JPH0277174A - End face radiation type light emitting diode - Google Patents

End face radiation type light emitting diode

Info

Publication number
JPH0277174A
JPH0277174A JP63229806A JP22980688A JPH0277174A JP H0277174 A JPH0277174 A JP H0277174A JP 63229806 A JP63229806 A JP 63229806A JP 22980688 A JP22980688 A JP 22980688A JP H0277174 A JPH0277174 A JP H0277174A
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
light
face
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63229806A
Other languages
Japanese (ja)
Inventor
Akira Tanioka
谷岡 晃
Motoi Suhara
須原 基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63229806A priority Critical patent/JPH0277174A/en
Publication of JPH0277174A publication Critical patent/JPH0277174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To actuate stably the title diode at low temperature and without causing an oscillation by a method wherein a nonexcitation absorption region consisting of a compound semiconductor having an energy band gap smaller than that of an active layer is provided in the vicinity of the end face on one side of an optical waveguide. CONSTITUTION:A nonexcitation absorption region consisting of a P-type InP layer 9, a non-doped InGaAs photo absorption layer 10 having an energy band gap of 0.75eV, an N-type InGaAsP antimeltback layer 11 and an N-type InP layer 12 is provided in the vicinity of the end face on one side of an optical waveguide. The energy band gap of this layer 10 is smaller than that of an optical waveguide layer (an active layer) 3. Moreover, the thickness of the layer 10 is formed thicker sufficiently than that of the layer 3 and the width of the layer 3 is formed wider sufficiently than that of the layer 10. That is, as the energy band gap in the composition of the nonexcitation absorption region is smaller than that in the composition of the active layer, a ratio that light generated in the active layer (the optical waveguide layer) is absorbed is high and the amount of the light to reach up to the end face of the element is significantly decreased and an oscillation can be inhibited.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、光導波路の端面から自然放出光を光出力とし
て取出す端面放射型発光ダイオードに係り、特に一方の
端面の反則率を低下させてファブリペロ−発振を十分に
抑制しlご端面放射型発光ダイオードに関する。
Detailed Description of the Invention [Purpose of the Invention (Industrial Application Field) The present invention relates to an edge-emitting light emitting diode that extracts spontaneously emitted light from the end face of an optical waveguide as optical output, and in particular, The present invention relates to an edge-emitting type light emitting diode in which Fabry-Perot oscillation is sufficiently suppressed by reducing the rate.

(従来の技術) 端面tli射型弁型発光ダイオードし〜ザダイオー゛ド
に比べると、反射戻り光が光出力に変動を及ぼすことも
なく、信頼性に優れ、かつ安価である。
(Prior Art) Compared to an end face tli injection valve type light emitting diode, the reflected return light does not affect the optical output, and the light output is excellent in reliability and inexpensive.

また、表面放射型発光ダイオードに比べるとシングルモ
ードファイバーへの結合に優れており、大容量通信の光
源、ファイバージャイロの光源として採用されている。
Additionally, compared to surface-emitting light-emitting diodes, it has excellent coupling to single-mode fibers, and is used as a light source for large-capacity communications and fiber gyros.

ストライプ状の光導波路を備えた半導体素子では、この
光導波路の終端部端面で光反射を生じる。
In a semiconductor device equipped with a striped optical waveguide, light reflection occurs at the end face of the optical waveguide.

この端面における光反射を有効に利用しているのがファ
ブリペロ−型レーザダイオードである。これに対して、
端面放射型発光ダイオードでは、その本来の特徴である
自然放出光の利点を発揮するために逆にこの端面反射を
嫌う。即ら、温度下降により誘導放出光が増大して、自
然放出光に対して誘導放出光の占める割合いが増え、信
頼性の著しい低下をもたらす。
A Fabry-Perot laser diode effectively utilizes light reflection at this end face. On the contrary,
Edge-emitting light emitting diodes, on the other hand, dislike this edge reflection in order to take advantage of their original characteristic of spontaneous emission. That is, as the temperature decreases, the stimulated emission light increases, and the ratio of the stimulated emission light to the spontaneous emission light increases, resulting in a significant decrease in reliability.

