JPS61281906A - Angle and displacement measuring instrument - Google Patents

Angle and displacement measuring instrument

Info

Publication number
JPS61281906A
JPS61281906A JP12350185A JP12350185A JPS61281906A JP S61281906 A JPS61281906 A JP S61281906A JP 12350185 A JP12350185 A JP 12350185A JP 12350185 A JP12350185 A JP 12350185A JP S61281906 A JPS61281906 A JP S61281906A
Authority
JP
Japan
Prior art keywords
light source
optical
light
variation
optical beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12350185A
Other languages
Japanese (ja)
Inventor
Kenji Saito
謙治 斉藤
Takeshi Eguchi
健 江口
Harunori Kawada
河田 春紀
Yoshinori Tomita
佳紀 富田
Takashi Nakagiri
孝志 中桐
Yukio Nishimura
征生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12350185A priority Critical patent/JPS61281906A/en
Publication of JPS61281906A publication Critical patent/JPS61281906A/en
Priority to US07/296,028 priority patent/US4952027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To eliminate influences of direction deviation of optical beams due to the variation of a light source by providing an optical element which inverts the passing position of one of two divided optical beams in the longitudinal direction. CONSTITUTION:One optical beam 8d divided by a beam splitter 2 passes an image rotator 3 and is irradiated to an object 6 to be examined together with the other optical beam 8c. If the beam 8a is varied by the variation of a light source 1 at this time, these optical beams are moved symmetrically with respect to an optical beam 8e and are moved symmetrically also on the light receiving face of a PSD (optical position detector) 9. Consequently, variation components of the light source in the division direction are eliminated. With respect to variation components of the light source in the direction orthogonal to said division direction, the fact that the passing position of the optical beam is inverted by the rotator 3 is used to invert the variation direction of an optical beam 8d', and this optical beam is shifted symmetrically to the optical beam which does not pass the rotator 3. Thus, horizontal and vertical variation components are compensated, and a certain output is obtained though the light source is varied in an optional direction.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、光学装置の制御、機械工具の取付けおよび制
御、物体の歪や振動の解析および監視、レーザー装置の
光軸合わせ、医療機器など各分野で利用される角度・変
位測定装置に関し、特に。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to control of optical devices, installation and control of mechanical tools, analysis and monitoring of distortion and vibration of objects, optical axis alignment of laser devices, medical equipment, etc. Especially regarding angle/displacement measuring devices used in various fields.

光位置検出器(以下、PSDと略称する)を使用した角
度・変位測定装置に関する。
The present invention relates to an angle/displacement measuring device using an optical position detector (hereinafter abbreviated as PSD).

[従来の技術」 従来より、PSDが有する高い位差分解能や直線性、再
現性は、光学装置のみならず、各種多方面への応用が考
えられて来た。
[Prior Art] Conventionally, the high phase difference resolution, linearity, and reproducibility of PSD have been considered to be applied not only to optical devices but also to various fields.

第1O図は、1次元PSDの構造例を示す縦断面図であ
る。第10図において、1次元PSDは、平板状シリコ
ン101の表面にP層の均一な抵抗層102を構成し、
両辺にそれぞれ電極XI、X2が配設され、裏面のN層
抵抗層103には共通電極XI が配設されている。
FIG. 1O is a longitudinal cross-sectional view showing a structural example of a one-dimensional PSD. In FIG. 10, the one-dimensional PSD comprises a uniform resistance layer 102 of a P layer on the surface of a flat silicon 101,
Electrodes XI and X2 are provided on both sides, respectively, and a common electrode XI is provided on the N-layer resistance layer 103 on the back surface.

第11図は、その動作原理を示す模式図である。FIG. 11 is a schematic diagram showing the principle of operation.

