diagram schematically showing a configuration example of the focusing optical system in the light transmission globe, and FIG. The figure is a diagram schematically showing an example of the configuration of the split refractive optical system in the light transmission globe, FIG. 4 is a diagram schematically showing the principle of fluid flow velocity measurement based on the Doppler effect, and FIG. Figure 6 is a diagram schematically showing an aspect of fluid flow velocity measurement based on the Doppler effect using the probe of the present invention. Figures 7 (a) and (to)) are characteristic curve diagrams showing the measurement results of flow velocity fluctuations by the non-invention glove 2 and the conventional hot film anemometer, respectively, and Figures 8 (a), 8 and (b) are the same power Characteristic curve diagram showing the measurement results of spectra, FIG. 9(a)
3 and (b) are characteristic curve diagrams showing the measurement results of low-frequency range dawn velocity fluctuations by the probe of the present invention and the conventional 0M-2 type flowmeter 1, respectively, and Fig. 10 (a) ji5 and (
b) is the same (characteristic curve diagram showing the measurement results of the power spectrum in the low frequency range, respectively, and Figure 11 ((roll) and middle) is the characteristic curve diagram showing the measurement results of the flow velocity fluctuation in the high frequency range, respectively. Curve diagram, 12th
Figures (a) 2 and (bl are characteristic curve diagrams respectively showing the measurement results of the power spectrum in the high frequency range. l...Power supply voltage 2...Semiconductor laser element 3.6...Lens system 4... No-7 mirror 5... Mirror 7... Optical mask 8.
・・Photoelectric conversion element 9, 11 ・・Convex lens 10・
... Ball lens 20 ... Fluid 21 ... Power supply for laser light source 22 ... Power supply voltage 23 ... Glove for light transmission 24 ... Probe for light reception 25 ... Electric signal 26 ... Amplifier 2)...Band filter 28...Frequency-voltage converter 29...Arithmetic unit Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5
I--■ ρ

Claims (1)

【特許請求の範囲】 1、半導体レーザ素子と、その半導体レーザ素子から発
散するレーザ光を集束してレーザ光ビームを形成する集
束光学系と、前記レーザ光ビームを分割するとともにほ
ぼ直角に屈折させて互いに強度の異なる一対の平行レー
ザ光ビームを形成する分割屈折光学系と、前記一対の平
行レーザ光ビームを流速測定点に集光する集光光学系と
、前記平行レーザ光ビームのうち強度の弱い方のレーザ
光ビームの軸上に位置して少なくとも前記流速測定点を
通過した当該レーザ光ビームを受光する光電変換素子と
を備え、前記平行レーザ光ビームの相互間に作用する流
体の流速のドップラ効果により前記流速測定点における
流体の流速を測定し得るように構成したことを特徴とす
る流速測定用プローブ。 2、特許請求の範囲第1項記載のプローブにおいて、前
記分割屈折光学系を、前記レーザ光ビームの光軸に対し
てそれぞれ傾斜配置した互いに平行なハーフミラーおよ
びミラーにより構成したことを特徴とする流速測定用プ
ローブ。 3、特許請求の範囲第2項記載のプローブにおいて、前
記ハーフミラーにより屈折したレーザ光ビームの強度を
前記ミラーにより屈折したレーザ光ビームの強度より弱
くしたことを特徴とする流速測定用プローブ。
[Scope of Claims] 1. A semiconductor laser element, a focusing optical system that focuses laser light diverging from the semiconductor laser element to form a laser light beam, and splits the laser light beam and refracts it at approximately right angles. a split refractive optical system that forms a pair of parallel laser beams with different intensities, a focusing optical system that focuses the pair of parallel laser beams on a flow velocity measurement point, and a focusing optical system that focuses the pair of parallel laser beams on a flow velocity measurement point; a photoelectric conversion element located on the axis of the weaker laser light beam and receiving the laser light beam that has passed through at least the flow velocity measurement point; A probe for measuring flow velocity, characterized in that it is configured to be able to measure the flow velocity of the fluid at the flow velocity measurement point using the Doppler effect. 2. The probe according to claim 1, characterized in that the split refraction optical system is constituted by a mutually parallel half mirror and a mirror, each of which is arranged at an angle with respect to the optical axis of the laser beam. Probe for measuring flow velocity. 3. The probe according to claim 2, wherein the intensity of the laser beam refracted by the half mirror is made weaker than the intensity of the laser beam refracted by the mirror.
JP60122809A 1985-06-07 1985-06-07 Velocity measurement probe Expired - Lifetime JPH0677024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122809A JPH0677024B2 (en) 1985-06-07 1985-06-07 Velocity measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122809A JPH0677024B2 (en) 1985-06-07 1985-06-07 Velocity measurement probe