従来、この端面における反q1を抑制するために種々の
構造が提案されている。
Conventionally, various structures have been proposed to suppress the anti-q1 at the end face.

(1)端面に無反射膜を設ける。(1) Provide a non-reflective film on the end face.

(2)端面を斜めに形成する。(2) Form the end face obliquely.

(3)端面近傍に窓構造を設ける。(3) Provide a window structure near the end face.

(4)端面近傍の活性層即ち光導波路層に対向して絶縁
層を設け、光導波路層に電流が注入されない、いわゆる
非励起吸収領域を形成ず°る。
(4) An insulating layer is provided opposite the active layer near the end face, that is, the optical waveguide layer, to form a so-called non-excited absorption region in which no current is injected into the optical waveguide layer.

(5)端面近傍に、非励起吸収領域および窓構造を設け
る。
(5) A non-excited absorption region and a window structure are provided near the end face.

(発明が解決しJ:つとする課題) 上述(1)では、無反射膜の厚さを100オングストロ
ームのオーダーで制御する必要があり、C■D装置や電
子ビーム蒸着装置では再現性良く形成できず量産に不向
きである。
(Problems to be solved by the invention) In the above (1), it is necessary to control the thickness of the non-reflective film to the order of 100 angstroms, and it cannot be formed with good reproducibility using a CD device or an electron beam evaporation device. It is not suitable for mass production.

(2)は、端面での反射光が光導波路から飛出すことに
より共撮を抑えることが本質であるが、光導波路内に残
る光も多く、低温ではファブリペロ−発掘を起こす。
The essence of (2) is to suppress co-photography by causing the reflected light at the end face to escape from the optical waveguide, but a large amount of light remains in the optical waveguide, causing Fabry-Perot excavation at low temperatures.

(3)では、窓領域の長さを200am程度にすると実
効的な反射率は1%まで低下するが、それ以上にしても
素子の窓領域自体が光導波路となり、実効的な反射率は
変わらず低温においてファブリベロー発振を起こす。
In (3), when the length of the window region is set to about 200 am, the effective reflectance decreases to 1%, but even if it is made longer than that, the window region of the element itself becomes an optical waveguide, and the effective reflectance does not change. First, Fabry-Bello oscillation occurs at low temperatures.

(4)は、端面での反QJに寄与する光量を低めて誘導
放出を抑制するものであるが、活性層と同じ組成の非励
起吸収領域を設(プだのでは、発掘を抑制するには70
0〜1oooμmの長さの非励起吸収領域を必要とする
。低温でも発振を起こさないようにするには、更に長い
非励起吸収領域を必要とし、−枚のウェハーから切出さ
れる素子数が少なくなり、又素子のマウント時にも困難
となる。
(4) suppresses stimulated emission by reducing the amount of light that contributes to the anti-QJ at the end facets. is 70
An unexcited absorption region with a length of 0-100 μm is required. In order to prevent oscillation even at low temperatures, a longer non-excited absorption region is required, which reduces the number of devices cut out from a single wafer and makes it difficult to mount the devices.

(5)の場合でも、低温でし発振を起こさないようにす
るには、窓領Mおよσ非励起吸収領域に長い領域を必要
とし、(4)と同様に一枚のウェハーから切出される素
子数が少なくなり、又素子のマウント時にも困難となる
Even in the case of (5), in order to prevent oscillation at low temperatures, a long region is required in the window region M and the σ unexcited absorption region. This reduces the number of elements that can be mounted, and also makes it difficult to mount the elements.

以上のように、従来の技術では低温で発掘を起こさず安
定に動作し、かつ量産性に優れた端面放射型発光ダイオ
ードが得られなかった。
As described above, with the conventional techniques, it has not been possible to obtain an edge-emitting light-emitting diode that operates stably at low temperatures without causing excavation and is excellent in mass production.

この発明は、低温で発振を起こさず安定に動作し、かつ
量産性に優れた端面放射型発光ダイオードを提供するも
のである。
The present invention provides an edge-emitting light emitting diode that operates stably at low temperatures without causing oscillation and is highly suitable for mass production.

