JPS61281009A - Apparatus for producing polycrystal silicon - Google Patents

Apparatus for producing polycrystal silicon

Info

Publication number
JPS61281009A
JPS61281009A JP60120504A JP12050485A JPS61281009A JP S61281009 A JPS61281009 A JP S61281009A JP 60120504 A JP60120504 A JP 60120504A JP 12050485 A JP12050485 A JP 12050485A JP S61281009 A JPS61281009 A JP S61281009A
Authority
JP
Japan
Prior art keywords
bell jar
furnace
coating layer
gold coating
polycrystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60120504A
Other languages
Japanese (ja)
Other versions
JPH0641369B2 (en
Inventor
Kazuo Ijuin
伊集院 一男
Teruhisa Kitagawa
輝久 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUJIYUNDO SILICON KK
Original Assignee
KOUJIYUNDO SILICON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUJIYUNDO SILICON KK filed Critical KOUJIYUNDO SILICON KK
Priority to JP60120504A priority Critical patent/JPH0641369B2/en
Publication of JPS61281009A publication Critical patent/JPS61281009A/en
Publication of JPH0641369B2 publication Critical patent/JPH0641369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To eliminate the occurrence of cracks and reduce the heat loss, by forming a gold coating layer on the inner surface of a bell jar to give a specular surface in the titled apparatus having polycrystal silicon seed rods provided in the interior of a furnace consisting of a base and the bell jar. CONSTITUTION:A furnace 10 is constituted of a base 11 and a bell jar 12, and electrodes 14 for supporting polycrystal silicon seed rods 13, raw material gas inlet 15 and waste gas discharge outlet 15 are formed in the base 11. A gold coating layer 17 is formed on the inner surface of the bell jar 12 to give a specular surface. A current is then passed through the polycrystal silicon seed rods 13 to heat the seed rods 13 at about 1,050-1,150 deg.C. On the other hand, a mixed gas of chlorosilane and hydrogen is introduced from the inlet 15 into the furnace 10 to separate and deposit simple substance of silicon on the surface of the seed rods 13. The heat radiation through the bell jar 12 is suppressed by the specular surface due to the above-mentioned gold coating layer 17, and the temperature gradient in the furnace 10 is reduced. Thus, the temperature difference between the outer edge par and the central part is kept within a permissible range even when thick polycrystal silicon is grown and the heat loss is reduced to provide remarkable energy saving effect without causing cracks.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は耐久性がよく、かつ加熱効率のよい多結晶シリ
コンの製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a polycrystalline silicon manufacturing apparatus that has good durability and high heating efficiency.

〈従来の技術〉 半導体の原料となる高純度の多結晶シリコンは一般にベ
ースと該ベースの上面に被せられたベルジャとからなる
炉を有する装置によって製造されている。該装置のベー
スには電極が設けられており、該電極には固定孔が設け
られている。多結晶シリコンを製造する場合には電極に
固定孔に多結晶シリコンの種棒を取り付けて炉の内部に
複数本の該種棒を立設し、該種棒を1050℃程度に通
電加熱する一方、炉内部にクロルシランと水素との混合
ガスを導入して多結晶シリコンを種棒表面に析出、成長
させる。従って、上記製造装置の炉は出来るだけ加熱効
果の良いことが求められるが、実際には装置構成上、放
熱、伝熱による熱損失を避けることが出来ない、更に、
反応炉を形成するベルジャの材料としては石英が用いら
れて来たが、近年生産性を高めるために炉の大型化が求
められ、金属製のベルジャが用いられるようになって来
た。この場合過熱による炉の損傷を防ぐ必要から通常、
炉の外側を冷却している。このため熱損失は約50〜9
0%にも及ぶ、一方、高品質の多結晶シリコンを製造す
るには炉内の温度分布を均一にし、種棒の表面に多結晶
シリコンを均一に成長させる必要がある。
<Prior Art> High-purity polycrystalline silicon, which is a raw material for semiconductors, is generally manufactured by an apparatus having a furnace consisting of a base and a bell jar placed on the top surface of the base. The base of the device is provided with an electrode, which is provided with a fixing hole. When manufacturing polycrystalline silicon, a polycrystalline silicon seed rod is attached to the fixed hole in the electrode, a plurality of the seed rods are set upright inside the furnace, and the seed rod is heated to about 1050 ° C. A mixed gas of chlorosilane and hydrogen is introduced into the furnace to deposit and grow polycrystalline silicon on the surface of the seed rod. Therefore, the furnace of the above manufacturing equipment is required to have as good a heating effect as possible, but in reality, due to the equipment configuration, heat loss due to heat radiation and heat transfer cannot be avoided.
Quartz has been used as the material for the bell jar that forms the reactor, but in recent years there has been a demand for larger furnaces to increase productivity, and metal bell jars have come to be used. In this case, it is usually necessary to prevent damage to the furnace due to overheating.
Cooling the outside of the furnace. Therefore, the heat loss is approximately 50 to 9
On the other hand, in order to produce high-quality polycrystalline silicon, it is necessary to make the temperature distribution in the furnace uniform and to uniformly grow polycrystalline silicon on the surface of the seed rod.

