JPH06172093A - Reactional furnace for producing semiconductor-grade polycrystalline silicon - Google Patents

Reactional furnace for producing semiconductor-grade polycrystalline silicon

Info

Publication number
JPH06172093A
JPH06172093A JP35221592A JP35221592A JPH06172093A JP H06172093 A JPH06172093 A JP H06172093A JP 35221592 A JP35221592 A JP 35221592A JP 35221592 A JP35221592 A JP 35221592A JP H06172093 A JPH06172093 A JP H06172093A
Authority
JP
Japan
Prior art keywords
furnace
gas
silicon
raw material
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35221592A
Other languages
Japanese (ja)
Other versions
JP3345929B2 (en
Inventor
Hideo Ito
秀男 伊藤
Teruhisa Kitagawa
輝久 北川
Kazuto Igaki
和人 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOJUNDO SILICON KK
KOUJIYUNDO SILICON KK
Original Assignee
KOJUNDO SILICON KK
KOUJIYUNDO SILICON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOJUNDO SILICON KK, KOUJIYUNDO SILICON KK filed Critical KOJUNDO SILICON KK
Priority to JP35221592A priority Critical patent/JP3345929B2/en
Publication of JPH06172093A publication Critical patent/JPH06172093A/en
Application granted granted Critical
Publication of JP3345929B2 publication Critical patent/JP3345929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a polycrystalline silicon rod free from defect of shape and having smooth surface in large amounts by providing discharge port of discharge gas in the upper part of a furnace above silicon core rods and make it possible to discharge gas out of the furnace without disturbing flown of raw material gas fed from the bottom of the furnace out of the furnace. CONSTITUTION:Raw material gas is fed from plural raw material gas feed nozzles 5 provided in the bottom of closed reactional furnace into the furnace. This raw material gas is raised so as to surround plural silicon core rods 3 erected in reverse U-shape by electrode holders 4 of the bottom of the furnace and brought into contact with red hot core rod and thermally decomposed to deposit silicon. After reaction, unreacted gas, etc., reaches the upper part of the furnace and discharged from a gas discharge port 2 provided in the ceiling part of the furnace to the outside. Consequently, a raw material gas flow is always fed on the surface of the core rods 3 without being disturbed by the discharge gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、形状不良が少なく表面
が平滑な多結晶シリコンロッドを製造するのに適した半
導体級多結晶シリコン製造反応炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor grade polycrystalline silicon production reactor suitable for producing a polycrystalline silicon rod having a smooth surface with few defective shapes.

【0002】[0002]

【従来の技術】一般に、半導体級多結晶シリコンは密閉
反応炉の底部に設けたノズルから原料ガスを高温下の反
応炉内に供給し、炉内に設けた赤熱したシリコン心棒表
面で原料ガスを熱分解ないし水素還元させ、シリコン心
棒表面に多結晶シリコンを析出し成長させることにより
製造されている。すなわち、分解してシリコンを析出す
る気体材料、例えば高純度に精製したモノシラン、ジシ
ラン、トリクロルシラン、四塩化珪素、あるいはこれら
と水素の混合物などからなる原料ガスを、高純度のシリ
コン基体に高温下で接触させて熱分解ないし水素還元さ
せ、基体表面にシリコン結晶を析出させて製造する。
2. Description of the Related Art Generally, semiconductor-grade polycrystalline silicon is supplied with a raw material gas from a nozzle provided at the bottom of a closed reaction furnace into a reaction furnace at high temperature, and the raw material gas is supplied to the surface of a red-hot silicon mandrel provided in the furnace. It is manufactured by thermally decomposing or reducing with hydrogen to deposit and grow polycrystalline silicon on the surface of the silicon mandrel. That is, a gas material that decomposes to deposit silicon, for example, a raw material gas composed of highly purified monosilane, disilane, trichlorosilane, silicon tetrachloride, or a mixture of these and hydrogen is applied to a highly pure silicon substrate at high temperature. To produce a silicon crystal by depositing it on the surface of the substrate.

