JPS61281571A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS61281571A
JPS61281571A JP12242385A JP12242385A JPS61281571A JP S61281571 A JPS61281571 A JP S61281571A JP 12242385 A JP12242385 A JP 12242385A JP 12242385 A JP12242385 A JP 12242385A JP S61281571 A JPS61281571 A JP S61281571A
Authority
JP
Japan
Prior art keywords
layer
width
semiconductor
layers
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12242385A
Other languages
Japanese (ja)
Other versions
JP2515725B2 (en
Inventor
Yuichi Ono
小野 佑一
Naoki Kayane
茅根 直樹
Shinichi Nakatsuka
慎一 中塚
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60122423A priority Critical patent/JP2515725B2/en
Publication of JPS61281571A publication Critical patent/JPS61281571A/en
Application granted granted Critical
Publication of JP2515725B2 publication Critical patent/JP2515725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce noises and astigmatism by making the difference between width on the inside of a semiconductor layer larger then that in the end surface of the semiconductor layer and a section in the vicinity of the end surface. CONSTITUTION:N-type CaAlAs clad layers 2, undoped GaAlAs active layers 3, P-type GaAlAs clad layers 4 and N-type current constriction layers 5 are formed onto N-type GaAs substrates 1 in succession, and grooves 6 and 7 are shaped to the current constriction layers 5 by using a chemical etching method. The upper width of the groove 6 extends over 6-6mum and the upper width of the groove 7 over 8-10mum, and the width of the grooves of residual GaAs layers extends over 2-5mum. P-type GaAlAs clad layers 8 and P<+> type GaAS cap layers 9 are shaped successively, and Cr-Au electrodes 10 and AuGe/Ni/Au electrodes 11 are evaporated and formed. The astigmatism of the semiconductor laser is reduced as 5mum or less, laser beams are changed into a multimode in the active layers, and relative noise strength by return beams extends over 1X10<-13>Hz<-1> or less. Accordingly, the performance of a device apparatus can be improved and size thereof may be miniaturized and cost thereof reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体レーザ装置に係わシ、特に非点収差がな
く、雑音特性の良好な装置とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor laser device, and particularly to a device free from astigmatism and having good noise characteristics, and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

半導体レーザのレーザ光分布(横モード)を、ストライ
ブ中央部とその外側との屈折率を利用して閉じ込めたい
わゆる屈折率導波形装置では発振スペクトル線(縦モー
ド)が単一になる。このような装置を光ディスクに利用
した場合には、ディスクからの反射光による戻シ光雑音
は発生しないが、活性層の垂直方向と平行方向でビーム
ウェイストの位置が異なるいわゆる非点収差を生じ、レ
ーザピームを絞如込めないという欠点がある。このため
、縦モードがマルチモードであり、かつ非点収差のない
装置素子が望まれている。
In a so-called refractive index waveguide device in which the laser light distribution (transverse mode) of a semiconductor laser is confined using the refractive index between the central part of the stripe and the outside thereof, the oscillation spectrum line (longitudinal mode) becomes single. When such a device is used for an optical disk, return optical noise due to reflected light from the disk does not occur, but so-called astigmatism occurs, where the beam waist position is different in the vertical and parallel directions of the active layer. The drawback is that the laser beam cannot be narrowed down. For this reason, a device element is desired that has a multi-mode longitudinal mode and is free from astigmatism.

このためには、半導体レーザの光軸方向にストライプ構
造を変化させ、装置内部では、屈折率差を小さく、レー
ザ光出射端面で屈折率差を大きくする方法が、島田他、
゛°リプ光導波路モード・フィルタ型GaAtAs  
レーザの特性″第31回応用物理学会春季講演会、昭和
59.3.29〜4゜2、予稿30a−M−8,により
知られている。
To achieve this, a method is proposed by Shimada et al. in which the stripe structure is changed in the optical axis direction of the semiconductor laser, and the difference in refractive index is made small inside the device and the difference in refractive index is made large at the laser beam emitting end face.
゛°Lip optical waveguide mode filter type GaAtAs
This is known from ``Characteristics of Lasers'', 31st Spring Conference of the Japan Society of Applied Physics, 3/29/1980-4°2, Proceedings 30a-M-8.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、雑音特性が良く、非点収差のない、と
くにビデオ・ディスクやコンパクト・ディスクなどの光
デイスク用に適した半導体レーザ装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser device with good noise characteristics and no astigmatism, which is particularly suitable for use in optical disks such as video disks and compact disks.