Publications (2)

Publication Number Publication Date
JPS61281971A true JPS61281971A (en) 1986-12-12
JPH0677024B2 JPH0677024B2 (en) 1994-09-28

Family

ID=14845173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122809A Expired - Lifetime JPH0677024B2 (en) 1985-06-07 1985-06-07 Velocity measurement probe

Country Status (1)

Country Link
JP (1) JPH0677024B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187538A (en) * 1990-10-30 1993-02-16 Kabushiki Kaisha Toshiba Laser doppler velocimeter
JP2009085955A (en) * 2007-09-28 2009-04-23 Gebr Loepfe Ag Method and instrument for measuring velocity of yarn
CN117516641A (en) * 2024-01-05 2024-02-06 山东中云电科信息技术有限公司 Channel section flow measurement equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127804A (en) * 1981-02-02 1982-08-09 Toyota Central Res & Dev Lab Inc Device for measuring coordinate of hollow shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127804A (en) * 1981-02-02 1982-08-09 Toyota Central Res & Dev Lab Inc Device for measuring coordinate of hollow shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187538A (en) * 1990-10-30 1993-02-16 Kabushiki Kaisha Toshiba Laser doppler velocimeter
JP2009085955A (en) * 2007-09-28 2009-04-23 Gebr Loepfe Ag Method and instrument for measuring velocity of yarn
CN117516641A (en) * 2024-01-05 2024-02-06 山东中云电科信息技术有限公司 Channel section flow measurement equipment
CN117516641B (en) * 2024-01-05 2024-03-26 山东中云电科信息技术有限公司 Channel section flow measurement equipment

Also Published As

Publication number Publication date
JPH0677024B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US4154529A (en) System for detecting reflected laser beams
US4443698A (en) Sensing device having a multicore optical fiber as a sensing element
US20080225264A1 (en) Fiber Optic Flow Sensing Device and Method
Gupta et al. Industrial fluid flow measurement using optical fiber sensors: A review
WO2018021311A1 (en) Concentration measuring device
EP0701707A1 (en) Laser diffraction particle sizing apparatus and method
CN107515054B (en) Optical fiber temperature and refractive index measurement sensing device based on Michelson interferometer
CN202938795U (en) Laser measuring device for measuring micro angles
CN108955857A (en) A kind of difference interference light channel structure and laser vibration measurer based on optical fiber
CN105301280B (en) A kind of highly sensitive self-heating type Optical-Fiber Flowing Rate Sensor based on intermode interference
US4818071A (en) Fiber optic doppler anemometer
JPH05126523A (en) Remote distance measuring equipment
CN101922919A (en) Non-contact measurement method for geometric parameters of optical part and measuring device thereof
CN208458872U (en) A kind of difference interference light channel structure and laser vibration measurer based on optical fiber
CN104698468A (en) Fiber optic coherent ranging device and method
Ahmed et al. Miniature laser anemometer for 3D measurements
US3680961A (en) Measurement of particle sizes
CN107782697A (en) The confocal Infrared Lens element refractive index measurement method of broadband and device
JPS61281971A (en) Flow rate measuring probe
JPS63132139A (en) Liquid refractive index meter
US4865443A (en) Optical inverse-square displacement sensor
CN207528753U (en) A kind of scanning probe detection device
CN109297591A (en) Myriawatt power meter
CN106767959B (en) A kind of Demodulation System for Fiber Optic Fabry-Perot Sensors
CN109084908A (en) A kind of fibre optic temperature sensor demodulation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term