[発明の構成] (課題を解決するための手段) 請求項1記載の発明は、光を発生する活性層がストライ
プ状の光導波路を形成し、その自然放出光を端面から取
出す端面放射型発光ダイオードにおいて、光導波路の端
面近傍に活性層よりもエネルギーバンドギャップが小ざ
い化合物半導体からなる非励起吸収領域を設けたことを
特徴とする端面放1llFl型発光ダイオードである。
[Structure of the Invention] (Means for Solving the Problem) The invention according to claim 1 provides an edge-emitting light emitting device in which an active layer that generates light forms a striped optical waveguide, and the spontaneously emitted light is extracted from the end face. This is an edge-emitting 1llFl type light emitting diode characterized in that an unexcited absorption region made of a compound semiconductor having a smaller energy bandgap than an active layer is provided near the end face of an optical waveguide.

請求項2記載の発明は、光を発生するストライプ状の活
性層の端面から自然放出光を取出す端面放射型発光ダイ
オードにおいて、端面近傍に散乱面を有する非励起吸収
領域を設けたことを特徴とする端面放射型発光ダイオー
ドである。
The invention according to claim 2 is an edge-emitting light emitting diode that extracts spontaneously emitted light from an end face of a striped active layer that generates light, characterized in that an unexcited absorption region having a scattering surface is provided near the end face. This is an edge-emitting light emitting diode.

(作 用) 請求項1記載の端面放削型発光ダイオードでは、非励起
吸収領域の組成が活性層の組成よりエネルギーバンドギ
ャップが小さいので、活性層(光導波路層)で発生した
光が吸収される割合いが高く、素子端面まで達する光の
吊が大幅に減少し、発振を抑制することができる。しか
も、活性層で発生した光が吸収される割合いが高く非励
起吸収領域を長く形成する必要はないので、従来技術に
比べて小形にでき、−枚のウェハーから取出される素子
も多く量産に適している。
(Function) In the edge-cutting type light emitting diode according to claim 1, since the composition of the unexcited absorption region has a smaller energy band gap than the composition of the active layer, light generated in the active layer (optical waveguide layer) is absorbed. The light transmission rate is high, and the amount of light reaching the element end face is significantly reduced, making it possible to suppress oscillation. Moreover, since the rate of absorption of light generated in the active layer is high and there is no need to form a long non-excited absorption region, the size can be made smaller compared to conventional technology, and many devices can be produced from a single wafer. suitable for

請求項2記載の端面放IJJ型発光ダイオードでは、非
励起吸収領域に散乱面を有するので、先々波路を伝搬し
てきた光の多くは散乱され、ファブリペロ−発掘が起こ
り難くなり、非励起吸収領域を長く形成する必要はない
ので、従来技術に比べて小形にでき、−枚のウェハーか
ら取出される素子も多く量産に適している。
In the edge-emitting IJJ type light emitting diode according to claim 2, since the non-excited absorption region has a scattering surface, most of the light that has propagated in the wave path in the past is scattered, making it difficult for Fabry-Perot excavation to occur, and causing the non-excited absorption region to scatter. Since it does not need to be formed long, it can be made smaller than conventional techniques, and more elements can be taken out from one wafer, making it suitable for mass production.

(実施例1) 以下、第1図乃至第4図を参照して本発明の第1の実施
例の端面成用型発光ダイオードを詳細に説明する。
(Example 1) Hereinafter, an edge molded light emitting diode according to a first example of the present invention will be described in detail with reference to FIGS. 1 to 4.

第1図は本発明の一実施例に係る端面成用型発光ダイオ
ードの縦断面図、第2図は横断面図、第3図は一部切り
欠き斜視図、第4図は特性を示す図である。
FIG. 1 is a longitudinal cross-sectional view of an edge molded light emitting diode according to an embodiment of the present invention, FIG. 2 is a cross-sectional view, FIG. 3 is a partially cutaway perspective view, and FIG. 4 is a diagram showing characteristics. It is.