【0003】具体的には、一般に内部が密閉されたベル
ジャ型の炉により反応を行なう。反応炉の内部にはシリ
コン心棒が立設されており、その下端は電極ホルダによ
って支えられており、製造時に該シリコン心棒が赤熱す
るように通電される。また反応炉の底部にはノズルが配
設されており、原料ガスが該ノズルを通じて炉内に供給
される。ノズルから供給された原料ガスは赤熱したシリ
コン心棒に接触して分解還元され、シリコン心棒表面に
多結晶シリコンが析出する。
Specifically, the reaction is generally carried out in a bell jar type furnace whose inside is hermetically sealed. A silicon mandrel is erected inside the reaction furnace, the lower end of which is supported by an electrode holder, and the silicon mandrel is energized so as to glow red during manufacturing. A nozzle is provided at the bottom of the reaction furnace, and the raw material gas is supplied into the furnace through the nozzle. The raw material gas supplied from the nozzle comes into contact with the red-hot silicon mandrel and is decomposed and reduced, so that polycrystalline silicon is deposited on the surface of the silicon mandrel.

【0004】最近、半導体級多結晶シリコンの需要が増
大するのに伴い、生産量を高めるために反応炉を大型化
し、反応炉中に数十本のシリコン心棒を設置し、一度に
多量の多結晶シリコンを析出成長させる方法が採られて
いる。ところが、炉内に設置するシリコン心棒の本数が
多くなると、全シリコン心棒表面に原料ガスを安定に供
給することが難しくなり、このため、シリコンロッド表
面に凹凸(ポップコーン)が発生し、またロッドの太さ
が不均一となり形状不良を生じる。ロッド表面に凹凸が
発生すると異常成長を生じ易く、またロッド表面の洗浄
効果が大幅に低下するので好ましくない。ロッド表面の
凹凸をなくすにはシリコン心棒の表面温度を低くし析出
反応を穏やかにすれば良いが、この場合にはシリコンの
析出速度が遅くなり生産性とエネルギー効率を著しく低
下させることになる。
Recently, as the demand for semiconductor-grade polycrystalline silicon has increased, the reactor has been enlarged in order to increase the production amount, and several tens of silicon mandrels have been installed in the reactor so that a large amount of silicon can be produced at a time. A method of depositing and growing crystalline silicon has been adopted. However, when the number of silicon mandrels installed in the furnace increases, it becomes difficult to stably supply the raw material gas to the surface of all silicon mandrels, which causes unevenness (popcorn) on the surface of the silicon rod, and The thickness is not uniform, resulting in defective shape. If unevenness is generated on the surface of the rod, abnormal growth is likely to occur, and the cleaning effect on the surface of the rod is significantly reduced, which is not preferable. In order to eliminate the irregularities on the rod surface, the surface temperature of the silicon mandrel may be lowered to moderate the precipitation reaction, but in this case, the precipitation rate of silicon is slowed and the productivity and energy efficiency are significantly reduced.

【0005】そこで、従来の反応炉は、多数のシリコン
心棒を設けた場合には炉内のガス流を撹拌してシリコン
心棒表面へのガス接触を良好にするという着想に基づ
き、原料ガス供給用ノズルとガス排気口とを炉底中央部
に設けた構造を有するものが多い。この構造では、炉内
に供給された原料ガスはシリコン心棒に沿って上昇し、
反応後、炉上部から炉底中央部に向かって反転し、その
大部分はガス排気口から外部に導かれる一方、新たな原
料ガスが上昇する循環流が形成される。ところが、上記
構造は反応炉が大型化すると炉内側方部分へのガス供給
が排ガスの循環によって妨げられ易くなり、また排ガス
の一部が必然的に原料ガスと共に上昇することとなる。
その結果、シリコン心棒表面に供給される原料ガスの組
成が悪化し、ロッドの形状不良を生じ易くなる。
Therefore, the conventional reaction furnace is designed to supply the raw material gas based on the idea that, when a large number of silicon mandrels are provided, the gas flow in the furnace is agitated to improve the gas contact with the surface of the silicon mandrels. Many have a structure in which a nozzle and a gas exhaust port are provided in the central portion of the furnace bottom. In this structure, the source gas supplied to the furnace rises along the silicon mandrel,
After the reaction, it is inverted from the upper part of the furnace toward the central part of the bottom, and most of it is guided to the outside from the gas exhaust port, while a circulating flow in which new raw material gas rises is formed. However, in the above structure, when the reactor becomes larger, the gas supply to the inner part of the furnace is likely to be hindered by the circulation of the exhaust gas, and part of the exhaust gas inevitably rises together with the raw material gas.
As a result, the composition of the raw material gas supplied to the surface of the silicon mandrel is deteriorated, and the defective shape of the rod is likely to occur.