このため、従来、ベルジャの内面を鏡面にし、種棒から
の輻射熱を反射させることにより加熱効果と温度分布の
均一化を図っている。
For this reason, conventionally, the inner surface of the bell jar is mirror-finished to reflect the radiant heat from the seed rod, thereby achieving a uniform heating effect and temperature distribution.

〈発明が解決しようとする問題点〉 従来、ベルジャ内面を鏡面状態とするには、基材である
ステンレス鋼の表面にニッケル、銀、クロム等を溶射し
、又は鍍金し、或いはベルジャ内面自体を電解研摩、パ
フ研摩して鏡面状態としている。ところがこのような鏡
面では耐久性に劣る欠点があり、さらにベルジャ内面を
単に研摩するものはその反射率が銀を鍍金したもの等に
比べ小さい欠点もある。
<Problems to be Solved by the Invention> Conventionally, in order to make the inner surface of a bell jar mirror-like, the surface of the stainless steel base material is thermally sprayed or plated with nickel, silver, chromium, etc., or the inner surface of the bell jar itself is coated. It is electrolytically polished and puff polished to a mirror finish. However, such a mirror surface has the disadvantage that it is inferior in durability, and furthermore, a bell jar whose inner surface is simply polished has a disadvantage that its reflectance is lower than that of a bell jar plated with silver.

炉内で多結晶シリコンを製造する場合、種棒の表面にシ
リコンが析出するだけでなくベルジャ内面にもシリコン
化合物が付着する0種棒に通電中は炉内部に原料ガスま
たはアルゴン等の不活性ガスが供給され、炉内の酸化を
防止しているが、製造後、成長した多結晶シリコンを炉
外に取り出すためベルジャを開けると外部の空気が流入
し、上記ベルジャ内面に付着したシリコン化合物を酸化
分解する。或いは残留するクロルシランが酸化し、これ
らに起因する塩酸を生じ、これがベルジャ内面を侵す、
このため、ベルジャ内面を研摩して鏡面としたものは直
接その研摩面が腐食され、或いは銀等を鍍金したものは
その鍍金面が侵されて剥離し、鏡面が損なわれる問題が
ある。
When producing polycrystalline silicon in a furnace, not only silicon precipitates on the surface of the seed rod, but also silicon compounds adhere to the inside of the bell jar.While the seed rod is energized, there is no raw material gas or inert gas such as argon inside the furnace. Gas is supplied to prevent oxidation inside the furnace, but after manufacturing, when the bell jar is opened to take the grown polycrystalline silicon out of the furnace, outside air flows in and removes the silicon compounds that have adhered to the inside of the bell jar. Decomposes by oxidation. Alternatively, the remaining chlorosilane may oxidize and generate hydrochloric acid, which attacks the inner surface of the bell jar.
For this reason, the polished surface of bell jars polished to a mirror surface is directly corroded, and the plated surface of bell jars plated with silver or the like is corroded and peeled off, resulting in the mirror surface being damaged.

く問題を解決するための手段〉 本発明はベルジャ内面を化学的に極めて安定な金の被覆
層を設けて鏡面とすることにより、従来の問題を解決し
たものである。
Means for Solving the Problems> The present invention solves the conventional problems by providing the inner surface of a belljar with a chemically extremely stable gold coating layer to give it a mirror surface.

〈発明の構成〉 本発明によれば、ベースとベルジャからなる炉の内部に
多結晶シリコンの種棒を配設して該種棒の多結晶シリコ
ンを成長させる製造装置において、上記ベルジャ内面に
金被覆層を設けて鏡面にしたことを特徴とする多結晶シ
リコンの製造装置が提供される。
<Structure of the Invention> According to the present invention, in a manufacturing apparatus for growing polycrystalline silicon on the seed rod by disposing a polycrystalline silicon seed rod inside a furnace consisting of a base and a bell jar, gold is provided on the inner surface of the bell jar. An apparatus for manufacturing polycrystalline silicon is provided, characterized in that a coating layer is provided to give a mirror surface.

