JPS61280674A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61280674A
JPS61280674A JP12149285A JP12149285A JPS61280674A JP S61280674 A JPS61280674 A JP S61280674A JP 12149285 A JP12149285 A JP 12149285A JP 12149285 A JP12149285 A JP 12149285A JP S61280674 A JPS61280674 A JP S61280674A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
electrode region
semiconductor
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12149285A
Other languages
Japanese (ja)
Inventor
Hikari Toida
樋田 光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12149285A priority Critical patent/JPS61280674A/en
Publication of JPS61280674A publication Critical patent/JPS61280674A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Abstract

PURPOSE:To increase an operation speed and reduce a noise by laminating the N-type third semiconductor layer and the P-type fourth semiconductor layer successively. CONSTITUTION:The N-type first semiconductor layer 12, the high-purity or P-type second semiconductor layer 13 which has larger electron affinity than the first semiconductor layer 12, the N-type third semiconductor layer 14 and the P-type fourth semiconductor layer 15 are successively laminated on a semi- insulating substrate 11. A gate electrode region 17 which controls the conductivity of an electron channel 16 formed at the boundary between the first semiconductor layer 12 and the second semiconductor layer 13, a source electrode region 18 and a drain electrode region 19 are provided. In a semiconductor device with the composition like this, if the acceptor concentration of the fourth semiconductor layer 15 is much higher than the donor concentration of the third semiconductor layer 14, the built-in voltage Vbi of the third semiconductor layer 14 is larger than that in the case of a conventional Schottky gate electrode where the fourth semiconductor layer 15 is not formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体へテロ接合界面における高速なキャリ
アを用いた半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device using high-speed carriers at a semiconductor heterojunction interface.

〔従来技術とその問題点〕[Prior art and its problems]

従来の電子親和力の相異なるヘテロ接合を用いた電界効
果型トランジスタ(以下、FETという)の模式的断面
図(応用物理第50巻第12号、1981年、1316
頁)を第5図に示す。第5図において、31は半絶縁性
基板であり、例えばGaAs、32は低不純物密度の第
1の半導体層、例えばノンドープG a A s s 
33は高いドナー不純物密度を有し、この第1の半導体
層32の電子親和力よりも小さい電子親和力を有する第
2の半導体層、例えばn型のAl1.3G ao、tA
 s、 34はソース電極領域、35はゲート電極領域
、36はドレイン電極領域、37は2次元電子層からな
る電流通路(以下、電子チャネルという)である。この
半導体装置は、ゲート電極領域35に印加されたゲート
電圧により電子チャネル37の電子濃度を制御して、ソ
ース電極領域34とドレイン電極領域36の間に形成さ
れる電子チャネル37のインピーダンスを制御すること
を基本原理とするFETである。
Schematic cross-sectional view of a conventional field effect transistor (hereinafter referred to as FET) using heterojunctions with different electron affinities (Applied Physics Vol. 50, No. 12, 1981, 1316
page) is shown in Figure 5. In FIG. 5, 31 is a semi-insulating substrate, for example GaAs, and 32 is a first semiconductor layer with a low impurity density, for example non-doped GaAs.
A second semiconductor layer 33 has a high donor impurity density and has an electron affinity smaller than that of the first semiconductor layer 32, for example, n-type Al1.3G ao, tA.
s, 34 is a source electrode region, 35 is a gate electrode region, 36 is a drain electrode region, and 37 is a current path (hereinafter referred to as an electron channel) consisting of a two-dimensional electron layer. This semiconductor device controls the impedance of the electron channel 37 formed between the source electrode region 34 and the drain electrode region 36 by controlling the electron concentration of the electron channel 37 by the gate voltage applied to the gate electrode region 35. This is an FET based on this basic principle.

第6図は、第5図に示したFETであり例えばノーマリ
オン型の場合の熱平衡状態におけるゲート電極領域35
の直下のエネルギーバンド図を現わしている。ここでE
Cは伝導下端のエネルギー準位、EPはフェルミ準位、
qφ8はショットキ障壁の高さ、■はイオン化ドナー不
純物を表わしている。
FIG. 6 shows the gate electrode region 35 of the FET shown in FIG. 5, for example, in a normally-on type thermal equilibrium state.
It shows the energy band diagram directly below . Here E
C is the energy level at the lower end of conduction, EP is the Fermi level,
qφ8 represents the height of the Schottky barrier, and ■ represents the ionized donor impurity.

このFETの場合周知の様に、第1と第2の半導体層3
2と33のへテロ接合界面近傍に蓄積された2次元電子
は、特に不純物散乱の影響が少なくなるために極めて大
きな電子移動度を有しており、従って、特に超高速性及
び低雑音性に優れた効果を期待できるものである。
In the case of this FET, as is well known, the first and second semiconductor layers 3
The two-dimensional electrons accumulated near the heterojunction interface between 2 and 33 have extremely high electron mobility because they are less affected by impurity scattering. Excellent effects can be expected.