【0006】このように、従来の方法ではその製造反応
炉を大型化した場合、表面が滑らかで凹凸がなく均一な
シリコンロッドを効率よく製造できない問題がある。本
発明は、このような従来の課題を解決するものであり、
表面が滑らかで形状不良のない大型の多結晶シリコンロ
ッドを製造するのに適した反応炉を提供することにあ
る。
As described above, in the conventional method, when the production reactor is enlarged, there is a problem that a silicon rod having a smooth surface and no unevenness cannot be efficiently produced. The present invention is to solve such conventional problems,
It is an object of the present invention to provide a reactor suitable for producing a large-sized polycrystalline silicon rod having a smooth surface and no defective shape.

【0007】[0007]

【課題を解決するための手段】反応炉内の多数のシリコ
ン心棒に安定に原料ガスを供給するには、反応時に炉内
に供給される原料ガスが各シリコン心棒に対して均一に
流れると共に排ガスが原料ガスの流れを乱さずに炉外に
排出されることが必要である。本発明者らは、電極ホル
ダ、原料ガス供給用ノズルおよびガス排出口の相対的な
配置について検討し、炉内のガス循環を減少させること
により前記目的が達成され、シリコンロッド表面が滑ら
かで形状不良のない多結晶シリコンロッドが製造できる
ことを見出した。
In order to stably supply a raw material gas to a large number of silicon mandrels in a reaction furnace, the raw material gas supplied to the furnace at the time of reaction should flow uniformly to each silicon mandrel and the exhaust gas. Must be discharged outside the furnace without disturbing the flow of raw material gas. The inventors of the present invention have studied the relative arrangement of the electrode holder, the raw material gas supply nozzle, and the gas discharge port, and achieved the above object by reducing the gas circulation in the furnace. It was found that a polycrystalline silicon rod without defects can be manufactured.

【0008】すなわち、本発明は、密閉反応炉の底部に
複数の原料ガス供給用ノズルを有し、炉底部の電極ホル
ダによって逆U字型に立設された複数のシリコン心棒に
多結晶シリコンを高温下で析出させる半導体級の多結晶
シリコンを製造する反応炉において、ガス排出口がシリ
コン心棒より上方の上部炉壁面、好ましくは炉天井部お
よび/または炉側壁部に複数個均等に配設されているこ
とを特徴とする半導体級多結晶シリコン製造反応炉を提
供するものである。
That is, according to the present invention, a plurality of raw material gas supply nozzles are provided at the bottom of a closed reaction furnace, and polycrystalline silicon is placed on a plurality of silicon mandrels vertically erected by an electrode holder at the bottom of the furnace. In a reaction furnace for producing semiconductor-grade polycrystalline silicon that is deposited at high temperature, a plurality of gas outlets are evenly arranged on the upper furnace wall surface above the silicon mandrel, preferably on the furnace ceiling and / or furnace side wall. The present invention provides a semiconductor-grade polycrystalline silicon manufacturing reaction furnace characterized by the above.

【0009】本発明の反応炉はその基本構造として、複
数の原料ガス供給用ノズルおよびシリコン心棒を逆U字
型に立設するための複数の電極ホルダを炉底部に有する
密閉型の反応炉であり、複数のガス排出口はシリコン心
棒より上方の炉上部に設けられている。
The basic structure of the reactor of the present invention is a hermetically sealed reactor having a plurality of raw material gas supply nozzles and a plurality of electrode holders for vertically arranging a silicon mandrel in an inverted U shape at the bottom of the furnace. Yes, a plurality of gas outlets are provided in the upper part of the furnace above the silicon mandrel.