この実施例の端面放射型発光ダイオードは、■−V族元
素からなる化合物の単結晶基板1nP1上にn−1n 
pバラフッ層2、エネルギーバンド:%”l sp ツ
ブ0.94eVのl nGaASP光導波路層(活性層
)3、p−1nPクラッド層4、p−InGaΔSpコ
ンタクト層5からなるストライプ状の積層体が設けられ
、その両側にp−1nP層6、n−1nP層7およびn
−InGaAsP層8からなる電流阻止層が設りられ、
ストライプ状の積層体が電流阻止層により埋め込まれて
いる。
The edge-emitting light-emitting diode of this embodiment has n-1n on a single-crystal substrate 1nP1 of a compound made of ■-V group elements.
A striped laminate consisting of a p-variety layer 2, an energy band of %"l sp 0.94 eV, an lnGaASP optical waveguide layer (active layer) 3, a p-1nP cladding layer 4, and a p-InGaΔSp contact layer 5 is provided. p-1nP layer 6, n-1nP layer 7 and n-1nP layer 6 on both sides.
- a current blocking layer consisting of an InGaAsP layer 8 is provided;
A striped stack is embedded with a current blocking layer.

そして、片方の端面近傍にはp−InF3、エネルギー
バンドギャップ0.756VのノンドープI nGaA
S光吸収層10.n−I nGaASPアンヂメルトパ
ック層11、n−InpH2からなる非励起吸収領域が
設けられている。この光吸収層10は、エネルギーバン
ドギャップが光導波路層3のエネルギーバンドギャップ
よりも小さい。また光吸収層10は厚さが光導波路層3
の厚さよりも十分に厚く、また幅は光導波路層10の幅
より・し十分に広く形成されている。なお、実施例では
、活性層(光導波路層)3は幅2.5μm、厚さ0.3
μrT1、長さ250μm、また光吸収層10は幅40
0μm、厚さ2μm、長さ400μmとした。
Then, near one end face, there is p-InF3, non-doped InGaA with an energy band gap of 0.756V.
S light absorption layer 10. An unexcited absorption region consisting of n-In nGaASP angel melt pack layer 11 and n-In pH2 is provided. This light absorption layer 10 has an energy bandgap smaller than that of the optical waveguide layer 3 . Further, the thickness of the light absorption layer 10 is the same as that of the optical waveguide layer 3.
It is formed to be sufficiently thicker than the thickness of the optical waveguide layer 10, and its width is sufficiently wider than the width of the optical waveguide layer 10. In the example, the active layer (optical waveguide layer) 3 has a width of 2.5 μm and a thickness of 0.3 μm.
μrT1, length 250 μm, and light absorption layer 10 width 40 μm
The thickness was 0 μm, the thickness was 2 μm, and the length was 400 μm.

そして、n−1nl)基板1の地表面とC1−InGa
ASPコンタクト層5表面には層重表面3.14が設け
られている。
Then, n-1nl) the ground surface of substrate 1 and C1-InGa
The surface of the ASP contact layer 5 is provided with a layered surface 3.14.

次に、この端面放則型発光ダイA−ドの製造方法を説明
する。
Next, a method of manufacturing this edge-radial type light emitting diode A will be explained.

まず、m−v族元素からなる化合物の単結晶基板1nP
1上にn−1nPバッファ層2、エネルギーバンドギャ
ップ0.94eVのInGaASP光導波路層(活性層
)3、E)−InPクラッド層4、p−I nGaAS
Pjンタクト層5をこの順に液相エピタキシャル成長(
LPE)法で形成する。
First, a single crystal substrate 1nP of a compound consisting of m-v group elements.
1, n-1nP buffer layer 2, InGaASP optical waveguide layer (active layer) 3 with an energy band gap of 0.94 eV, E)-InP cladding layer 4, p-I nGaAS
The Pj contact layer 5 is grown in this order by liquid phase epitaxial growth (
LPE) method.