又、好ましくは、上記金被覆層がベルジャ内面に金を溶
射、蒸着、あるいは鍍金して形成されることを特徴とす
る製造装置、あるいは、上記金被覆層がベルジャ内面に
金被覆板を張設して形成されることを特徴とする製造装
置が提供される。
Preferably, the gold coating layer is formed on the inner surface of the bell jar by thermal spraying, vapor deposition, or plating with gold, or the gold coating layer is formed on the inner surface of the bell jar with a gold coating plate. A manufacturing apparatus is provided, which is characterized in that it is formed by:

本発明はベルジャ内面に金の被覆層を形成し、該内面を
鏡面化する。金被覆層の形成方法は、直接ベルジャ内面
に被覆層を形成しても良く、又。
In the present invention, a gold coating layer is formed on the inner surface of the bell jar, and the inner surface is mirror-finished. The method for forming the gold coating layer may include forming the coating layer directly on the inner surface of the bell jar.

金めつき板を該内面に張設して形成してもよい。A gold-plated plate may be stretched over the inner surface.

ベルジャ内面に直接、金被覆層を形成するには、金を該
内面に溶射し、蒸着し、或いは鍍金などの手段によって
形成する。尚、大型の装置には上記被覆層の形成手段と
しては溶射、蒸着あるいは筆法に、金被覆を有する板(
金被覆板)を上記ベルジャ内面に張り付けて鏡面化して
もよい、該金被覆板を用いる場合には、電気めっき等に
より下地の板に金被覆を施し易いので上記被覆層の形成
が容易になる利点がある。勿論下地の板に金被覆を施す
には上記電気めっきに限らず他の適宜な方法のよっても
なされる。尚、下地の板は炉内が約1000℃前後に加
熱されるので耐熱性の大きい鋼板などが用いられる。因
に上記金被覆層の厚さは格別制限されない。
To form a gold coating layer directly on the inner surface of the bell jar, gold is formed by thermal spraying, vapor deposition, or plating on the inner surface. For large-scale devices, the coating layer may be formed by thermal spraying, vapor deposition, brushing, or a gold-coated plate (
A gold-coated plate) may be pasted on the inner surface of the bell jar to give it a mirror surface. When using the gold-coated plate, it is easy to apply gold coating to the underlying plate by electroplating, etc., making it easy to form the coating layer. There are advantages. Of course, applying the gold coating to the underlying plate is not limited to the electroplating described above, but may also be done by other suitable methods. Incidentally, since the inside of the furnace is heated to about 1000° C., a steel plate or the like with high heat resistance is used as the base plate. Incidentally, the thickness of the gold coating layer is not particularly limited.

上記金被覆板をベルジャ内面に張設するには、ベルジャ
内面を覆うように相隣接する該金被覆板を隙間なく張合
わせ、該金被覆板の両端をビス止め等により固定すれば
よい、尚、ベルジャ内面が湾曲しているのに対し、真直
な金被覆板を張合わせると、この金被覆板裏側に僅かな
隙間を生ずるが、炉内の輻射熱は金被覆面で反射され、
また熱伝導性のよい固、定ビスを用いれば該固定ビスを
介しての放熱および外部からの冷却も効果的になされる
ので格別支障無い。
In order to affix the above-mentioned gold-coated plates to the inner surface of the bell jar, it is sufficient to laminate the adjacent gold-coated plates without any gaps so as to cover the inner surface of the bell-jar, and fix both ends of the gold-coated plates with screws or the like. , the inner surface of the bell jar is curved, but when a straight gold-coated plate is pasted together, a slight gap is created on the back side of the gold-coated plate, but the radiant heat inside the furnace is reflected by the gold-coated surface.
Furthermore, if fixing screws with good thermal conductivity are used, heat radiation and cooling from the outside can be effectively achieved through the fixing screws, so there is no particular problem.