【0010】原料ガス供給用ノズルとしては、通常のノ
ズルを用いることができるが、シリコン心棒上部とシリ
コン心棒下部へ独立して原料ガスを供給し、シリコン心
棒上部での原料ガス濃度低下を防止し得るノズル、例え
ば多段ノズル、異流速ノズル、2重ノズル等(特願平3-
326976号,特願平3-326977号,特公昭57-12288号など)
を用いてもよい。これらの特殊なノズルを使用すること
により、さらに表面形状の良好なシリコンロッドを製造
することが可能である。また、炉底部に配設される原料
ガス供給用ノズルと電極ホルダは、全シリコン心棒表面
に対して原料ガス供給の過不足面ができないように配置
することが好ましい。
A normal nozzle can be used as the raw material gas supply nozzle, but the raw material gas is independently supplied to the upper and lower portions of the silicon mandrel to prevent the concentration of the raw material gas at the upper part of the silicon mandrel from decreasing. Nozzle to obtain, for example, multi-stage nozzle, different velocity nozzle, double nozzle, etc.
326976, Japanese Patent Application No. 3-326977, Japanese Patent Publication No. 57-12288, etc.)
May be used. By using these special nozzles, it is possible to manufacture a silicon rod having a better surface shape. Further, it is preferable that the raw material gas supply nozzle and the electrode holder arranged at the bottom of the furnace are arranged so that there is no excess or deficiency surface of the raw material gas supply with respect to the surface of the entire silicon mandrel.

【0011】ガス排出口については、従来の反応炉では
前記したように炉底部の特に中央部に配置し、炉内での
ガス循環が起こり易くしていたが、本発明の反応炉にお
いては、そのガス排出口は炉の上部、特にシリコン心棒
の最上部より上部の炉壁面に配置し、ガス循環を抑制す
る。炉底部のノズルより供給される原料ガスは、赤熱し
たシリコン心棒と接触して熱分解あるいは水素還元によ
って表面にシリコンを析出しながら上昇する。また同時
に反応副生ガスが発生する。炉上部に達した排ガスは、
炉内を循環することなく炉上部壁面に設けられたガス排
出口を通じて炉外に排出される。この結果、排ガスを含
んだガス循環が大幅に減少し、常にシリコン心棒表面に
新鮮な原料ガスが供給される。
In the conventional reactor, the gas outlet was arranged at the center of the bottom of the furnace as described above to facilitate the gas circulation in the furnace, but in the reactor of the present invention, The gas outlet is arranged in the upper part of the furnace, especially on the furnace wall surface above the uppermost part of the silicon mandrel to suppress gas circulation. The raw material gas supplied from the nozzle at the bottom of the furnace contacts the red-hot silicon mandrel and rises while precipitating silicon on the surface by thermal decomposition or hydrogen reduction. At the same time, reaction by-product gas is generated. The exhaust gas reaching the upper part of the furnace is
It is discharged to the outside of the furnace through a gas discharge port provided on the upper wall surface of the furnace without circulating inside the furnace. As a result, the gas circulation containing the exhaust gas is greatly reduced, and fresh raw material gas is always supplied to the surface of the silicon mandrel.

【0012】炉内でのガス循環を最小限に抑えるために
は、排ガスを効率良く排出することが必要であり、ガス
排出口の配置数、配置場所、排出口の管径等を調整する
ことにより行なわれる。ガス排出口の配置数および配置
場所に関しては、炉内ガスの流れについて偏流やショー
トパスが起きないようにすることが重要であり、このた
め本発明では炉上部に排出口を設ける。具体的な装置構
成においては、ガス排出口の数、管径等は原料ガス供給
用ノズルとシリコン心棒の配置を考慮して定められる
が、概ね炉の上部に均等に配置することが好ましい。ま
た、排出口の管径に関しては排出配管等の圧力損失差に
よる排出量の偏りが生じないように大きくとることが好
ましい。また、シリコン心棒上部と炉天井との空間は、
排出口へのガスの流れを良くするため、およびシリコン
心棒上部先端まで入口ノズルからのガス流れが届くよう
にするため、空間を広くとることが好ましい。
In order to minimize the gas circulation in the furnace, it is necessary to efficiently discharge the exhaust gas, and it is necessary to adjust the number of gas outlets, the location, the pipe diameter of the outlets, etc. Performed by. Regarding the number and location of the gas outlets, it is important to prevent uneven flow and short paths in the gas flow in the furnace. Therefore, in the present invention, the outlets are provided in the upper part of the furnace. In a specific apparatus configuration, the number of gas outlets, the pipe diameter, etc. are determined in consideration of the arrangement of the raw material gas supply nozzle and the silicon mandrel, but it is preferable to arrange them substantially evenly in the upper part of the furnace. Further, it is preferable that the pipe diameter of the discharge port is set large so that the discharge amount is not biased due to the pressure loss difference of the discharge pipe or the like. Also, the space between the silicon mandrel upper part and the furnace ceiling is
In order to improve the flow of gas to the discharge port and to allow the gas flow from the inlet nozzle to reach the top end of the silicon mandrel, it is preferable to make the space large.