しかしながら、このような従来構造のFETにおいては
、超高速性及び低雑音性に重要な寄生抵抗の低減が困難
であった。即ち、第5図において、第2の半導体層33
中のソース抵抗をR+、電子チャネル37によるソース
抵抗をR2、電子チャネル37及び第2の半導体層33
のへテロ界面に垂直な方向の抵抗をR)lとすると、総
合的ソース抵抗R5は近似的に次式で与えられる。
However, in FETs with such conventional structures, it has been difficult to reduce parasitic resistance, which is important for ultra-high speed and low noise. That is, in FIG. 5, the second semiconductor layer 33
The source resistance in the electron channel 37 is R+, the source resistance due to the electron channel 37 is R2, the electron channel 37 and the second semiconductor layer 33
Assuming that the resistance in the direction perpendicular to the heterointerface is R)l, the overall source resistance R5 is approximately given by the following equation.

通常、トンネル電流に主として基<RHはかなり大きく
、R+ < R2<< Ruと考えられるので、式(1
)はR,# R2(2) となり、R3は2次元電子の濃度で物理的にほぼ制限さ
れることが分る。このような結果は、FETの性能を示
す相互コンダクタンスの大幅な減少を招き、超高速性を
損うばかりでなく、寄生抵抗による熱雑音の発生のため
にFETの有する優れた低雑音性を大きく劣化させてし
まう。
Normally, the group <RH is quite large in the tunneling current, and it is considered that R+ < R2 << Ru, so the formula (1
) becomes R, # R2 (2), and it can be seen that R3 is almost physically limited by the two-dimensional electron concentration. Such a result not only causes a significant decrease in mutual conductance, which indicates the performance of the FET, and impairs ultrahigh speed performance, but also significantly reduces the excellent low noise characteristic of the FET due to the generation of thermal noise due to parasitic resistance. It will cause it to deteriorate.

また、特開昭57−26472号公報には、第5図にお
ける第1の半導体層32と第2の半導体層33が反転し
、しかも表面トラップによる2次元電子への影響を回避
するために第1の半導体層32とゲート電極35の間に
電子遮断層なる半導体層を用いた類似の半導体装置が示
されている。しかしながら、ゲート耐圧の点から電子遮
断層の濃度は制限され、ソース抵抗の低減は難しい。し
かも、前記特許公開公報に示されたチャネル層の膜厚2
000人では、大きな真性相互コンダクタンスも期待で
きない。
Furthermore, Japanese Patent Laid-Open No. 57-26472 discloses that the first semiconductor layer 32 and the second semiconductor layer 33 in FIG. A similar semiconductor device using a semiconductor layer serving as an electron blocking layer between the semiconductor layer 32 and the gate electrode 35 of FIG. 1 is shown. However, the concentration of the electron blocking layer is limited from the viewpoint of gate breakdown voltage, and it is difficult to reduce the source resistance. Moreover, the film thickness of the channel layer shown in the above-mentioned patent publication is 2.
000, a large intrinsic mutual conductance cannot be expected.

以上のように、従来技術による半導体装置は超高速性及
び低雑音性を損う欠点を有していることは明らかである
As described above, it is clear that semiconductor devices according to the prior art have drawbacks that impair ultra-high speed and low noise performance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、以上のような従来技術における欠点を
除去し、高速性及び低雑音性に極めて優れたヘテロ接合
型半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a heterojunction semiconductor device that is extremely excellent in high speed and low noise.

〔発明の構成〕[Structure of the invention]

第1の本発明は、n型の第1の半導体層上に、第1の半
導体層より電子親和力が大きく、高純度あるいはp型の
第2の半導体層と、n型の第3の半導体層と、p型の第
4の半導体層が順次積載され、第1の半導体層と第2の
半導体層との界面に形成された電子チャネルの導伝度を
制御する電極と、少なくとも2つのオーミック性電極を
具備したことを特徴としている。
A first aspect of the present invention provides a second semiconductor layer having a higher electron affinity than the first semiconductor layer and having a high purity or p-type, and a third n-type semiconductor layer on the first n-type semiconductor layer. and a p-type fourth semiconductor layer are sequentially stacked, an electrode for controlling the conductivity of an electron channel formed at the interface between the first semiconductor layer and the second semiconductor layer, and at least two ohmic conductors. It is characterized by being equipped with electrodes.

第2の本発明は、p型の第1の半導体層上に、第1の半
導体層より電子親和力と禁制帯幅の和が小さく、高純度
あるいはn型の第2の半導体層と、p型の第3の半導体
層と、n型の第4の半導体層が順次積載され、第1の半
導体層と第2の半導体層との界面に形成された正孔チャ
ネルの導伝度を制御する電極と、少なくとも2つのオー
ミック性電極を具備したことを特徴としている。
The second aspect of the present invention provides a p-type first semiconductor layer, a high-purity or n-type second semiconductor layer having a smaller sum of electron affinity and forbidden band width than the first semiconductor layer, and a p-type second semiconductor layer. A third semiconductor layer of n-type and a fourth semiconductor layer of n-type are sequentially stacked, and an electrode for controlling the conductivity of a hole channel formed at the interface between the first semiconductor layer and the second semiconductor layer. The device is characterized by having at least two ohmic electrodes.