光Qの入射位置に対応させた光生成電荷は、そのエネル
ギーに相当する光電流として前記抵抗層102に達し、
その位置Pと両端の取出し電極XI、X2 との距離に
逆比例して分割され、各電極から出力される。入射光に
よる光電流を工(とすると、電極X +  、 X 2
から構成される装置IXI、IX2は、 I x+=  I L  ゛ RX2/  (RXI+
 RX2)I X2= I L  −RXI/ (RX
l+RX2)となり、ざらにx、−x2間の抵抗は均一
の分布を保っているので、Xl−X2間の抵抗と長さL
との間に次の各式が成立する。
The photo-generated charge corresponding to the incident position of the light Q reaches the resistance layer 102 as a photocurrent corresponding to the energy thereof,
The signal is divided in inverse proportion to the distance between the position P and the extraction electrodes XI and X2 at both ends, and is output from each electrode. If the photocurrent due to incident light is calculated (then, electrodes X + ,
The devices IXI and IX2, which are composed of I x+= I L ゛ RX2/
RX2) I X2= I L −RXI/ (RX
l+RX2), and the resistance between x and -x2 maintains a uniform distribution, so the resistance between Xl and X2 and the length L
The following equations hold true between .

RXI+RX2= L RXl=X RXl=L−x このため、各電極から取り出される信号はLとXで表わ
され。
RXI+RX2=L RX1=X RX1=L-x Therefore, the signals taken out from each electrode are represented by L and X.

IXI=IL  ・(L−x) /L I)B:II  °x/L のようになる。即ち、光の入射位置と光強度の情報がx
l、x2の電極に得られることになる。さらにIx+と
IX2の和と差をとり、これを位置信号Pの算出データ
として、 が得られ、x=0からLに対応させて、x=o、   
P=1 X=局 、P=O x=L、P=−1 のように、光強度の変化に無関係な位置信号が連続的に
得ることができる。
IXI=IL・(L−x)/L I)B:II °x/L. In other words, the information on the incident position and light intensity of the light is x
1 and x2 electrodes. Furthermore, taking the sum and difference of Ix+ and IX2, and using this as calculation data for the position signal P, the following is obtained, and from x=0 to L, x=o,
Position signals independent of changes in light intensity can be obtained continuously, such as P=1, X=station, P=Ox=L, P=-1.

以上は1次元の場合であるが、2次元の位置検出器につ
いても同様に考えることができ、第12図のブロック図
に示される動作回路により、位置信号が求められる。こ
こで、 PSDの動作原理から、2点以上の光入射があ
る場合は、それぞれの光強度に比例して重み付けをされ
た位置信号が得られる。また、光束が広がっている場合
も、光強度の重心的な位置信号が得られる。
Although the above is a one-dimensional case, a two-dimensional position detector can be considered in the same way, and a position signal is obtained by the operation circuit shown in the block diagram of FIG. Here, according to the operating principle of the PSD, if there are two or more points of light incidence, position signals weighted in proportion to the respective light intensities are obtained. Furthermore, even when the light beam is spread out, a position signal of the center of gravity of the light intensity can be obtained.

第6図は、上記のPSDを応用した従来の遠隔角度・変
位測定装置の一例を示す構成図である。同図において、
測定装置は、レーザー光源81からのビーム光82が被
験物体B3で反射されるのを、レンズ84によりPSD
 85の検出素子面に焦点を結び、そのスポット位置の
相対位置変化により被験物体83の角度および変位を測
定するものである。
FIG. 6 is a configuration diagram showing an example of a conventional remote angle/displacement measuring device to which the above-mentioned PSD is applied. In the same figure,
The measuring device uses a lens 84 to detect the beam light 82 from the laser light source 81 reflected by the test object B3.
The detection element surface 85 is focused, and the angle and displacement of the test object 83 are measured by changing the relative position of the spot.

[発明が解決しようとする問題点] しかしながら、このようなPSDを使用した測定による
と、光源自体の出射角の変動が測定精度に大きく#響を
かえ、特に、ガスレーザーを用いた測定では、高精度に
位置検出を行うことが不可能であった。
[Problems to be Solved by the Invention] However, in measurements using such a PSD, fluctuations in the emission angle of the light source itself greatly affect the measurement accuracy, and in particular, in measurements using a gas laser, It was impossible to perform position detection with high precision.

本発明は、このような光源自体の変動の影響を除去し、
psnの分解能の限界まで測定精度を向上させる角度・
変位測定装置を提供することを目的とする。
The present invention eliminates the influence of such fluctuations in the light source itself,
Angle and
The purpose of the present invention is to provide a displacement measuring device.