【0013】[0013]

【実施例】本発明反応炉の好適な態様としては、ガス排
出口を炉天井部に配設するもの、またはガス排出口を炉
側壁上部に配設するものが挙げられる。以下に図面に示
す実施例を参照して本発明を詳細に説明するが、本発明
はこれらに限定されるものではない。
EXAMPLES A preferred embodiment of the reaction furnace of the present invention is one in which the gas outlet is provided in the furnace ceiling or one in which the gas outlet is provided on the upper side wall of the furnace. The present invention will be described in detail below with reference to the examples shown in the drawings, but the present invention is not limited thereto.

【0014】実施例1 図1(a)は本発明に係る反応炉を示す炉天井部の概略
平面図、図1(b)は炉側面の概略縦断面図であり、図
中、1は反応炉の内壁、2はガス排出口、3はシリコン
心棒、4はシリコン心棒を支える電極ホルダ、5は原料
ガス供給用ノズル、6は炉天井部、7は排気管である。
本実施例では、図示するように、ベルジャ型の密閉型反
応炉内に同心円上に等間隔にシリコン心棒3が配列して
おり、炉底部には原料ガス供給用ノズル5が前記シリコ
ン心棒3を支える電極ホルダ4と交互に配列されてい
る。炉天井部6にはガス排出口2が均等に設置されてお
り、該ガス排出口2は、炉天井のほぼ中央、多重に設け
たシリコン心棒の配列の間に対応する位置、および炉内
壁に沿った位置にそれぞれ配設されている。各排出口に
は排気管7が接続している。なお、炉底部には、ガス排
出口は設けられていない。
Example 1 FIG. 1 (a) is a schematic plan view of a furnace ceiling part showing a reaction furnace according to the present invention, and FIG. 1 (b) is a schematic vertical sectional view of a side surface of the furnace, in which 1 is a reaction. An inner wall of the furnace, 2 is a gas outlet, 3 is a silicon mandrel, 4 is an electrode holder for supporting the silicon mandrel, 5 is a nozzle for supplying a raw material gas, 6 is a furnace ceiling, and 7 is an exhaust pipe.
In the present embodiment, as shown in the figure, silicon mandrels 3 are concentrically arranged at equal intervals in a bell jar type closed reactor, and a raw material gas supply nozzle 5 is provided at the bottom of the furnace to supply the silicon mandrels 3 to each other. It is arranged alternately with the supporting electrode holders 4. The gas outlets 2 are evenly installed in the furnace ceiling portion 6, and the gas outlets 2 are provided substantially at the center of the furnace ceiling, at positions corresponding to the arrangement of multiple silicon mandrel arrays, and on the inner wall of the furnace. They are arranged along the respective positions. An exhaust pipe 7 is connected to each outlet. No gas outlet is provided at the bottom of the furnace.

【0015】本実施例においては、炉底部のノズルより
供給される原料ガスがシリコン心棒3の周囲を囲むよう
に上昇し、その間に赤熱したシリコン心棒表面に接触し
て熱分解ないし水素還元によりシリコンを析出させる。
反応後、未反応ガスおよび副生ガスは炉上部に達し、炉
天井部に設けられたガス排出口2より外部に排出され
る。シリコン心棒上部と炉天井との間に十分な広さの空
間が設けられているので、炉上部での排ガスの偏流がな
く、円滑なガスの流れとなっている。
In the present embodiment, the raw material gas supplied from the nozzle at the bottom of the furnace rises so as to surround the silicon mandrel 3, and during that time, the surface of the silicon mandrel comes into contact with the surface of the silicon mandrel that is heated red and the silicon is decomposed by heat or hydrogen reduction. To precipitate.
After the reaction, the unreacted gas and the by-product gas reach the upper part of the furnace and are discharged to the outside through the gas discharge port 2 provided in the furnace ceiling. Since a sufficiently large space is provided between the upper part of the silicon mandrel and the furnace ceiling, there is no uneven flow of exhaust gas in the upper part of the furnace, and the gas flow is smooth.