次に、この積層体表面に、ストライプ状の二酸化珪素(
図示せず)を被覆してから、これをマスクとしてBr−
CH30H溶液とト(C+−1−(3PO4溶液による
異方性エツチングにより、InP基板1が露出するまで
エツチングする。これにより、n−1nPバッファ層2
、InGaASP光導波路層(活tり層)3、I)−1
nPクラッド層4、p−I nGaAsP:]ンタクト
層5をストライプ状に形成する。
Next, stripe-shaped silicon dioxide (
(not shown), and then use this as a mask to coat Br-
The InP substrate 1 is etched by anisotropic etching using the CH30H solution and the (C+-1-(3PO4) solution until the InP substrate 1 is exposed. As a result, the n-1nP buffer layer 2
, InGaASP optical waveguide layer (active t layer) 3, I)-1
An nP cladding layer 4 and a p-I nGaAsP:] contact layer 5 are formed in a stripe shape.

この後、ストライプ状積層体を埋め込むように、p−I
nP層6、n−Inp層7おJ:びn−InGaAsP
層8を順次LPE法により形成して、電流阻止層を設け
る。
After this, p-I
nP layer 6, n-Inp layer 7 and n-InGaAsP
Layers 8 are successively formed by LPE to provide a current blocking layer.

次に、ストライプ状の二酸化珪素を除去し、再度全面に
二酸化珪素を被覆する。この後、非励起吸収領域となる
部分の二酸化珪素を除去し、残った二酸化珪素をマスク
として塩酸系、硫酸系エッヂヤントにより、InP基板
1が露出するまでエツチングする。この後、再度1)−
InF3、エネルギーバンドギャップ0.75eVのノ
ンドープ■nGaAs光吸収層10.n−I nGaA
SPアンチメルトバック層11、n−Inp層12をこ
の順にLPE法にて成長被覆して、非励起吸収領域を形
成する。
Next, the striped silicon dioxide is removed and the entire surface is coated with silicon dioxide again. Thereafter, the silicon dioxide in the portion that will become the non-excited absorption region is removed, and using the remaining silicon dioxide as a mask, etching is performed using a hydrochloric acid-based or sulfuric acid-based edger until the InP substrate 1 is exposed. After this, again 1)-
InF3, non-doped nGaAs light absorption layer 10 with an energy band gap of 0.75 eV. n-I nGaA
The SP anti-meltback layer 11 and the n-Inp layer 12 are grown and coated in this order by the LPE method to form a non-excited absorption region.

次に、二酸化珪素を除去し、n−1nP基板1の地表面
とp−1nGaASPコンタク1〜層5表面に、導電金
属層を被覆して電極13.14を形成する。この後、上
述の活性層長、光吸収層長となるように男開してして端
面放射型発光ダイオードを(qる。
Next, the silicon dioxide is removed, and the ground surface of the n-1nP substrate 1 and the surfaces of the p-1nGaASP contacts 1 to 5 are coated with a conductive metal layer to form electrodes 13 and 14. Thereafter, the edge-emitting light emitting diode is opened so that the active layer length and light absorption layer length are as described above.

上述の本発明の端面成用型発光ダイオードは、非励起吸
収領域はその組成が活性層の組成よりエネルギーバンド
ギャップが小さいので、活性層(光導波路層)で発生し
た光が吸収される割合いが高く、素子端面まで達する光
の間が大幅に減少し、発掘を抑制することができる。
In the edge molded light emitting diode of the present invention described above, the composition of the non-excited absorption region has a smaller energy band gap than the composition of the active layer, so the proportion of light generated in the active layer (optical waveguide layer) is absorbed. is high, the distance between light reaching the element end face is greatly reduced, and excavation can be suppressed.

この実施例の端面放射型発光ダイオードの一40℃から
60’Cの温度範囲におけるスペクトル半値幅の変化を
第4図aに示す。実施例の喘而放!7−1型発光ダイオ
ードでは活性層のエネルギーバンドギャップの温度端面
放射型発光ダイオード変化にだけ依存する直線の変化が
みられ、−40℃の低温でも安定に動作することが分か
る。
FIG. 4a shows the change in the spectral half-width of the edge-emitting light emitting diode of this example in the temperature range of -40°C to 60'C. Example of wheezing release! In the 7-1 type light emitting diode, a linear change that depends only on the temperature change in the energy bandgap of the active layer is seen, indicating that it operates stably even at a low temperature of -40°C.