〔発明の概要〕[Summary of the invention]

本願発明者は、活性層にストライプ状の発光領域を形成
し、前記発光領域の光端面部近傍においては前記ストラ
イプの中央部とその外縁部との間の屈折率差が太きく、
前記発光領域の中央部においては前記屈折率差が小さく
する手段として、前記発光領域の中央部におけるストラ
イプの上側の幅を、前記光端面部近傍におけるストライ
プの上側より大きくする方法を見出し、この方法で縦モ
ードのマルチ化と横モードの単一化を容易に達成し得る
ことを確認した。
The inventor of the present application forms a striped light emitting region in the active layer, and in the vicinity of the optical end face of the light emitting region, the refractive index difference between the center part of the stripe and the outer edge thereof is large,
As a means for reducing the difference in refractive index in the center of the light emitting region, a method was discovered in which the width of the upper side of the stripe in the center of the light emitting region was made larger than the width of the upper side of the stripe in the vicinity of the optical end face, and this method It was confirmed that it is possible to easily achieve multiple longitudinal modes and single transverse modes.

この場合、素子内部では1発光領域の中央部において活
性層と電流狭窄層(ストライブ外縁部)との距離が遠く
なるためストライプ中央部の電流密度が小さくなシ、外
縁部との屈折率差が小さく力る。
In this case, inside the device, the distance between the active layer and the current confinement layer (outer edge of the stripe) becomes long in the center of one light emitting region, so the current density in the center of the stripe is small, and the difference in refractive index with the outer edge gives a small force.

第1図に本発明による素子の平面図□の一例を示す。FIG. 1 shows an example of a plan view □ of an element according to the present invention.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1                ゛第1〜3
図を用いて説明する。
Example 1 ゛1st to 3rd
This will be explained using figures.

第1図は本発明によるレーザ装置の平面図の一例である
。第2および3図は、第1図におけるAA/およびB 
−’B ’における断面図である。
FIG. 1 is an example of a plan view of a laser device according to the present invention. Figures 2 and 3 represent AA/and B in Figure 1.
- It is a sectional view at 'B'.

n型GaAs基板1の上にn型Q’aA′tAS クラ
ッド層2、アンドープGaAtAs活性層3、p型Qa
AtAS クラッド層4、n型電流狭窄層5を順次形成
させた後、まず電流狭窄層5に化学食刻法を用いて溝6
および7を形成した。溝6の上側の幅は3〜6μm、下
側(活性層と接する側)の幅はμmである。溝7の上側
の幅は8〜10μmで。
On an n-type GaAs substrate 1, an n-type Q'aA'tAS cladding layer 2, an undoped GaAtAs active layer 3, and a p-type Qa
After sequentially forming the AtAS cladding layer 4 and the n-type current confinement layer 5, grooves 6 are first formed in the current confinement layer 5 using chemical etching.
and 7 were formed. The width of the upper side of the groove 6 is 3 to 6 μm, and the width of the lower side (the side in contact with the active layer) is μm. The width of the upper side of the groove 7 is 8 to 10 μm.

低部の幅は7〜9μm、活性層と接する部分、すなわち
残留Q a A 8層の溝の幅は2〜5μmである。
The width of the lower portion is 7 to 9 μm, and the width of the groove in the portion in contact with the active layer, that is, the remaining Q a A 8 layer is 2 to 5 μm.

また残留G a A s層の厚さd FiO,1±0.
05pmとした。
Also, the thickness of the residual GaAs layer dFiO, 1±0.
05pm.

続いて、p型GaAtAs クラッド層8.p1型Ga
ASキャップ層を順次形成し、次にCr −A u電極
10 s AuG e / N 1 / A 11電極
11を蒸着にて形成した。
Subsequently, a p-type GaAtAs cladding layer 8. p1 type Ga
An AS cap layer was sequentially formed, and then a Cr-Au electrode 10s AuGe/N1/A11 electrode 11 was formed by vapor deposition.

次に襞間して半導体V〜ザを得た。この半導体レーザの
非点収差は5μm以下と十分に小さかった。なお%p型
GaAtAs クラッド層4の厚さが0、2〜0.4 
p m、活性層3の厚さが0.03〜0.1μmにおい
て1本発明の効果が顕著であった。また活性層内部では
レーザ光はマルチモードとなシ、戻シ光による相対雑音
強度はIXI O−” Hz−’以下であった。
Next, the semiconductor V was obtained by folding. The astigmatism of this semiconductor laser was sufficiently small at 5 μm or less. Note that the thickness of the p-type GaAtAs cladding layer 4 is 0.2 to 0.4%.
pm, and the thickness of the active layer 3 was 0.03 to 0.1 μm, the effect of the present invention was remarkable. Further, inside the active layer, the laser light was not multi-mode, and the relative noise intensity due to the returned light was less than IXIO Hz-'.