【0016】従って、炉上部に達した排ガスは炉下部方
向に反転循環させることなく排出されるので、原料ガス
流が排ガスによって乱されずシリコン心棒表面に常に新
鮮な原料ガスが供給されることになり、形状不良のない
大型の多結晶シリコンが得られる。
Therefore, since the exhaust gas reaching the upper part of the furnace is discharged without being inverted and circulated toward the lower part of the furnace, the raw material gas flow is not disturbed by the exhaust gas and the fresh raw material gas is always supplied to the surface of the silicon mandrel. As a result, large-sized polycrystalline silicon free of shape defects can be obtained.

【0017】実施例2 図2は、本発明の他の実施例に係る反応炉を示し、同図
(a)は炉天井部の概略平面図、同図(b)はその概略
縦断面図(b)である。本実施例では、図示するように
シリコン心棒3および原料ガス供給用ノズル5は実施例
1と同様の配置になっているが、ガス排出口2が炉天井
部に近い炉側壁部8に等間隔に設けられている。本実施
例においては、炉底部のノズル5より供給される原料ガ
スがシリコン心棒3の周囲を囲むように上昇し、その間
に赤熱したシリコン心棒表面に接触して熱分解ないし水
素還元によりシリコンを析出させる。反応後、未反応ガ
スおよび副生ガスは炉上部に達し、炉側壁部に設けられ
たガス排出口より外部に排出される。本実施例では、ガ
ス排出口が炉天井部に近い炉側壁部に設けられているの
で、実施例1とほぼ同様の効果を示す。また、シリコン
心棒上部と炉天井部との空間を十分とることによって、
実施例1と同様、炉上部での排ガスの偏流をなくし、ガ
スの流れをさらに良好なものとしている。
Embodiment 2 FIG. 2 shows a reaction furnace according to another embodiment of the present invention. FIG. 2 (a) is a schematic plan view of the furnace ceiling, and FIG. 2 (b) is a schematic longitudinal sectional view thereof ( b). In this embodiment, as shown in the figure, the silicon mandrel 3 and the raw material gas supply nozzle 5 are arranged in the same manner as in Embodiment 1, but the gas discharge ports 2 are equidistantly arranged on the furnace side wall portion 8 near the furnace ceiling portion. It is provided in. In this embodiment, the raw material gas supplied from the nozzle 5 at the bottom of the furnace rises so as to surround the silicon mandrel 3, and during that time, it comes into contact with the surface of the silicon mandrel that is heated red and deposits silicon by thermal decomposition or hydrogen reduction. Let After the reaction, the unreacted gas and the by-product gas reach the upper part of the furnace and are discharged to the outside through a gas discharge port provided on the side wall of the furnace. In this embodiment, the gas discharge port is provided in the furnace side wall portion near the furnace ceiling portion, so that the same effect as that of the first embodiment is exhibited. Also, by taking sufficient space between the silicon mandrel upper part and the furnace ceiling part,
Similar to the first embodiment, the uneven flow of the exhaust gas in the upper part of the furnace is eliminated to further improve the gas flow.

【0018】[0018]

【発明の効果】本発明の半導体級多結晶シリコン製造反
応炉は、形状不良が少なく表面が平滑な多結晶シリコン
ロッドを一度に多量に製造できる。
INDUSTRIAL APPLICABILITY The semiconductor grade polycrystalline silicon production reactor of the present invention can produce a large amount of polycrystalline silicon rods having a smooth surface with few defective shapes at one time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)本発明に係る実施例1の反応炉の炉天
井部の概略平面図および(b)その概略縦断面図。
1A is a schematic plan view of a furnace ceiling portion of a reaction furnace of Example 1 according to the present invention, and FIG. 1B is a schematic vertical sectional view thereof.