比佼のために窓#4造のみを有する素子と活性層と同組
成の非励起吸収領域だけを設()た素子により1qられ
るスペクトル半値幅の温度変化を、それぞれ第4図す、
cに示す。第4図す、cから明らかなように、比較例の
端面放射型発光ダイオードでは、−40’Cの低温でそ
れまでの直線状変化から急激なスペクトル半値幅の減少
がみられ、発掘状態を示している。
Figure 4 shows the temperature changes in the spectral half-width of 1q for an element with only a #4 window structure and an element with only an unexcited absorption region of the same composition as the active layer, respectively.
Shown in c. As is clear from Figures 4 and 4c, in the edge-emitting light emitting diode of the comparative example, at a low temperature of -40'C, there was a sudden decrease in the half-width of the spectrum from the previous linear change. It shows.

なお、上述の実施例では、非励起吸収領域の吸収層の厚
さを光導波路層の厚さよりも十分に厚く、また光導波路
層の幅よりも十分に広く形成した、即ら非励起吸収領域
の断面積を光導波路の断面積より広くしたので、この非
励起吸収領域は窓領域の効果をも有する。つまり、光導
波路より非励起吸収領域に入射した光は放射状に広がり
、この結果素子端面からの反射光が再び光導波路に結合
する効率が低下し、実効的な反射率はざらに低減し発振
を抑制づる効果を持つ。これにより、素子のより小形化
が可能となる。
In the above embodiment, the thickness of the absorption layer of the non-excited absorption region is sufficiently thicker than the thickness of the optical waveguide layer, and the thickness of the absorption layer is sufficiently wider than the width of the optical waveguide layer. Since the cross-sectional area of the optical waveguide is made larger than the cross-sectional area of the optical waveguide, this unexcited absorption region also has the effect of a window region. In other words, the light that enters the non-excited absorption region from the optical waveguide spreads radially, and as a result, the efficiency with which the reflected light from the element end face is coupled back into the optical waveguide decreases, and the effective reflectance is drastically reduced, causing oscillation. It has a suppressive effect. This allows the device to be made more compact.

また、上述の実施例では、非励起吸収領域に電流が注入
されないようにするために、pn逆接合を形成したが、
これに限らず、例えば光吸収層を設【ノた領域に対向す
る部分の電極14の下部に二酸化珪素等の絶縁層を設け
て非励起吸収領域とすることもできる。
Furthermore, in the above embodiment, a pn reverse junction was formed in order to prevent current from being injected into the non-excited absorption region.
However, the invention is not limited to this, and for example, an insulating layer such as silicon dioxide may be provided under the electrode 14 in a portion facing the region provided with the light absorption layer to form a non-excited absorption region.

(実施例2) 第5図は本発明の他の実施例に係る端面放射型発光ダイ
オードの横断面図、第6図は一部切り欠き斜視図、第7
図は特性を示す図である。
(Example 2) FIG. 5 is a cross-sectional view of an edge-emitting light emitting diode according to another embodiment of the present invention, FIG. 6 is a partially cutaway perspective view, and FIG.
The figure is a diagram showing characteristics.

この実施例の切面放射型発光ダイオードは1.3μmに
発光中心を持つものであり、第5図及び第6図に示すよ
うに、端面近傍の非励起吸収領域なる領域30に、In
P基板20の表面に艮ざ500μinに周期6000オ
ングストロームの回折格子21を有し、その上にn−1
nGaAsPガイド層22、InGaASP活性層及び
吸収層24、D−1nPクラッド層26、p−I nG
aAsP−1ンタクト層28が順次積層されている。そ
して、この積層体はストライプ状にエツチング形成され
、その両側に電流阻止層となるp−1nP層32、n−
1np層34及びn−1rlGaAsP層36が形成さ
れて、ストライプ状積層体か埋め込まれている。
The face-emitting light emitting diode of this embodiment has a light emission center at 1.3 μm, and as shown in FIGS. 5 and 6, an In
A diffraction grating 21 with a period of 6000 angstroms is provided on the surface of the P substrate 20 with a width of 500 μin.
nGaAsP guide layer 22, InGaASP active layer and absorption layer 24, D-1nP cladding layer 26, p-I nG
The aAsP-1 contact layers 28 are sequentially laminated. This laminated body is etched into a stripe shape, and on both sides there is a p-1nP layer 32 which becomes a current blocking layer, and an n-
A 1np layer 34 and an n-1rlGaAsP layer 36 are formed and the striped stack is embedded.