〔発明の原理・作用〕[Principle and operation of the invention]

以下、本発明の原理・作用を明らかにする。 The principle and operation of the present invention will be explained below.

本発明の基本原理は、第3の半導体層の導入により、ソ
ース抵抗などの寄生抵抗を大幅に低減し、第4の半導体
層の導入により、ゲート逆耐圧の劣化を防ぎ、更にゲー
トしきい値電圧の制御性を向上させることに基く。以下
、図面を参照しながら詳細に説明する。
The basic principle of the present invention is to significantly reduce parasitic resistance such as source resistance by introducing the third semiconductor layer, to prevent deterioration of gate reverse breakdown voltage by introducing the fourth semiconductor layer, and to further reduce gate threshold voltage. It is based on improving voltage controllability. A detailed description will be given below with reference to the drawings.

第1図(a)は第1の本発明の半導体装置の基本的構造
の一例を示す模式的構造断面図、第1図(b)及び(C
)は、第1図(a)の半導体装置のそれぞれ熱平衡状態
におけるゲート電極下及びソース・ゲート電極間下での
エネルギーバンド図であり、ECは伝導帯下端のエネル
ギー準位、EFはフェルミ準位、■はイオン化ドナー不
純物を表わしている。
FIG. 1(a) is a schematic structural sectional view showing an example of the basic structure of the semiconductor device of the first invention, FIG. 1(b) and (C
) are energy band diagrams below the gate electrode and between the source and gate electrodes in the thermal equilibrium state of the semiconductor device in FIG. 1(a), where EC is the energy level at the bottom of the conduction band, and EF is the Fermi level. , ■ represent ionized donor impurities.

この半導体装置は、半絶縁性基板ll上に、n型の第1
の半導体層12と、この第1の半導体層12より電子親
和力が大きく、高純度あるいはp型の第2の半導体層1
3と、n型の第3の半導体層14と、p型の第4の半導
体層15とが順次積載されており、第1の半導体層12
と第2の半導体層13との界面に形成された電子チャネ
ル(2次元電子層>1(liの導伝度を制御するゲート
電極領域17と、ソース電極領域18及びドレイン電極
領域19とを備えている。
This semiconductor device has an n-type first
and a high purity or p-type second semiconductor layer 1 that has a higher electron affinity than the first semiconductor layer 12.
3, an n-type third semiconductor layer 14, and a p-type fourth semiconductor layer 15 are sequentially stacked, and the first semiconductor layer 12
An electron channel (two-dimensional electron layer>1 (comprising a gate electrode region 17 for controlling the conductivity of li, a source electrode region 18, and a drain electrode region 19) formed at the interface between ing.

このような構造の半導体装置において、第4の半導体層
15のアクセプタ濃度が第3の半導体層14のドナー濃
度に比べ十分高ければ、第3の半導体層14のビルトイ
ン電圧■1は、第4の半導体層15を形成しない通常の
ショットキゲート電極の場合に比べ大きくなる。従って
、第3の半導体層14の表面ポテンシャルが、ゲートの
ショットキ障壁の高さとほぼ等しいことを考え合わせれ
ば、第3の半導体層I4の空乏層の拡がり幅はソース・
ゲート電極間下で小さく〔第1図(C)Lゲート電極下
で大きくなる〔第1図(b)〕ことが分る。その結果、
例えばゲート電極下では完全空乏化させ、ソース、ゲー
ト電極下では中性領域を残すことができる。即ち、ソー
ス・ゲート電極間下における伝導キャリアの数を著しく
増加させ、寄生抵抗を下げられることになる。今、第2
図において(第2図は第1図と同じ半導体装置を示す)
、電子チャネルによるソース抵抗をR4、第3の半導体
層14中のソース抵抗をR3,第2と第3の半導体層1
3と14の界面に垂直な方向の抵抗をR5とすると、総
合的ソース抵抗R,は と近似的に表される。ホモ接合に近い状態ではR5沁0
(Ω)とできる為、 となる。式(4)は、R5を十分小さくすれば、物理的
制約をうけるR4が存在しても、R5を大幅に改善でき
ることを示している。即ち、第5図に示した従来構造に
おいて問題となったヘテロ界面に垂直な方向の抵抗RH
をほぼ零にできることが分る。
In a semiconductor device having such a structure, if the acceptor concentration of the fourth semiconductor layer 15 is sufficiently higher than the donor concentration of the third semiconductor layer 14, the built-in voltage (1) of the third semiconductor layer 14 will be equal to that of the fourth semiconductor layer 14. This is larger than in the case of a normal Schottky gate electrode in which the semiconductor layer 15 is not formed. Therefore, considering that the surface potential of the third semiconductor layer 14 is approximately equal to the height of the Schottky barrier of the gate, the width of the depletion layer of the third semiconductor layer I4 is the same as that of the source.
It can be seen that it is small under the gap between the gate electrodes [FIG. 1(C)] and becomes large under the L gate electrode [FIG. 1(b)]. the result,
For example, it is possible to completely deplete the area under the gate electrode, and leave a neutral region under the source and gate electrodes. That is, the number of conduction carriers between the source and gate electrodes can be significantly increased, and parasitic resistance can be reduced. Now, the second
In the figure (Figure 2 shows the same semiconductor device as Figure 1)
, the source resistance due to the electron channel is R4, the source resistance in the third semiconductor layer 14 is R3, and the second and third semiconductor layers 1
If the resistance in the direction perpendicular to the interface between 3 and 14 is R5, the overall source resistance R, is approximately expressed as. In a state close to homozygous, R5 0
(Ω), so it becomes . Equation (4) shows that if R5 is made sufficiently small, R5 can be significantly improved even if R4 is subject to physical constraints. In other words, the resistance RH in the direction perpendicular to the hetero interface, which was a problem in the conventional structure shown in FIG.
It turns out that it can be reduced to almost zero.