なお、□その他の各層の膜厚は、n型クラッド層2・が
0.8〜2μm、n型電流狭窄層5が0.5〜1.0μ
m、”p型クラッド層8が0.6〜1.8 tt m 
%p1型QaAsキャップ層9が0.5〜5μmとし、
また各層のAtAs組成比は、n型クラッド層2、p型
クラッド層4および8が35〜55チ、活性層3が5〜
20チとし、これらの範囲で良好な結果が得られた。
The thickness of each other layer is 0.8 to 2 μm for the n-type cladding layer 2, and 0.5 to 1.0 μm for the n-type current confinement layer 5.
m, "p-type cladding layer 8 is 0.6 to 1.8 tt m
% p1 type QaAs cap layer 9 is 0.5 to 5 μm,
The AtAs composition ratio of each layer is 35 to 55 for the n-type cladding layer 2, p-type cladding layers 4 and 8, and 5 to 55 for the active layer 3.
20 inches, and good results were obtained within these ranges.

実施例2 第1,4および5図を用いて説明する。第4図は本実施
例によるレーザ、装置の第1図のA−A’における断面
図、第5図は同様にB−B’における断面図である。
Example 2 This will be explained using FIGS. 1, 4 and 5. FIG. 4 is a sectional view taken along line AA' in FIG. 1 of the laser and apparatus according to this embodiment, and FIG. 5 is a sectional view taken along line BB' in the same way.

実施例1における電流狭窄層5を多層にして残留Ga 
A S層の厚さdの制御性を向上させたのが本実施例で
ある。
The current confinement layer 5 in Example 1 is multilayered to reduce residual Ga.
This example improves the controllability of the thickness d of the AS layer.

電流狭窄層5および5′をn型Q a A Sで形成し
、その間にn型GaAtAs  (A L / A s
比:0.4〜0.55)層12を形成し、G′aAS層
5および5′にドライエッチにより溝を形成しs Ga
AtAs 層12には化学食刻法にて溝を形成した。こ
の方法によりミ流狭窄層5′の厚さを安定に形成するこ
とができた。
Current confinement layers 5 and 5' are formed of n-type Q a S, and n-type GaAtAs (A L / A S
Ratio: 0.4 to 0.55) layer 12 is formed, and grooves are formed in the G'aAS layers 5 and 5' by dry etching.
Grooves were formed in the AtAs layer 12 by chemical etching. By this method, the thickness of the flow constriction layer 5' could be stably formed.

p型Q a A tA S クラッド層の上に電流狭窄
層5’ 、GaAtAs層12、電流狭窄層5を順次形
成した後、まずドライエツチング法で溝6の一部を形成
し、同時に溝6の中央部の電流狭窄層5をドライエッチ
法で拡張し、次いで露出したQaAtAS層12を化単
12法で除去した。この時GaAs層5′は化学食刻法
で食刻されにくいので短時間ではエツチングされること
はない。次いでJマスク材を用い、やはシトライエツチ
ング法でn−GaAs電流狭窄層5′をストライプ状に
エッチして除去し、溝7を形成した。
After sequentially forming the current confinement layer 5', the GaAtAs layer 12, and the current confinement layer 5 on the p-type QaAtAs cladding layer, first, a part of the groove 6 is formed by dry etching, and at the same time, a part of the groove 6 is etched. The current confinement layer 5 at the center was expanded using a dry etching method, and then the exposed QaAtAS layer 12 was removed using a chemical conversion method. At this time, since the GaAs layer 5' is difficult to be etched by chemical etching, it is not etched in a short period of time. Next, using a J mask material, the n-GaAs current confinement layer 5' was etched and removed in stripes by Sitri etching to form a groove 7.

この構造のレーザ装置の特性も実施例1と同様であった
The characteristics of the laser device with this structure were also similar to those in Example 1.

実施例3 第1図および第6〜9図を用いて説明する。Example 3 This will be explained using FIG. 1 and FIGS. 6 to 9.

半導体レーザの端面および/もしくは端面近傍の断面形
状、すなわち第1図のA−A’における断面図を、第6
図に示すように溝6の断面形状をはt2長方形のように
しても本発明を実施できた。
The cross-sectional shape of the end face and/or the vicinity of the end face of the semiconductor laser, that is, the cross-sectional view taken along line AA′ in FIG.
As shown in the figure, the present invention could be practiced even if the cross-sectional shape of the groove 6 was made into a t2 rectangle.