次に、ベルジャ内面に直接、金被覆層を形成する場合お
よび金被覆板を用いる場合、いずれにおいても、ベルジ
ャ内面の天井面を除く内側面のみに上記金被覆層を形成
してもよい、一般に発熱体である種棒は細長い棒状部材
であり、炉内に立設されるので、側面への輻射熱が大き
く、天井面への輻射は側面はど大きくはない、従ってベ
ルジャの内側面に金被覆層を設ければ天井面を除いても
加熱効果を高め、炉内温度の均一化を充分に達成できる
Next, in both cases where the gold coating layer is directly formed on the inner surface of the belljar and when a gold coating plate is used, the gold coating layer may be formed only on the inner surface of the belljar inner surface excluding the ceiling surface. The seed rod, which is the heating element, is a long and thin rod-shaped member that is placed upright inside the furnace, so the radiant heat is large on the sides, and the radiation on the ceiling is not as large on the sides.Therefore, the inner surface of the bell jar is coated with gold. By providing a layer, the heating effect can be enhanced even if the ceiling surface is excluded, and the temperature inside the furnace can be sufficiently uniformized.

第1図に本発明に係る炉の一例を示す0図示するように
炉lOはベース11と該ベース11の上面を覆うベルジ
ャ12から形成され、該ベース1づV“ lには種棒13を保持する電極144適数設けられてい
る。更にベース11には原料ガスであるクロルシランと
水素との混合ガスを炉内に供給するための導入口15と
反応後のガスを排出する排気口16とが設けられている
。尚、図にはこれら電極等の一部が示され他は省略され
ている。
FIG. 1 shows an example of the furnace according to the present invention. As shown in the figure, the furnace 1O is formed of a base 11 and a bell jar 12 that covers the upper surface of the base 11, and a seed rod 13 is attached to the base 1. A suitable number of holding electrodes 144 are provided.Furthermore, the base 11 has an inlet 15 for supplying a mixed gas of chlorosilane and hydrogen, which is a raw material gas, into the furnace, and an exhaust port 16 for discharging the gas after the reaction. Note that some of these electrodes are shown in the figure and others are omitted.

上記ベルジャ12の内面に金被覆層17が形成されてい
る。該金被覆層17は多数の金めつき板17aをベルジ
ャ内面にビス止めして形成される。
A gold coating layer 17 is formed on the inner surface of the bell jar 12. The gold coating layer 17 is formed by fixing a large number of gold plated plates 17a to the inner surface of the bell jar with screws.

多結晶シリコンを製造する場合、上記電極14に種棒1
3を保持させて炉内に適数本の種棒を立設し、該種棒に
通電して約toso℃〜1150℃に加熱する。一方、
導入口15を通じて炉内にクロルシランと水素との混合
ガスを供給する。該クロルシランは水素によって還元、
分解しシリコン単体となって種棒の表面に析出し、堆積
する。
When manufacturing polycrystalline silicon, a seed rod 1 is attached to the electrode 14.
3, an appropriate number of seed rods are set upright in the furnace, and electricity is applied to the seed rods to heat them to about 1150°C. on the other hand,
A mixed gas of chlorosilane and hydrogen is supplied into the furnace through the inlet 15. The chlorosilane is reduced by hydrogen,
It decomposes into simple silicon, which precipitates and accumulates on the surface of the seed rod.

一方1反応後の気体は排気口16から外部に排出される
On the other hand, the gas after one reaction is discharged to the outside from the exhaust port 16.

〈発明の効果〉 本発明においては、炉内面が金被覆層によって鏡面化さ
れているのでベルジャを通じての放熱が抑制される。そ
の結果、炉内での温度勾配が小さくなり、多結晶シリコ
ンが太く成長しても外縁部と中心部との温度差が許容範
囲にとどまり、クラックなどの破損が起こらないだけで
なく、従来的50〜90%にも及ぶ放射伝熱による熱損
失が軽減され著しい省エネルギー効果がもたらされる。
<Effects of the Invention> In the present invention, since the inner surface of the furnace is mirror-finished with the gold coating layer, heat radiation through the bell jar is suppressed. As a result, the temperature gradient inside the furnace is reduced, and even when polycrystalline silicon grows thick, the temperature difference between the outer edge and the center remains within an allowable range, which not only prevents damage such as cracks but also Heat loss due to radiant heat transfer is reduced by 50 to 90%, resulting in a significant energy saving effect.

因に放熱の際における金属の係数は、パフ研摩のSUS
は約0.2前後であり、一方金(Au)は0゜018〜
0.035である。従って熱損失の大幅な改善を図るこ
とができる。
Incidentally, the coefficient of metal during heat dissipation is
is around 0.2, while gold (Au) is around 0°018~
It is 0.035. Therefore, it is possible to significantly improve heat loss.