そして、非励起吸収領域なる領域30では、p−1nG
aASPlンタクト層28及びn−1nQaAsP層3
6上に二酸化硅素層38が設けられ、更に素子の°表面
及び表面には導電性金属層が被覆され電極40.41が
設(プられている。
In the region 30, which is the unexcited absorption region, p-1nG
aASPl contact layer 28 and n-1nQaAsP layer 3
A silicon dioxide layer 38 is provided on top of the device 6, and the top and bottom surfaces of the device are further coated with a conductive metal layer and provided with electrodes 40,41.

この実施例では、散乱面として、発光波長に対する位相
整合条件より離れた回折格子を用いており、回折格子で
帰還、反射する光は殆どなく、多くの光は散乱光となる
。なお、散乱面は回折格子に限るものではない。
In this embodiment, a diffraction grating that is distant from the phase matching condition for the emission wavelength is used as the scattering surface, so that almost no light is returned or reflected by the diffraction grating, and most of the light becomes scattered light. Note that the scattering surface is not limited to a diffraction grating.

この実施例の端面放射型発光ダイオードの一40℃から
60℃の温度範囲におけるスペクトル半値幅の変化を第
7図に示す。実施例の端面放射型発光ダイオードでは活
性層のエネルギーバンドギャップの温度喘I放射型発光
ダイA−ド変化にだ一プ依存する直線の変化がみられ、
−40’Cの低温でも安定に動作することが分かる。
FIG. 7 shows the change in the spectral half-value width of the edge-emitting light emitting diode of this example in the temperature range of 140° C. to 60° C. In the edge-emitting light-emitting diode of the example, a linear change in the energy bandgap of the active layer that depends on the change in temperature of the emitting-type light-emitting diode is observed.
It can be seen that it operates stably even at a low temperature of -40'C.

[発明の効果] 本発明の端面成用型発光ダイオードは、低温C安定した
動作をし信頼性が高く、また制御が容易であり、再現性
が向−卜するの・で、非常に高い歩留りが得られる。し
かも小形で一枚のウェハーから得られる素子数も多く、
安価に製造できる。
[Effects of the Invention] The edge molded light emitting diode of the present invention operates stably at low temperatures, is highly reliable, is easy to control, and improves reproducibility, resulting in a very high yield. is obtained. Moreover, it is small and a large number of elements can be obtained from a single wafer.
Can be manufactured cheaply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の端面放射型発光ダイオード
の縦断面図、第2図はその横断面図、第3図は一部切り
欠き斜視図、第4図は特性を示す図、第5図は他の実施
例の端面放射型発光ダイオードの横断面図、第6図は一
部切り欠き斜視図、第7図は特性を示す図である。 3・・・・・・活性層、光導波路層 10・・・・・・光吸収層 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 スペクトル峯場十番〔ガη0 ミ浴絽叡叡ルな
FIG. 1 is a longitudinal sectional view of an edge-emitting light emitting diode according to an embodiment of the present invention, FIG. 2 is a cross-sectional view thereof, FIG. 3 is a partially cutaway perspective view, and FIG. 4 is a diagram showing characteristics. FIG. 5 is a cross-sectional view of an edge-emitting light emitting diode according to another embodiment, FIG. 6 is a partially cutaway perspective view, and FIG. 7 is a diagram showing characteristics. 3...Active layer, optical waveguide layer 10...Light absorption layer agent Patent attorney Nori Chika Ken Yudo Takehana Kikuo Spectrum Mineba Juban

Claims (2)