ここで、R3の低減に要求される条件は、第3の半導体
層14の膜厚を大きくすること及びドナー濃度を増すこ
とであるが、膜厚の大幅な増大は相互コンダクタンスg
、の著しい低下を招く為、ドナー濃度の増大が不可欠と
なる。第5図に示した従来構造FETではゲートの逆耐
圧、及びゲートのしきい値電圧■7の制御性の低下を防
ぐ為あまり大きくできないが、本発明による構造を用い
たFETは、p型の第4の半導体層15を備えているた
め、第3の半導体層14のドナー濃度を増大させてもゲ
ートの逆耐圧はほとんど劣化せず、しかも第3の半導体
層14と第4の半導体層150間のp−n接合によりゲ
ートのしきい値電圧■アが決定されるため、製造工程で
のバラツキはほとんど無く、しきい値電圧■、の制御性
は極めて優れている。以上の結果から、第2図に破線矢
印(−→−)で示したように第2の半導体層13と第3
の半導体層14との接合界面の影響の小さい滑らかな電
子の流れが実現できることが分かる。
Here, the conditions required to reduce R3 are to increase the film thickness of the third semiconductor layer 14 and to increase the donor concentration, but a significant increase in film thickness reduces the mutual conductance g.
, resulting in a significant decrease in , it is essential to increase the donor concentration. The conventional FET structure shown in FIG. Since the fourth semiconductor layer 15 is provided, the reverse breakdown voltage of the gate hardly deteriorates even if the donor concentration of the third semiconductor layer 14 is increased. Since the threshold voltage (2) of the gate is determined by the p-n junction between the two, there is almost no variation in the manufacturing process, and the controllability of the threshold voltage (2) is extremely excellent. From the above results, as shown by the broken line arrow (-→-) in FIG.
It can be seen that a smooth flow of electrons with little influence from the junction interface with the semiconductor layer 14 can be realized.

また、第3の半導体層14のドナー濃度を高くできる為
、実質的チャネル層である第2の半導体層13の膜厚を
薄くでき、その結果g、、の大幅な向上が実現できる。
Furthermore, since the donor concentration of the third semiconductor layer 14 can be increased, the thickness of the second semiconductor layer 13, which is essentially a channel layer, can be reduced, and as a result, a significant improvement in g can be realized.

尚、第3の半導体層14はゲート電極下において、熱平
衡状態で必ずしも完全に空乏化している必要はなく、使
用目的に応じて設計することが可能である。
Note that the third semiconductor layer 14 does not necessarily need to be completely depleted under the gate electrode in a thermal equilibrium state, and can be designed depending on the purpose of use.

以上の第1の発明はキャリアが電子の場合であるが、キ
ャリアが正孔の場合には、正孔が価電子帯に蓄積される
ために電子の場合とは多少異なるが、第1の発明と同様
の原理を適用することができる。第2の本発明は、キャ
リアが正孔である場合に関するものである。
The first invention described above is a case where the carrier is an electron, but when the carrier is a hole, the hole is accumulated in the valence band, which is slightly different from the case of an electron. A similar principle can be applied. The second invention relates to a case where the carrier is a hole.

第3図(a)は、本発明による正孔チャネルを有する場
合の半導体装置の基本的構造の一例を示す模式的構造断
面図、第3図(b)及び(C)はそれぞれ熱平衡状態に
おけるゲート電極下及びソース・ゲート電極間下でのエ
ネルギーバンド図であり、E、は価電子帯上端のエネル
ギー準位、E。
FIG. 3(a) is a schematic cross-sectional view showing an example of the basic structure of a semiconductor device having a hole channel according to the present invention, and FIG. 3(b) and (C) are gates in a thermal equilibrium state, respectively. This is an energy band diagram below the electrode and between the source and gate electrodes, where E is the energy level at the top of the valence band.

はフェルミ準位、eはイオン化アクセプター不純物を表
している。
represents the Fermi level, and e represents the ionized acceptor impurity.