更に、ベルジャ内面が金被覆層によって鏡面化されてい
るので化学的に極めて安定であり、開炉後、外部の空気
が炉内に流入しても、残留ガスや付着するシリコン化合
物に起因する塩酸などによっても該鏡面が侵されず、長
期間、良好な鏡面状態を維持することが出来る。
Furthermore, since the inside surface of the bell jar is mirror-finished with a gold coating layer, it is chemically extremely stable, and even if outside air flows into the furnace after the furnace is opened, hydrochloric acid caused by residual gas and attached silicon compounds will not be removed. The mirror surface is not damaged even by foreign substances, and a good mirror state can be maintained for a long period of time.

〈実施例および比較例〉 実施例1 直径200mm +)高さ300■■すかつ、内壁を5
1Lの厚みにAuメッキした反応炉内に長さ20011
のシリコン棒2本を逆U字型に連結して設置し、H21
00見/sin、 5iHCu380cc/winの流
量の混合ガスを供給し、反応表面温度1100℃で反応
させ、シリコン棒の直径を28■鵬中とした。この場合
、シリコン1Kg当りの電力使用量は181 KIII
Hであった。
<Examples and Comparative Examples> Example 1 Diameter 200mm +) Height 300mm, inner wall 5mm
A length of 20011 cm was placed inside the reactor plated with Au to a thickness of 1 L.
Two silicone rods were connected and installed in an inverted U shape, and H21
A mixed gas was supplied at a flow rate of 380 cc/win and 5iHCu, and the reaction was carried out at a reaction surface temperature of 1100° C., and the diameter of the silicon rod was set to 28 cm. In this case, the power consumption per 1 kg of silicon is 181 KIII
It was H.

実施例2 実施例1と同様の条件で反応後1反応炉内壁に付着した
クロルシラン重合物及び、その加水分解生成物を純水で
洗い流し、再度同条件で反応しシリコン棒の直径を28
Iφとした。この場合、シリコン1Kg当りの電力使用
量は159 KWHであった。
Example 2 After reaction under the same conditions as in Example 1, the chlorosilane polymer adhering to the inner wall of the reactor and its hydrolysis products were washed away with pure water, and the reaction was carried out again under the same conditions to reduce the diameter of the silicon rod to 28.
It was set as Iφ. In this case, the power consumption per 1 kg of silicon was 159 KWH.

比較例1 直径200mm$高さ300an pカッ内11.b’
、5IJS 304でパフ研摩施工した反応炉内に長さ
200鵬鳳のシリコン棒2木を逆U字型に連結して設置
し、H2100u/sin、 5jHC1380cc/
5in(7)流量で混合ガスを供給し、反応表面温度1
100℃で反応させ、シリコン棒の直径を28層神とし
た。この場合、シリコンIKg当りの電力使用量は21
0 K11)1であった。
Comparative Example 1 Diameter 200mm $ Height 300an P cup 11. b'
, 5 IJS 304 Puff-polished two silicon rods were installed in a reactor, connected in an inverted U shape, and H2100u/sin, 5jHC1380cc/
The mixed gas was supplied at a flow rate of 5 in (7), and the reaction surface temperature was 1
The reaction was carried out at 100°C, and the diameter of the silicon rod was set to 28 layers. In this case, the power consumption per IKg of silicon is 21
0 K11)1.

比較例2 直径200mtφ高さ300mg 4)かつ内壁をAg
でメッキした反応炉内に長さ2001層のシリコン棒2
本を逆U字型に連結して設置し、H2100交1膳1n
SiHC見、 60cc−/winの流量で混合ガスを
供給し。
Comparative Example 2 Diameter 200mtφ Height 300mg 4) and inner wall made of Ag
A silicon rod 2 with a length of 2001 layers is placed in a reactor plated with
The books are connected in an inverted U shape and set up, H2100 1 serving 1n
For SiHC, mixed gas was supplied at a flow rate of 60cc-/win.

反応表面温度!!00℃で反応させ、シリコン棒の直径
を28amφとした。この場合、シリコンIKg当りの
電力使用量は180 KW)Iであった。
Reaction surface temperature! ! The reaction was carried out at 00° C., and the diameter of the silicon rod was set to 28 amφ. In this case, the power consumption per IKg of silicon was 180 KW)I.