【図2】 (a)本発明に係る実施例2の反応炉の炉天
井部の概略平面図および(b)その概略縦断面図。
2A is a schematic plan view of a furnace ceiling portion of a reaction furnace of Example 2 according to the present invention, and FIG. 2B is a schematic vertical sectional view thereof.

【符号の説明】[Explanation of symbols]

1 反応炉内壁 2 ガス排出口 3 シリコン心棒 4 電極ホルダ 5 原料ガス供給用ノズル 6 炉天井部 7 ガス排気管 8 炉側壁部 1 Reactor Inner Wall 2 Gas Outlet 3 Silicon Mandrel 4 Electrode Holder 5 Raw Material Gas Supply Nozzle 6 Furnace Ceiling 7 Gas Exhaust Pipe 8 Furnace Side Wall

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉反応炉の底部に複数の原料ガス供給
用ノズルを有し、炉底部の電極ホルダによって逆U字型
に立設された複数のシリコン心棒に多結晶シリコンを高
温下で析出させる半導体級の多結晶シリコンを製造する
反応炉において、ガス排出口がシリコン心棒より上方の
炉上部に複数個均等に配設されていることを特徴とする
半導体級多結晶シリコン製造反応炉。
1. A polycrystalline silicon is deposited at a high temperature on a plurality of silicon mandrels, which have a plurality of raw material gas supply nozzles at the bottom of a closed reaction furnace and are vertically erected by an electrode holder at the bottom of the furnace. In the reactor for producing semiconductor-grade polycrystalline silicon, a plurality of gas outlets are evenly arranged in the upper part of the furnace above the silicon mandrel.
【請求項2】 ガス排出口が炉天井部に複数個均等に配
設されていることを特徴とする請求項1に記載の半導体
級多結晶シリコン製造反応炉。
2. The semiconductor-grade polycrystalline silicon manufacturing reactor according to claim 1, wherein a plurality of gas outlets are evenly arranged on the furnace ceiling.
【請求項3】 ガス排出口が炉上部側壁に複数個均等に
配設されていることを特徴とする請求項1に記載の半導
体級多結晶シリコン製造反応炉。
3. The semiconductor-grade polycrystalline silicon manufacturing reactor according to claim 1, wherein a plurality of gas outlets are evenly arranged on the side wall of the furnace upper part.
JP35221592A 1992-12-10 1992-12-10 Semiconductor grade polycrystalline silicon production reactor Expired - Lifetime JP3345929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35221592A JP3345929B2 (en) 1992-12-10 1992-12-10 Semiconductor grade polycrystalline silicon production reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35221592A JP3345929B2 (en) 1992-12-10 1992-12-10 Semiconductor grade polycrystalline silicon production reactor

Publications (2)

Publication Number Publication Date
JPH06172093A true JPH06172093A (en) 1994-06-21
JP3345929B2 JP3345929B2 (en) 2002-11-18

Family

ID=18422549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35221592A Expired - Lifetime JP3345929B2 (en) 1992-12-10 1992-12-10 Semiconductor grade polycrystalline silicon production reactor

Country Status (1)

Country Link
JP (1) JP3345929B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136408A1 (en) * 2007-11-28 2009-05-28 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
US7732012B2 (en) 2004-06-22 2010-06-08 Shin-Etsu Film Co., Ltd Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method
WO2011087186A1 (en) * 2010-01-14 2011-07-21 주식회사 세미머티리얼즈 Polysilicon deposition apparatus
JP2011231005A (en) * 2011-07-11 2011-11-17 Mitsubishi Materials Corp Polysilicon reducing furnace
CN105200517A (en) * 2015-10-29 2015-12-30 江苏美科硅能源有限公司 Heightening device for increasing feeding amount of polycrystal furnace
JP2016510305A (en) * 2013-03-18 2016-04-07 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Deposition method of polycrystalline silicon
CN106276914A (en) * 2016-09-23 2017-01-04 中国恩菲工程技术有限公司 Polycrystalline silicon reducing furnace
CN113106545A (en) * 2021-03-29 2021-07-13 浙江晶阳机电股份有限公司 Silicon core ingot furnace equipment and using method thereof
CN113912065A (en) * 2021-12-02 2022-01-11 内蒙古新特硅材料有限公司 Reduction furnace
CN114349008A (en) * 2022-03-18 2022-04-15 中国恩菲工程技术有限公司 Chassis for polycrystalline silicon reduction furnace, chassis assembly and reduction furnace