この半導体装置は、半絶縁性基板21上に、p型の第1
の半導体層22と、この第1の半導体層22より電子親
和力と禁制帯幅の和が小さく、高純度あるいはn型の第
2の半導体層23と、p型の第3の半導体層24と、n
型の第4の半導体層25とが順次積載されており、第1
の半導体層22と第2の半導体層23との界面に形成さ
れた正孔チャネル(2次元正孔層)26の導伝度を制御
するゲート電極領域27と、ソース電極領域28及びド
レイン電極領域29とを備えている。
This semiconductor device has a p-type first semiconductor layer on a semi-insulating substrate 21.
a high purity or n-type second semiconductor layer 23 that has a smaller sum of electron affinity and forbidden band width than the first semiconductor layer 22; and a p-type third semiconductor layer 24. n
The fourth semiconductor layer 25 of the mold is stacked sequentially, and the first
A gate electrode region 27 that controls the conductivity of a hole channel (two-dimensional hole layer) 26 formed at the interface between the semiconductor layer 22 and the second semiconductor layer 23, a source electrode region 28, and a drain electrode region. It is equipped with 29.

以上のような構造の半導体装置が、キャリアに電子を用
いた場合と原則的に同様の原理、作用を有していること
は言うまでもない。
It goes without saying that the semiconductor device having the above structure basically has the same principle and operation as the case where electrons are used as carriers.

〔実施例〕〔Example〕

以下に第1の本発明の一実施例について説明する。 An embodiment of the first invention will be described below.

本実施例はノーマリオン型のプレーナ型のFETに関し
、その構造は第1図(a)に示す構造と同一であるので
、第1図(a)を用いて説明する。
This embodiment relates to a normally-on planar FET whose structure is the same as that shown in FIG. 1(a), so it will be explained using FIG. 1(a).

本実施例においては、半絶縁性基板11にGaASを、
第1の半導体層12にドナー不純物密度が2XIO”c
m−’で膜厚500AのA lxG a +−,A s
で、Xが基板11側から表面に向かって零から0.3ま
で徐々に変化した半導体層を、第2の半導体層13に不
純物密度がI XIO”cm−’以下で膜厚500人の
ノンドープGaAsを、第3の半導体層14にドナー不
純物密度が2 XIO”cm−’で膜厚300人のGa
Asを、第4の半導体層15にアクセプタ不純物密度が
3X1019cm−3で膜厚200人のGaASを、ゲ
ート電極領域17にARによるショットキ電極を、ソー
ス電極領域18及びドレイン電極領域19にAuGe/
N1によるオーミック性電極を用いる。尚、AuGe/
Niのアロイ層の深さ方向の分布は、必ずしも第1図(
a)のようである必要はなく、例えば第1の半導体層1
2に接触しない場合でも動作上許容される。
In this embodiment, GaAS is applied to the semi-insulating substrate 11.
The donor impurity density in the first semiconductor layer 12 is 2XIO”c
A lxG a +-, A s with a film thickness of 500A at m-'
Then, a semiconductor layer in which X gradually changes from zero to 0.3 from the substrate 11 side to the surface is formed into a non-doped second semiconductor layer 13 with an impurity density of IXIO"cm" or less and a film thickness of 500 cm. GaAs is used in the third semiconductor layer 14 with a donor impurity density of 2XIO"cm-' and a film thickness of 300cm.
GaAs with an acceptor impurity density of 3×10 19 cm −3 and a film thickness of 200 μm is applied to the fourth semiconductor layer 15 , a Schottky electrode made of AR is applied to the gate electrode region 17 , and AuGe/Ge is applied to the source electrode region 18 and drain electrode region 19 .
An ohmic electrode made of N1 is used. Furthermore, AuGe/
The depth distribution of the Ni alloy layer is not necessarily as shown in Figure 1 (
It does not have to be like a), for example, the first semiconductor layer 1
Even if it does not touch 2, it is permissible for operation.

本実施例においては、ゲート電極下における第3と第4
の半導体層14と15が熱平衡状態下においてほぼ完全
に空乏化している。一方、ソース・ゲート電極間下では
、表面ポテンシャルφ、=0.7e■とすると、第3の
半導体層14のほぼ100人程度が中性領域として残っ
ており、第3の半導体層14中の電子の移動度μm”4
000cイ/■・secとすると、式(4)中のR3を
与えるシート抵抗は約780Ω/口となる。また、2次
元電子の面密度n、をlXl012cm−2、移動度μ
。=8000cd/■・SeCとすると、R1を与える
シート抵抗は同じく約780Ω/口となり、総合的ソー
ス抵抗RsはR1の半分約390Ω/口と著しく小さく
なる。また、第4の半導体層15と2次元電子層16と
の間の総合的膜厚も、約800八と従来のものに比べ大
幅に縮小され、結果的に相互コンダクタンスg、は極め
て大きくなる。
In this example, the third and fourth
The semiconductor layers 14 and 15 are almost completely depleted under thermal equilibrium conditions. On the other hand, under the source-gate electrode, if the surface potential φ, = 0.7e■, approximately 100 portions of the third semiconductor layer 14 remain as a neutral region; Electron mobility μm”4
000c/■·sec, the sheet resistance that provides R3 in equation (4) is approximately 780Ω/sec. In addition, the areal density n of two-dimensional electrons is lXl012cm-2, and the mobility μ
. =8000 cd/■.SeC, the sheet resistance giving R1 is also about 780 Ω/hole, and the overall source resistance Rs is significantly small, half of R1, about 390 Ω/hole. Furthermore, the overall thickness between the fourth semiconductor layer 15 and the two-dimensional electronic layer 16 is approximately 80.0 mm, which is significantly reduced compared to the conventional one, and as a result, the mutual conductance g becomes extremely large.