比較例3 比較例2の反応後、反応炉内壁に付着したクロルシラン
重合物及びその加水分解生成物を純水で洗い流し再度同
条件で反応させ、シリコン棒の直径を28mm?とした
。この場合、シリコンIKg当りの電力使用量は188
 KWHであった。
Comparative Example 3 After the reaction in Comparative Example 2, the chlorosilane polymer and its hydrolysis product adhering to the inner wall of the reactor were washed away with pure water, and the reaction was carried out again under the same conditions, and the diameter of the silicon rod was changed to 28 mm? And so. In this case, the power consumption per IKg of silicon is 188
It was KWH.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る炉の概略を示す部分切欠斜視図で
ある0図面中、 10−炉       11−ベース 12−ベルジャ    13一種棒 14−電極      15−導入口 16−排気口     17−金被覆層である。
FIG. 1 is a partially cutaway perspective view schematically showing a furnace according to the present invention. In the drawing, 10-Furnace 11-Base 12-Belljar 13-Type rod 14-Electrode 15-Inlet port 16-Exhaust port 17-Gold coating It is a layer.

Claims (1)

【特許請求の範囲】 1、ベースとベルジャからなる炉の内部に多結晶シリコ
ンの種棒を配設して該種棒の多結晶シリコンを成長させ
る製造装置において、上記ベルジャ内面に金被覆層を設
けて鏡面にしたことを特徴とする多結晶シリコンの製造
装置。 2、上記金被覆層がベルジャ内面に金を溶射、蒸着ある
いは鍍金して形成されることを特徴とする特許請求の範
囲第1項の製造装置。 3、上記金被覆層がベルジャ内面に金被覆層を張設して
形成されることを特徴とする特許請求の範囲第1項の製
造装置。
[Claims] 1. A manufacturing apparatus in which a polycrystalline silicon seed rod is disposed inside a furnace consisting of a base and a bell jar, and the polycrystalline silicon of the seed rod is grown, in which a gold coating layer is applied to the inner surface of the bell jar. A manufacturing device for polycrystalline silicon, characterized in that it has a mirror surface. 2. The manufacturing apparatus according to claim 1, wherein the gold coating layer is formed by thermal spraying, vapor deposition, or plating of gold on the inner surface of the bell jar. 3. The manufacturing apparatus according to claim 1, wherein the gold coating layer is formed by stretching the gold coating layer on the inner surface of a bell jar.
JP60120504A 1985-06-05 1985-06-05 Polycrystalline silicon manufacturing equipment Expired - Lifetime JPH0641369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120504A JPH0641369B2 (en) 1985-06-05 1985-06-05 Polycrystalline silicon manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120504A JPH0641369B2 (en) 1985-06-05 1985-06-05 Polycrystalline silicon manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS61281009A true JPS61281009A (en) 1986-12-11
JPH0641369B2 JPH0641369B2 (en) 1994-06-01