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732012B2 (en) 2004-06-22 2010-06-08 Shin-Etsu Film Co., Ltd Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method
KR101488533B1 (en) * 2007-11-28 2015-01-30 미쓰비시 마테리알 가부시키가이샤 Polycrystalline silicon manufacturing apparatus and manufacturing method
US20090136408A1 (en) * 2007-11-28 2009-05-28 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
US8329132B2 (en) * 2007-11-28 2012-12-11 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
RU2495164C2 (en) * 2007-11-28 2013-10-10 Мицубиси Матириалз Корпорейшн Unit and method for obtaining polycrystalline silicon
WO2011087186A1 (en) * 2010-01-14 2011-07-21 주식회사 세미머티리얼즈 Polysilicon deposition apparatus
JP2011231005A (en) * 2011-07-11 2011-11-17 Mitsubishi Materials Corp Polysilicon reducing furnace
JP2016510305A (en) * 2013-03-18 2016-04-07 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Deposition method of polycrystalline silicon
CN105200517A (en) * 2015-10-29 2015-12-30 江苏美科硅能源有限公司 Heightening device for increasing feeding amount of polycrystal furnace
CN106276914A (en) * 2016-09-23 2017-01-04 中国恩菲工程技术有限公司 Polycrystalline silicon reducing furnace
CN106276914B (en) * 2016-09-23 2019-03-01 中国恩菲工程技术有限公司 Polycrystalline silicon reducing furnace
CN113106545A (en) * 2021-03-29 2021-07-13 浙江晶阳机电股份有限公司 Silicon core ingot furnace equipment and using method thereof
CN113912065A (en) * 2021-12-02 2022-01-11 内蒙古新特硅材料有限公司 Reduction furnace
CN114349008A (en) * 2022-03-18 2022-04-15 中国恩菲工程技术有限公司 Chassis for polycrystalline silicon reduction furnace, chassis assembly and reduction furnace

Also Published As

Publication number Publication date
JP3345929B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
KR101577452B1 (en) Polycrystalline silicon reactor
US5478396A (en) Production of high-purity polycrystalline silicon rod for semiconductor applications
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
JP3227549B2 (en) Reactor for semiconductor grade polycrystalline silicon production
JPH026317A (en) Reactor system and method for forming polycrystalline bars of uniformly large diameter by thermal decomposition of silane
JP2012513669A (en) MOCVD reactor with cylindrical gas inlet part
JPH09330884A (en) Epitaxial growth device
WO2005015619A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
US20200239320A1 (en) Reaction furnace for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, method for producing polycrystalline silicon, and polycrystalline silicon rod or polycrystalline silicon ingot
JPH05139891A (en) Method and device for producing semiconductor grade multi-crystal silicon
WO2012098598A1 (en) Apparatus for manufacturing polycrystalline silicon and method for manufacturing polycrystalline silicon
JP2010084190A (en) Vapor deposition system and vapor deposition method
JPH06172093A (en) Reactional furnace for producing semiconductor-grade polycrystalline silicon
JP2011012331A (en) Vapor deposition apparatus and vapor deposition method
JP2011231005A (en) Polysilicon reducing furnace
JP2006206387A (en) Polycrystalline silicon reducing furnace and polycrystalline silicon rod
JP2006069888A (en) Method for manufacturing polycrystal silicon rod and manufacturing apparatus
JP6147872B2 (en) Deposition method of polycrystalline silicon
WO1992000245A1 (en) Method of producing polycrystalline silicon rods for semiconductors and thermal decomposition furnace therefor
JPH0758030A (en) Apparatus for manufacturing semiconductor
JP5642755B2 (en) Apparatus and method for depositing polycrystalline silicon
US4590024A (en) Silicon deposition process
JPH07226384A (en) Reactor for chemical vapor deposition of semiconductor grade silicon
JPH05138015A (en) Nozzle for producing semiconductor grade polycrystalline silicon
JPH06127914A (en) Production of polycrystalline silicon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090906

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100906

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100906

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11