尚、本実施例においては、ノーマリオン型のプレーナ型
FETを示したが、例えば第3の半導体層14の膜厚及
び不純物密度の減少によりノーマリオフ型のFETも実
現できる。また、ゲート電極17を除く領域に更にn型
の半導体層を、例えば気相成長法で形成することにより
、R3の更に小さな高性能デバイスが実現できることは
明らかである。
In this embodiment, a normally-on planar FET is shown, but a normally-off FET can also be realized by reducing the thickness and impurity density of the third semiconductor layer 14, for example. Furthermore, it is clear that a high-performance device with even smaller R3 can be realized by further forming an n-type semiconductor layer in a region other than the gate electrode 17 by, for example, vapor phase growth.

次に第1の本発明の他の実施例について説明する。本実
施例におけるFETの模式的構造断面図を第4図に示す
。第1図(a)に示した構成要素と同じ構成要素には原
則として第1図(a)と同一の番号を付して示す。
Next, another embodiment of the first invention will be described. FIG. 4 shows a schematic cross-sectional view of the structure of the FET in this example. In principle, the same components as those shown in FIG. 1(a) are designated by the same numbers as in FIG. 1(a).

本実施例は、第1図(a)の前記実施例において、半絶
縁性基板11と第1の半導体層12との間に、主として
基板11の素子特性への影響を小さくするためのバッフ
ァ層41を、第1の半導体層12と第2の半導体層13
との間に主として2次元電子の移動度の増大を図るため
のスペーサ層42を設けたものである。この実施例にお
いては、半絶縁性基板11にGaAsを、バッファ層4
1に不純物密度がlXl0”cm−3以下で膜厚0,5
μmのA 1xG a +−xA Sで、Xが基板11
側から表面に向かって零から0.3まで徐々に変化した
半導体層を、第1の半導体層12にドナー不純物密度が
2 X 10 ”cm−’で膜厚200AのA 1..
3G a、、、A sを、スペンサ一層42に不純物密
度がi XIO” cm−3以下で膜厚50AのAnd
、3Ga0.、Asを、第2の半導体層13に不純物密
度がI XIO”am−’以下で膜厚500人のノンド
ープGaAsを、第3の半導体層14にドナー不純物密
度が2X10”cm−3で膜厚400人のA (lvG
 a、yA sで、Yが基板11側から表面に向かって
零から0.5まで徐々に変化した半導体層を、第4の半
導体層15にアクセプタ不純物密度が3X10”cm−
3で膜厚20OAのAj!o、5Gao、sAsを、ゲ
ート電極領域17にWによるショットキ電極を、ソース
電極領域18及びドレイン電極領域19にAuGe/A
uによるオーミック性電極を用いる。
In this embodiment, a buffer layer is provided between the semi-insulating substrate 11 and the first semiconductor layer 12 in the embodiment shown in FIG. 41, the first semiconductor layer 12 and the second semiconductor layer 13
A spacer layer 42 is provided between the two to mainly increase the mobility of two-dimensional electrons. In this embodiment, a semi-insulating substrate 11 is made of GaAs, and a buffer layer 4 is made of GaAs.
1, the impurity density is less than lXl0"cm-3 and the film thickness is 0.5
μm of A 1xG a +-xA S, where X is the substrate 11
A semiconductor layer whose thickness gradually changes from zero to 0.3 from the side to the surface is formed into the first semiconductor layer 12 by A1..
3G a,..., As, and a film thickness of 50A with an impurity density of iXIO" cm-3 or less and
, 3Ga0. , As, the second semiconductor layer 13 is made of undoped GaAs with an impurity density of IXIO"am-' or less and a film thickness of 500 nm, and the third semiconductor layer 14 is made of undoped GaAs with a donor impurity density of 2X10"cm-3 and a film thickness of 400 people A (lvG
a, yA s, a semiconductor layer in which Y gradually changes from zero to 0.5 from the substrate 11 side toward the surface is formed into the fourth semiconductor layer 15 with an acceptor impurity density of 3X10"cm-
3 with a film thickness of 20OA! o, 5Gao, sAs, a Schottky electrode made of W in the gate electrode region 17, and AuGe/A in the source electrode region 18 and drain electrode region 19.
Ohmic electrodes are used.

本実施例の主な特徴は、総合的ソース抵抗R1を更に小
さくする為に、禁制帯幅の大きなAj!o、5Gao、
5ASを第4の半導体層15に用い、第3の半導体層1
4の膜厚を拡げた点にある。また、表面の安定性の向上
を目的として、p型半導体層15をゲート電極子以外の
領域においても表面空乏化の範囲で極薄に残している。
The main feature of this embodiment is that Aj! has a large forbidden band width in order to further reduce the overall source resistance R1. o,5Gao,
5AS is used for the fourth semiconductor layer 15, and the third semiconductor layer 1
It is at the point where the film thickness of 4 is expanded. Furthermore, for the purpose of improving surface stability, the p-type semiconductor layer 15 is left extremely thin in areas other than the gate electrode within the range of surface depletion.