Family

ID=14787830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120504A Expired - Lifetime JPH0641369B2 (en) 1985-06-05 1985-06-05 Polycrystalline silicon manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0641369B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294416A (en) * 2000-04-07 2001-10-23 Mitsubishi Materials Polycrystalline Silicon Corp Device for producing polycrystalline silicon
JP2007136909A (en) * 2005-11-21 2007-06-07 Mitsubishi Materials Polycrystalline Silicon Corp Method and apparatus for processing stick-like core material and silicon seed
CN101613106A (en) * 2008-06-24 2009-12-30 三菱麻铁里亚尔株式会社 Poly plant
US7732012B2 (en) 2004-06-22 2010-06-08 Shin-Etsu Film Co., Ltd Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method
EP2271587A1 (en) 2008-03-26 2011-01-12 GT Solar Incorporated Gold-coated polysilicon reactor system and method
US20110318909A1 (en) * 2010-06-29 2011-12-29 Gt Solar Incorporated System and method of semiconductor manufacturing with energy recovery
JP2012056841A (en) * 2011-10-18 2012-03-22 Mitsubishi Materials Corp Silicon seed, and processing method and processing apparatus of the same
US8329132B2 (en) 2007-11-28 2012-12-11 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
RU2475570C2 (en) * 2007-11-28 2013-02-20 Мицубиси Матириалз Корпорейшн Method of producing polycrystalline silicon
WO2013053495A1 (en) * 2011-10-12 2013-04-18 Centrotherm Sitec Gmbh Coating for a reactor vessel and coating process
US8623139B2 (en) 2008-06-24 2014-01-07 Mitsubishi Materials Corporation Apparatus for producing polycrystalline silicon
US10450649B2 (en) 2014-01-29 2019-10-22 Gtat Corporation Reactor filament assembly with enhanced misalignment tolerance
US11015244B2 (en) 2013-12-30 2021-05-25 Advanced Material Solutions, Llc Radiation shielding for a CVD reactor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294416A (en) * 2000-04-07 2001-10-23 Mitsubishi Materials Polycrystalline Silicon Corp Device for producing polycrystalline silicon
US7732012B2 (en) 2004-06-22 2010-06-08 Shin-Etsu Film Co., Ltd Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method
JP2007136909A (en) * 2005-11-21 2007-06-07 Mitsubishi Materials Polycrystalline Silicon Corp Method and apparatus for processing stick-like core material and silicon seed
RU2495164C2 (en) * 2007-11-28 2013-10-10 Мицубиси Матириалз Корпорейшн Unit and method for obtaining polycrystalline silicon
US8329132B2 (en) 2007-11-28 2012-12-11 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
RU2475570C2 (en) * 2007-11-28 2013-02-20 Мицубиси Матириалз Корпорейшн Method of producing polycrystalline silicon
EP2271587A1 (en) 2008-03-26 2011-01-12 GT Solar Incorporated Gold-coated polysilicon reactor system and method
CN101613106A (en) * 2008-06-24 2009-12-30 三菱麻铁里亚尔株式会社 Poly plant
US8623139B2 (en) 2008-06-24 2014-01-07 Mitsubishi Materials Corporation Apparatus for producing polycrystalline silicon
US20110318909A1 (en) * 2010-06-29 2011-12-29 Gt Solar Incorporated System and method of semiconductor manufacturing with energy recovery
JP2013533199A (en) * 2010-06-29 2013-08-22 ジーティーエイティー・コーポレーション Apparatus and method for manufacturing a semiconductor with energy recovery
WO2013053495A1 (en) * 2011-10-12 2013-04-18 Centrotherm Sitec Gmbh Coating for a reactor vessel and coating process
JP2012056841A (en) * 2011-10-18 2012-03-22 Mitsubishi Materials Corp Silicon seed, and processing method and processing apparatus of the same
US11015244B2 (en) 2013-12-30 2021-05-25 Advanced Material Solutions, Llc Radiation shielding for a CVD reactor
US10450649B2 (en) 2014-01-29 2019-10-22 Gtat Corporation Reactor filament assembly with enhanced misalignment tolerance

Also Published As

Publication number Publication date
JPH0641369B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JPS61281009A (en) Apparatus for producing polycrystal silicon
JP5428420B2 (en) Polycrystalline silicon reactor
US5160544A (en) Hot filament chemical vapor deposition reactor
TWI355674B (en) Showerhead assembly and apparatus for manufacturin
JP2003522716A (en) Method and apparatus for chemical vapor deposition of polysilicon
EP2271587A1 (en) Gold-coated polysilicon reactor system and method
JP2002508294A (en) Chemical vapor deposition for polycrystalline silicon rod production.
JP2005508097A (en) Heating apparatus and heating method for controllably heating an article
JP2009164162A (en) Vapor growth device and growing method of single-crystal thin film
RU2394117C2 (en) Cvd-reactor and method of synthesis of hetero-epitaxial films of silicon carbide on silicon
JPS59111997A (en) Device for epitaxial growth
JPH01208312A (en) Process for producing high-purity polycrystalline rod and reaction vessel used in said production process
JPH06172093A (en) Reactional furnace for producing semiconductor-grade polycrystalline silicon
CN104981428B (en) The method of polysilicon deposition
JPH0864544A (en) Vapor growing method
WO1991014798A1 (en) An improved hot filament chemical vapor deposition reactor
JP2002289536A (en) Thermal cvd system and method for fabricating thin film semiconductor element
JP5642755B2 (en) Apparatus and method for depositing polycrystalline silicon
JPH0447955Y2 (en)
JPS59115739A (en) Reactor
JPS61243176A (en) Method for cvd treatment
JP2004315930A (en) Cvd system
JP2504489B2 (en) Chemical vapor deposition
JP2008244389A (en) Vacuum treatment apparatus, vacuum treatment method, and plasma cvd method
JPH0666276B2 (en) Mask for thin film production