[問題点を解決するための手段] 本発明は、第6図に示す光源から出射されたビーム光を
被計測物体へ導き、反射光を光位置検出器で検出するこ
とにより被計測物体の角度および変位のいずれか、又は
双方を測定する角度・変位測定装置において、光源から
出射された光ビームを2分割する手段と、2分割された
光ビームのうちの少なくとも1本の通過位置を縦方向に
反転させる光学素子と、光源変動によるビーム変動のう
ち補償すべき方向成分が互いに対称となるような2本の
ビームを構成する手段と、光位置検出器の受光面上でそ
れぞれの平均的ビームスポットを一致させる手段とを備
えることを特徴とするものである。
[Means for Solving the Problem] The present invention guides the beam light emitted from the light source shown in FIG. 6 to the object to be measured, and detects the reflected light with an optical position detector, thereby determining the angle of the object to be measured. In an angle/displacement measurement device that measures either or both of the light beam and the displacement, the device includes a means for dividing a light beam emitted from a light source into two, and a means for dividing a light beam emitted from a light source into two, and a means for dividing a passing position of at least one of the two divided light beams in a longitudinal direction. an optical element that inverts the beam, a means for configuring two beams such that the directional components to be compensated for among beam fluctuations due to light source fluctuations are symmetrical to each other, and a means for configuring two beams such that the directional components to be compensated for among beam fluctuations due to light source fluctuations are symmetrical to each other; The invention is characterized by comprising means for matching the spots.

上記の各手段中、光ビームを2分割する手段としては、
ビームスプリフタやハーフミラ−が考えられ、光ビーム
の通過位置を縦方向に反転させる手段としてはイメージ
ローデータが挙げられる。
Among the above-mentioned means, the means for dividing the light beam into two is as follows:
A beam splitter or a half mirror may be used, and image raw data may be used as a means for vertically reversing the passing position of the light beam.

また、光ビームを所望のコースに構成する手段としては
、ミラーとハーフミラ−の組合わせなどが挙げられる。
Further, as a means for forming the light beam into a desired course, a combination of a mirror and a half mirror can be used.

[作 用] 本発明においては、光源から出射された光ビームを2分
割し、光源が変動した場合に2本の分割光それぞれに現
われる変動量が、2本の分割光の平均的ビームスポット
を受光面上で一致させた場合、互いに補償してゼロとな
るように構成したもので、PSD法の原理として、PS
D出力は最終的に光強度分布の重心的位置の信号を得る
という点に石目したものである。
[Function] In the present invention, the light beam emitted from the light source is divided into two, and when the light source fluctuates, the amount of variation that appears in each of the two divided lights changes the average beam spot of the two divided lights. It is constructed so that when they match on the light receiving surface, they compensate for each other and become zero.As the principle of the PSD method, the PSD
The D output is designed to finally obtain a signal at the center of gravity of the light intensity distribution.

第7図は1本発明による補償方法の原理を説明する座標
図である。第7図(a)は、光源から出射される光ビー
ムのモ均出射方向に垂直なモ面J二に、互いに直交する
X−Y座標軸を設定したもので、出射光の偏向量が矢印
71で示されている。仮に、所要の光学系により、上記
の座標軸を反転させたとすると、その投影は第7図(b
)のようにX′−Y′となり、出射光の偏向量も矢印?
2で示される如くになる。これらの互いに反転した光ビ
ームが目標照射面に照射されると、その座標は第3図(
C)に示されるように原点0に対して点対称(71a、
 ?2a)となり、両方の光ビーム強度が等しいとすれ
ば、光ビーム・エネルギーの重心位置は常に原点Oと一
致する。従って、上記の条件を満足する光学系を使用す
れば、光源の変動が生じても、照射ビームの強度中心は
影響されず、 PSDの原理によりPSD出力も影響さ
れない。
FIG. 7 is a coordinate diagram illustrating the principle of the compensation method according to the present invention. In FIG. 7(a), mutually orthogonal X-Y coordinate axes are set on a plane J2 perpendicular to the uniform emission direction of the light beam emitted from the light source, and the amount of deflection of the emitted light is indicated by the arrow 71. is shown. If the above coordinate axes are inverted using the required optical system, the projection will be as shown in Figure 7 (b).
), and the amount of deflection of the emitted light is also indicated by the arrow?
2. When these mutually inverted light beams are irradiated onto the target irradiation surface, their coordinates are shown in Figure 3 (
As shown in C), point symmetry (71a,
? 2a), and if the intensities of both light beams are equal, the center of gravity of the light beam energy always coincides with the origin O. Therefore, if an optical system that satisfies the above conditions is used, even if the light source fluctuates, the intensity center of the irradiation beam will not be affected, and the PSD output will not be affected due to the PSD principle.