尚、バッファ層41及びスペーサ層42の導入は既に知
られており、本実施例の本質ではないので、詳細な説明
は省略する。
Note that the introduction of the buffer layer 41 and the spacer layer 42 is already known and is not the essence of this embodiment, so a detailed explanation will be omitted.

本実施例は、前記実施例と同様に、総合的ソース抵抗R
sの低減、相互コンダクタンスg、の向上などの他に、
論理振幅を大きくできる利点を有している。
In this embodiment, as in the previous embodiment, the overall source resistance R
In addition to reducing s and improving mutual conductance g,
It has the advantage of increasing logic amplitude.

次に正孔チャネルを用いた第2の本発明の一実施例につ
いて説明する。本実施例におけるFETの模式的構造断
面図は第3図(a)と同様であるので、第3図(a)を
用いて説明する。本実施例においては、半絶縁性基板2
1にGaAsを、第1の半導体層22にアクセプタ不純
物密度が2 Xl018cm””で膜厚600AのGa
Asを、第2の半導体層23に不純物密度がlXl0”
cm−’以下で膜厚50〇へのノンドープGeを、第3
の半導体層24にアクセプタ不純物密度が2 XIOI
8am−’で膜厚400人のGeを、第4の半導体層2
5にドナー不純物密度が2 Xl019crn−3で膜
厚200人のGeを、ゲート電極領域27にAAによる
ショットキ電極を、ソース電極領域28及びドレイン電
極領域29にAuZnによるオーミック性電極を用いる
Next, an embodiment of the second invention using a hole channel will be described. The schematic structural cross-sectional view of the FET in this example is the same as that in FIG. 3(a), so the description will be made using FIG. 3(a). In this embodiment, the semi-insulating substrate 2
1 is made of GaAs, and the first semiconductor layer 22 is made of Ga with an acceptor impurity density of 2Xl018cm'' and a film thickness of 600A.
As is added to the second semiconductor layer 23 at an impurity density of lXl0''
cm-' or less to a film thickness of 500, the third
The acceptor impurity density in the semiconductor layer 24 of 2XIOI
The fourth semiconductor layer 2 is made of Ge with a film thickness of 400 nm and 8 am-'.
Ge with a donor impurity density of 2Xl019crn-3 and a film thickness of 200 nm is used for the gate electrode region 27, a Schottky electrode made of AA is used for the gate electrode region 27, and ohmic electrodes made of AuZn are used for the source electrode region 28 and the drain electrode region 29.

本実施例においても、伝導キャリアが電子の場合と同様
にソース抵抗R5sは半分以下に軽減され、相互コンダ
クタンスg1も大幅に向上した。尚、プレーナ型及びゲ
ート電極領域27を除く領域にn型の半導体層を形成し
た型、更にノーマリオン型およびノーマリオフ型などの
形状設計に起因するものは、すべて伝導キャリアが電子
の場合と同様に実現されることは明白である。
In this example as well, the source resistance R5s was reduced to less than half, and the mutual conductance g1 was also significantly improved, as in the case where the conduction carriers were electrons. Note that the planar type, the type in which an n-type semiconductor layer is formed in the area other than the gate electrode region 27, the normally-on type, the normally-off type, and other types due to the shape design are all similar to the case where the conductive carriers are electrons. It is clear that this will be achieved.