さらに、レーザ装置内部の溝7の断面形状、すなわち、
第1図のB−B’における断面形状は、第7図に示す逆
台形でも%また、第8および9図に示すような彎曲した
断面形状でも良好な結果を得た。
Furthermore, the cross-sectional shape of the groove 7 inside the laser device, that is,
Good results were obtained for the cross-sectional shape taken along line BB' in FIG. 1 with an inverted trapezoid as shown in FIG. 7 and with curved cross-sectional shapes as shown in FIGS. 8 and 9.

以上の実施例の説明では材料をQaAtAS/GaAs
系としたが、InGaA8P/In P系。
In the description of the above embodiments, the material is QaAtAS/GaAs.
However, it is an InGaA8P/In P system.

I nGa P / Ga A s系でもよく、また半
導体の導電型を全く反転させても、すなわちp型とn継
を!全く反転さ斗ても、よく、亭らに伸性層をp−ある
The InGaP/GaAs system may be used, or the conductivity type of the semiconductor may be completely reversed, that is, p-type and n-type! Even if completely inverted, there is often a p-stretch layer on the bottom.

”C%4 二)”Eも本=効果が得られた。−、1本発
明の半導体レーザは、戻シ光雑音が小さく非点収差が少
ないので、アイソノー夕や非点収差補正用レンズを必要
としないか、または簡略化できるので、ビデオ・ディス
クやコンパクト・、ディ□スクなどの装装置機器の′高
性會!化、小形化、低価格“°:l:ニニ:’”v−I
+J”Ht’F”1THJK*I/’j、2)□、
``C%4 2)''E also had a book = effect. -, 1 The semiconductor laser of the present invention has low return beam noise and little astigmatism, so it does not require an isonometer or an astigmatism correction lens, or can be simplified, so it can be used for video discs and compact discs. , high-performance equipment such as disks! miniaturization, low price "°:l:nini:'"v-I
+J"Ht'F"1THJK*I/'j, 2)□,

【図面の簡単な説明】[Brief explanation of the drawing]

流狭窄層の平面図、第2,4および6図はレーザ装置の
第1図のA−A’における断面図、第3゜5および7〜
9図はレーザ装置の第1図のB−B’における断面図で
ある。 (a) 1・・・基板、2,4.8・・・クラッド層、3・・・
活性層、5.5′・・・電流狭窄層、6・・・電流狭窄
層に設けた端面および/または端面近傍の溝、7・・・
電流狭窄層に設けた装置内部の溝、9・・・キャップ層
、10゜11・・・電極、12・・・n型GaAtAs
 電流狭窄層。
Plan views of the flow constriction layer, Figures 2, 4 and 6 are cross-sectional views of the laser device taken along line AA' in Figure 1, Figures 3.5 and 7.
FIG. 9 is a sectional view taken along line BB' in FIG. 1 of the laser device. (a) 1...Substrate, 2,4.8...Clad layer, 3...
Active layer, 5.5'... Current confinement layer, 6... Groove at the end face and/or the vicinity of the end face provided in the current confinement layer, 7...
Groove inside the device provided in the current confinement layer, 9... Cap layer, 10° 11... Electrode, 12... N-type GaAtAs
Current confinement layer.

Claims (1)