第8図は、上記の原理に基づく効果を一次元的に検証す
る基本的装置の概略構成図で、Ha−Neレーザー光源
8Iからの光ビーム82をl\−フミラ−83によって
振幅分割し、分割された光ビームをそれぞれミラー84
aおよび84bによりPSD 85へ照射させ、前記光
源81の変動を記録するものである。
FIG. 8 is a schematic configuration diagram of a basic device for one-dimensionally verifying the effect based on the above principle, in which a light beam 82 from a Ha-Ne laser light source 8I is amplitude-divided by an l\-humira-83, The divided light beams are each passed through a mirror 84.
A and 84b are used to illuminate the PSD 85 and record fluctuations in the light source 81.

第9図は、その検証結果を示すグラフであり、縦軸は光
ビームの検出位置Pを示し、横軸は時間りを示す。第8
図において、ハーフミラ−83およびミラー84a  
、 84bを介さずに、直接PSDへ光ビームを照射し
た場合は、(a)の如く変動が記録されるのに対し、本
発明の原理により補償が行われた場合は(b)のように
なり、光源変動が除去されていることが確認される。
FIG. 9 is a graph showing the verification results, in which the vertical axis shows the detection position P of the light beam, and the horizontal axis shows the time. 8th
In the figure, a half mirror 83 and a mirror 84a
, When the light beam is directly irradiated to the PSD without going through 84b, fluctuations are recorded as shown in (a), whereas when compensation is performed according to the principle of the present invention, fluctuations are recorded as shown in (b). This confirms that light source fluctuations have been removed.

[実施例] 以F、本発明の実施例を、図面と共に詳細に説明する。[Example] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明による角度・変位測定装置の一実施例
を示す構成図で、被験物体6の任意の方向の回転、移動
を、2次元PSDにより測定する場合のものである。同
図において、光源lから出射された光ビーム8aは、ビ
ームスプリッタ2により2本の光ビーム8C及び8dに
分割されたのち、片方の光ビーム8dはイメージローデ
ータ3を通過し、他方の光ビーム8cと共にミラー4及
びハーフミラ−5を経て互いに近接する2本の光ビーム
となり、被験物体6へ照射される。この時、光源の変動
により光ビーム8aが変動したとすると、第3図の部分
拡大図に示されるように、光ビーム8dは8c’、  
8d’となり、−88を中心として対称的に移動するこ
とになる。従って、以後PSD 9の受光面においても
、光源変動のない場合の位置を中心として互いに対称な
方向へそれぞれ移動することになる。
FIG. 1 is a block diagram showing an embodiment of the angle/displacement measuring device according to the present invention, which is used to measure rotation and movement of a test object 6 in an arbitrary direction using a two-dimensional PSD. In the figure, a light beam 8a emitted from a light source 1 is split into two light beams 8C and 8d by a beam splitter 2. One light beam 8d passes through an image raw data 3, and the other light beam 8d passes through an image raw data 3. Together with the beam 8c, the two light beams pass through the mirror 4 and the half mirror 5 and become close to each other, and are irradiated onto the test object 6. At this time, if the light beam 8a fluctuates due to fluctuations in the light source, the light beam 8d will change to 8c', 8c', as shown in the partially enlarged view of FIG.
8d' and moves symmetrically around -88. Therefore, from now on, the light receiving surfaces of the PSD 9 will also move in mutually symmetrical directions centering on the position where there is no light source fluctuation.