【特許請求の範囲】[Claims] (1)光を発生する活性層がストライプ状の光導波路を
形成し、その自然放出光を端面から取出す端面放射型発
光ダイオードにおいて、 前記光導波路の端面近傍に前記活性層よりもエネルギー
バンドギャップが小さい化合物半導体からなる非励起吸
収領域を設けたことを特徴とする端面放射型発光ダイオ
ード。
(1) In an edge-emitting light emitting diode in which the active layer that generates light forms a striped optical waveguide and the spontaneously emitted light is extracted from the end face, an energy bandgap near the end face of the optical waveguide is larger than that of the active layer. An edge-emitting light emitting diode characterized by having a non-excited absorption region made of a small compound semiconductor.
(2)光を発生するストライプ状の活性層の端面から自
然放出光を取出す端面放射型発光ダイオードにおいて、 前記端面近傍に散乱面を有する非励起吸収領域を設けた
ことを特徴とする端面放射型発光ダイオード。
(2) An edge-emitting light emitting diode that extracts spontaneously emitted light from the end face of a striped active layer that generates light, characterized in that an unexcited absorption region having a scattering surface is provided near the end face. light emitting diode.
JP63229806A 1988-06-10 1988-09-16 End face radiation type light emitting diode Pending JPH0277174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229806A JPH0277174A (en) 1988-06-10 1988-09-16 End face radiation type light emitting diode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-141623 1988-06-10
JP14162388 1988-06-10
JP63229806A JPH0277174A (en) 1988-06-10 1988-09-16 End face radiation type light emitting diode

Publications (1)

Publication Number Publication Date
JPH0277174A true JPH0277174A (en) 1990-03-16

Family

ID=26473827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229806A Pending JPH0277174A (en) 1988-06-10 1988-09-16 End face radiation type light emitting diode

Country Status (1)

Country Link
JP (1) JPH0277174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436082U (en) * 1990-07-23 1992-03-26
US5357124A (en) * 1992-07-22 1994-10-18 Mitsubishi Precision Co. Ltd Superluminescent diode with stripe shaped doped region
EP0793280A1 (en) * 1996-02-27 1997-09-03 Oki Electric Industry Co., Ltd. An egde emitting LED and method of forming the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436082U (en) * 1990-07-23 1992-03-26
JP2548696Y2 (en) * 1990-07-23 1997-09-24 株式会社北村鉄工所 Hinge with special tube
US5357124A (en) * 1992-07-22 1994-10-18 Mitsubishi Precision Co. Ltd Superluminescent diode with stripe shaped doped region
EP0793280A1 (en) * 1996-02-27 1997-09-03 Oki Electric Industry Co., Ltd. An egde emitting LED and method of forming the same
US5889294A (en) * 1996-02-27 1999-03-30 Oki Electric Industry Co., Ltd. Edge emitting LED having a selective-area growth optical absorption region
US6013539A (en) * 1996-02-27 2000-01-11 Oki Electric Industry Co., Ltd. Edge emitting led and method of forming the same

Similar Documents

Publication Publication Date Title
US4958355A (en) High performance angled stripe superluminescent diode
US5088099A (en) Apparatus comprising a laser adapted for emission of single mode radiation having low transverse divergence
US4821276A (en) Super-luminescent diode
US5208183A (en) Method of making a semiconductor laser
US4847844A (en) Surface-emitting semiconductor laser device
US8716044B2 (en) Optical semiconductor device having ridge structure formed on active layer containing P-type region and its manufacture method
KR0142587B1 (en) Tunable semiconductor diode laser with distributed reflection and method of manufacturing such a semiconductor diode
JP3153727B2 (en) Super luminescent diode
EP0378098B1 (en) Semiconductor optical device
JPS59205787A (en) Single axial mode semiconductor laser
US4722092A (en) GaInAsP/InP distributed feedback laser
US4416012A (en) W-Guide buried heterostructure laser
JPH10303497A (en) Ring resonator type of surface light emitting semiconductor laser, and its manufacture
EP1601028A1 (en) Optical semiconductor device and its manufacturing method
JPH0468798B2 (en)
JPH0461514B2 (en)
JP2006515109A (en) Semiconductor laser
JPH01164077A (en) Light-emitting diode and its manufacture
JP2000349394A (en) Semiconductor laser device
JPH0277174A (en) End face radiation type light emitting diode
JP2000244059A (en) Semiconductor laser device
JP3683416B2 (en) Super luminescent diode
US4937638A (en) Edge emitting light emissive diode
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JP2759275B2 (en) Light emitting diode and method of manufacturing the same