【特許請求の範囲】 1、半導体基板上に活性層を含む多層からなる半導体層
で形成した半導体レーザであつて、該活性層よりも上部
にクラッド層および溝を形成した電流狭窄層を有する半
導体レーザにおいて、該電流狭窄層に設けた該溝の活性
層に近い側の幅(W_1)と該溝の上側の幅(W_2)
の差について、該半導体層の端面もしくは端面およびそ
の近傍における該幅の差より該半導体層の内部における
該幅の差を大きくしたことを特徴とする半導体レーザ装
置。 2、上記電流狭窄層が半導体多層膜で形成されたことを
特徴とする特許請求の範囲第1項記載の半導体レーザ装
置。 3、上記半導体層の端面における該(W_2−W_1)
をゼロとしたことを特徴とする特許請求の範囲第1項記
載の半導体レーザ装置。 4、上記該溝の活性層に近い側の幅を実質上一定とした
ことを特徴とする特許請求の範囲第1項記載の半導体レ
ーザ装置。 5、上記(W_2−W_1)を正の値とする特許請求の
範囲第1項記載の半導体レーザ装置。 6、半導体基板上に活性層を含む多層からなる半導体層
で形成され、該活性層より上部にクラッド層および溝を
形成した電流狭窄層を有する半導体レーザであつて、該
電流狭窄層に設けた該溝の活性層に近い側の幅(W_1
)と該溝の上側の幅(W_2)の差について、該半導体
層の端面もしくは端面およびその近傍における該幅の差
より該半導体層の内部における該幅の差を大きくした半
導体レーザにおいて、該半導体層を有機金属の熱分解法
によつて形成し、該溝をドライエッチング法もしくは化
学食刻法を用いて形成することを特徴とする半導体レー
ザ装置の製造方法。
[Scope of Claims] 1. A semiconductor laser formed of a multilayer semiconductor layer including an active layer on a semiconductor substrate, which has a cladding layer and a current confinement layer formed with a groove above the active layer. In a laser, the width of the groove provided in the current confinement layer on the side closer to the active layer (W_1) and the width on the upper side of the groove (W_2)
1. A semiconductor laser device characterized in that the difference in width inside the semiconductor layer is larger than the difference in width at an end face of the semiconductor layer or at and near the end face of the semiconductor layer. 2. The semiconductor laser device according to claim 1, wherein the current confinement layer is formed of a semiconductor multilayer film. 3. (W_2-W_1) on the end surface of the semiconductor layer
2. The semiconductor laser device according to claim 1, wherein: is set to zero. 4. The semiconductor laser device according to claim 1, wherein the width of the groove on the side closer to the active layer is substantially constant. 5. The semiconductor laser device according to claim 1, wherein (W_2-W_1) is a positive value. 6. A semiconductor laser that is formed of a multilayer semiconductor layer including an active layer on a semiconductor substrate, and has a current confinement layer in which a cladding layer and a groove are formed above the active layer, the current confinement layer being provided with a current confinement layer. The width of the groove on the side closer to the active layer (W_1
) and the upper width of the groove (W_2), in a semiconductor laser in which the difference in width inside the semiconductor layer is larger than the difference in width at the end face of the semiconductor layer or the end face and the vicinity thereof, 1. A method of manufacturing a semiconductor laser device, characterized in that the layer is formed by an organic metal thermal decomposition method, and the groove is formed by a dry etching method or a chemical etching method.
JP60122423A 1985-06-07 1985-06-07 Semiconductor laser equipment Expired - Lifetime JP2515725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122423A JP2515725B2 (en) 1985-06-07 1985-06-07 Semiconductor laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122423A JP2515725B2 (en) 1985-06-07 1985-06-07 Semiconductor laser equipment

Publications (2)

Publication Number Publication Date
JPS61281571A true JPS61281571A (en) 1986-12-11
JP2515725B2 JP2515725B2 (en) 1996-07-10

Family

ID=14835464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122423A Expired - Lifetime JP2515725B2 (en) 1985-06-07 1985-06-07 Semiconductor laser equipment

Country Status (1)

Country Link
JP (1) JP2515725B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224291A (en) * 1984-04-20 1985-11-08 Sharp Corp Semiconductor laser elememt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224291A (en) * 1984-04-20 1985-11-08 Sharp Corp Semiconductor laser elememt

Also Published As

Publication number Publication date
JP2515725B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
JP2618875B2 (en) Waveguide
JPS6135587A (en) Self-aligned rib waveguide high power laser
TWI281767B (en) Semiconductor laser
JPS61281571A (en) Semiconductor laser device and manufacture thereof
JPH05327112A (en) Manufacture of semiconductor laser
US4837775A (en) Electro-optic device having a laterally varying region
GB2164206A (en) A semiconductor laser array device
JPS61112392A (en) Semiconductor laser and manufacture thereof
JPS6036118B2 (en) semiconductor laser equipment
JPS60211993A (en) Semiconductor laser
JPS63200591A (en) Semiconductor laser device and manufacture thereof
JPS58215087A (en) Manufacture of plane light emission type laser element
JPH0710015B2 (en) Semiconductor laser device and method of manufacturing the same
JP2912717B2 (en) Semiconductor laser device
JPH0277174A (en) End face radiation type light emitting diode
JPH01136393A (en) Semiconductor laser device
JPS6014483A (en) Semiconductor laser device
JPS594870B2 (en) semiconductor light emitting device
JPS6142188A (en) Semiconductor laser device
JPS63110784A (en) Semiconductor laser
JPS61244082A (en) Semiconductor laser device
JPH01140787A (en) Semiconductor laser element
JPS60128690A (en) Semiconductor light-emitting device
JPH03283693A (en) Manufacture of semiconductor laser
JPH04291981A (en) Semiconductor laser device