一方、第2図は第1図に示す測定系を側面から見たもの
で、ビームスプリッタ2により2分割された光ビームの
うち、イメージローデータ3を通過する光ビーム8dの
光路を示している。前記ビームスプリッタ2の分割方向
に沿った光源変動成分は、第7図で説明した原理で除去
されるが、それと直交する方向の光源変動成分は、第2
図で明らかな如く、ビームスプリッタ2に影響されない
、そこで、第4図の部分拡大図で示されるように、イメ
ージローデータ3により光ビームの通過位置が反転する
のを利用し、変動した光ビーム8d’の変動方向を反転
させると、イメージローデータ3を通過しない光ビーム
と、対称的に移動することになる。このように、水平、
垂直の各変動成分は、それぞれ本発明の原理に基づいて
補償されるため、任意の方向に光源変動が起こっても、
常に一定の出力を得ることができる。
On the other hand, FIG. 2 is a side view of the measurement system shown in FIG. 1, and shows the optical path of a light beam 8d that passes through the image raw data 3 out of the light beams split into two by the beam splitter 2. . The light source fluctuation component along the dividing direction of the beam splitter 2 is removed according to the principle explained in FIG. 7, but the light source fluctuation component in the direction orthogonal to it is removed by the second
As is clear from the figure, the light beam is not affected by the beam splitter 2, and therefore, as shown in the partially enlarged view of FIG. If the direction of variation of 8d' is reversed, it will move symmetrically with the light beam that does not pass through the image raw data 3. In this way, horizontal,
Each vertical variation component is compensated based on the principle of the present invention, so even if light source variation occurs in any direction,
A constant output can always be obtained.

第5図は1本発明による角度・変位測定装置の他の実施
例を示す構成図である。この実施例は、新たに参照面5
4を設け、ビームスプリッタ52で2分割した光ビーム
の一方58cを参照面54で、他方58dを被験物体5
5で各々反射させ、両者をレンズ5Bにより集光し、P
SD 57の受光面へ照射させるようにしたものである
。この場合も前記実施例と同様に、2つの光ビームはP
SD上で互いに反転したビームとなり、光源の変動によ
る影響を除去することができる。
FIG. 5 is a configuration diagram showing another embodiment of the angle/displacement measuring device according to the present invention. In this embodiment, a new reference surface 5 is added.
4, one of the light beams split into two by the beam splitter 52 is used as the reference surface 54, and the other 58d is used as the test object 5.
5, both are focused by lens 5B, and P
The light is irradiated onto the light receiving surface of the SD 57. In this case as well, the two light beams are P
The beams become mutually inverted on the SD, and the influence of fluctuations in the light source can be removed.

なお、イメージローデータは、ビームスプリフタにより
2分割された光ビームのどちらの光路に入れてもよい。
Note that the image raw data may be input into either optical path of the light beam split into two by the beam splitter.

また、被験物体へ入射させる角度は任意に設定すること
ができる。
Further, the angle of incidence on the test object can be set arbitrarily.

[発明の効果J 以上、説明したとおり、本発明によれば、光源自体の変
動に起因する光ビームの出射方向ずれの影響を除去する
ことが可能で、PSD本米0分解能の限界まで測定精度
を向上させる角度・変位測定装置を提供することができ
る。
[Effect of the Invention J] As explained above, according to the present invention, it is possible to eliminate the influence of deviation in the light beam emission direction caused by fluctuations in the light source itself, and the measurement accuracy can be improved to the limit of the PSD resolution. It is possible to provide an angle/displacement measuring device that improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第5図は本発明の各実施例を示す構成
図、第3図及び第4図は反転ビームの説明図、第6図は
従来例の構成図、第7図は本発明の詳細な説明図、第8
図はその原理の検証機構の構成図、第9図は検証結果の
グラフ、第10図〜第12図はPSDの説明図である。 1 、51.61.81・・・光源。 2.52・・・ビームスプリッタ、 3.53・・・イメージローデータ、 4.84・・・ミラー、5.83・・・ハーフミラ−1
6,55,83・・・被験物体、7,58.E14・・
・レンズ。 8 、58.82.82・・・光ビーム、9.57・・
・PSD  (光位首検出器)、54・・・参照面。
1, 2, and 5 are block diagrams showing each embodiment of the present invention, FIGS. 3 and 4 are explanatory diagrams of inverted beams, FIG. 6 is a block diagram of a conventional example, and FIG. 7 is a detailed explanatory diagram of the present invention, No. 8
The figure is a configuration diagram of the verification mechanism of the principle, FIG. 9 is a graph of the verification results, and FIGS. 10 to 12 are explanatory diagrams of the PSD. 1, 51.61.81...Light source. 2.52...Beam splitter, 3.53...Image raw data, 4.84...Mirror, 5.83...Half mirror-1
6,55,83...Test object, 7,58. E14...
·lens. 8, 58.82.82... light beam, 9.57...
-PSD (optical position detector), 54...reference plane.

Claims (1)

【特許請求の範囲】[Claims] (1)光源と被計測物体と、光位置検出器から構成され
る角度・変位測定装置において、光源から出射された光
ビームを2分割する手段と、2分割された光ビームのう
ちの少なくとも1本の通過位置を縦方向に反転させる光
学素子と、光源変動によるビーム変動のうち補償すべき
方向成分が互いに対称となるような2本のビームを構成
する手段と、光位置検出器の受光面上でそれぞれの平均
的ビームスポットを一致させる手段とを備えることを特
徴とする角度・変位測定装置。
(1) In an angle/displacement measuring device consisting of a light source, an object to be measured, and an optical position detector, there is a means for dividing the light beam emitted from the light source into two, and at least one of the two divided light beams. an optical element that vertically reverses the passing position of a book; a means for configuring two beams such that directional components to be compensated for among beam fluctuations due to light source fluctuations are symmetrical to each other; and a light receiving surface of an optical position detector. and means for matching the respective average beam spots.
JP12350185A 1985-06-05 1985-06-08 Angle and displacement measuring instrument Pending JPS61281906A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12350185A JPS61281906A (en) 1985-06-08 1985-06-08 Angle and displacement measuring instrument
US07/296,028 US4952027A (en) 1985-06-05 1989-01-11 Device for measuring light absorption characteristics of a thin film spread on a liquid surface, including an optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12350185A JPS61281906A (en) 1985-06-08 1985-06-08 Angle and displacement measuring instrument

Publications (1)

Publication Number Publication Date
JPS61281906A true JPS61281906A (en) 1986-12-12

Family

ID=14862179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12350185A Pending JPS61281906A (en) 1985-06-05 1985-06-08 Angle and displacement measuring instrument

Country Status (1)

Country Link
JP (1) JPS61281906A (en)

Similar Documents

Publication Publication Date Title
US3885875A (en) Noncontact surface profilometer
CN109579780B (en) Polarization-based light splitting auto-collimation three-dimensional angle measuring device and method
US4483618A (en) Laser measurement system, virtual detector probe and carriage yaw compensator
CN106918309B (en) The measuring device and its measurement method of electro-optic crystal light pass surface normal and Z axis deflecting angle
US4748322A (en) Apparatus for determining the distance between a measuring surface and a reference surface
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
EP0549516A2 (en) Method and apparatus for measuring optical properties of optical devices
CN106247992B (en) A kind of high-precision, wide scope and big working distance autocollimation and method
JPS63193003A (en) Apparatus for measuring depth of recessed part and thickness of film
JPS61281906A (en) Angle and displacement measuring instrument
US4814624A (en) Method and apparatus for measuring the position of an object boundary
US3558230A (en) Light beam deflection sensor
JPS61281908A (en) Optical measuring method
JPS61281909A (en) Optical measuring method
JP3232340B2 (en) Interferometry for large diameter planes
JPS61281905A (en) Angle and displacement measuring instrument
US3438712A (en) Magneto-optical displacement sensing device
CN109443249A (en) High precision roll angle measurement method and device based on transmission grating
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JPS61281907A (en) Optical measuring method
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
JPS6255542A (en) Optical system inspecting device
JPH01142401A (en) Optical displacement measuring apparatus
CN106052548B (en) A kind of big working distance autocollimation of portable high-accuracy and method
SU670804A2 (en) Autocollimator