〔発明の効果〕〔Effect of the invention〕

以上本発明によれば、2次元伝導キャリアの高速性を十
分に生かし、しかも寄生抵抗の大幅な低減などにより大
きな相互コンダクタンスを有した高性能な超高周波・超
高速超低雑音FETを実現できる。更に、しきい値電圧
の設計自由度及び制御性も極めて優れている為、その生
産性も優れている。また本発明によって、高性能・高信
頼度マイクロ波、ミリ波デバイス及び超高速IC等々の
優れた半導体装置が得られ、本発明の効果は極めて大で
ある。
As described above, according to the present invention, it is possible to realize a high-performance ultra-high frequency, ultra-high speed, ultra-low noise FET that makes full use of the high speed properties of two-dimensional conduction carriers and has a large mutual conductance due to a significant reduction in parasitic resistance. Furthermore, since the design flexibility and controllability of the threshold voltage are extremely excellent, the productivity is also excellent. Furthermore, the present invention provides excellent semiconductor devices such as high-performance and highly reliable microwave and millimeter wave devices and ultra-high-speed ICs, and the effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は第1の本発明を説明するための図 第3図は第2の本発明を説明するための図、第4図は第
1の本発明の一実施例である半導体装置の模式的断面図
、 第5図は従来の半導体装置の一例の構造を示す模式的断
面図、 第6図は第5図の半導体装置のエネルギーバンド図であ
る。 11、21・・・半絶縁性基板、 12、22・・・第1の半導体層、 13、23・・・第2の半導体層、 14、24・・・第3の半導体装置 15、25・・・第4の半導体層、 16・・・電子チャネル 17、27・・・ゲート電極領域 18、28・・・ソース電極領域 19、29・・・ドレイン電極領域 41・・・バッファ層 42・・・スペーサ層 代理人 弁理士  岩 佐 義 幸 (a) (b)(c) 第1閤 第2fm 第4図 (a) (b)(C) 第3図
1 and 2 are diagrams for explaining the first invention; FIG. 3 is a diagram for explaining the second invention; and FIG. 4 is an embodiment of the first invention. 5 is a schematic cross-sectional view of a semiconductor device; FIG. 5 is a schematic cross-sectional view showing the structure of an example of a conventional semiconductor device; FIG. 6 is an energy band diagram of the semiconductor device of FIG. 11, 21... Semi-insulating substrate, 12, 22... First semiconductor layer, 13, 23... Second semiconductor layer, 14, 24... Third semiconductor device 15, 25. ...Fourth semiconductor layer, 16...Electron channels 17, 27...Gate electrode regions 18, 28...Source electrode regions 19, 29...Drain electrode region 41...Buffer layer 42...・Spacer layer agent Yoshiyuki Iwasa (a) (b) (c) 1st floor 2nd fm Figure 4 (a) (b) (C) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)n型の第1の半導体層上に、第1の半導体層より
電子親和力が大きく、高純度あるいはp型の第2の半導
体層と、n型の第3の半導体層と、p型の第4の半導体
層が順次積載され、第1の半導体層と第2の半導体層と
の界面に形成された電子チャネルの導伝度を制御する電
極と、少なくとも2つのオーミック性電極を具備したこ
とを特徴とする半導体装置。
(1) On an n-type first semiconductor layer, a high-purity or p-type second semiconductor layer that has a higher electron affinity than the first semiconductor layer, an n-type third semiconductor layer, and a p-type second semiconductor layer. A fourth semiconductor layer is stacked in sequence, and includes an electrode for controlling the conductivity of an electron channel formed at the interface between the first semiconductor layer and the second semiconductor layer, and at least two ohmic electrodes. A semiconductor device characterized by:
(2)p型の第1の半導体層上に、第1の半導体層より
電子親和力と禁制帯幅の和が小さく、高純度あるいはn
型の第2の半導体層と、p型の第3の半導体層と、n型
の第4の半導体層が順次積載され、第1の半導体層と第
2の半導体層との界面に形成された正孔チャネルの導伝
度を制御する電極と、少なくとも2つのオーミック性電
極を具備したことを特徴とする半導体装置。
(2) On the p-type first semiconductor layer, the sum of electron affinity and forbidden band width is smaller than that of the first semiconductor layer, and high purity or n
A type second semiconductor layer, a p-type third semiconductor layer, and an n-type fourth semiconductor layer are sequentially stacked and formed at the interface between the first semiconductor layer and the second semiconductor layer. A semiconductor device comprising an electrode for controlling conductivity of a hole channel and at least two ohmic electrodes.
JP12149285A 1985-06-06 1985-06-06 Semiconductor device Pending JPS61280674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12149285A JPS61280674A (en) 1985-06-06 1985-06-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12149285A JPS61280674A (en) 1985-06-06 1985-06-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61280674A true JPS61280674A (en) 1986-12-11

Family

ID=14812499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12149285A Pending JPS61280674A (en) 1985-06-06 1985-06-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61280674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252484A (en) * 1987-04-09 1988-10-19 Nec Corp Hetero-junction field-effect transistor
US5111256A (en) * 1988-12-27 1992-05-05 Nec Corporation High speed semiconductor device and an optelectronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726472A (en) * 1980-07-24 1982-02-12 Fujitsu Ltd Semiconductor device
JPS5891681A (en) * 1981-11-27 1983-05-31 Oki Electric Ind Co Ltd Field-effect type transistor
JPS58147169A (en) * 1982-02-26 1983-09-01 Fujitsu Ltd High electron mobility transistor
JPS5931072A (en) * 1982-08-16 1984-02-18 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor of high mobility
JPS59100577A (en) * 1982-11-30 1984-06-09 Fujitsu Ltd Semiconductor device
JPS60231366A (en) * 1984-04-28 1985-11-16 Agency Of Ind Science & Technol Field effect transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726472A (en) * 1980-07-24 1982-02-12 Fujitsu Ltd Semiconductor device
JPS5891681A (en) * 1981-11-27 1983-05-31 Oki Electric Ind Co Ltd Field-effect type transistor
JPS58147169A (en) * 1982-02-26 1983-09-01 Fujitsu Ltd High electron mobility transistor
JPS5931072A (en) * 1982-08-16 1984-02-18 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor of high mobility
JPS59100577A (en) * 1982-11-30 1984-06-09 Fujitsu Ltd Semiconductor device
JPS60231366A (en) * 1984-04-28 1985-11-16 Agency Of Ind Science & Technol Field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252484A (en) * 1987-04-09 1988-10-19 Nec Corp Hetero-junction field-effect transistor
US5111256A (en) * 1988-12-27 1992-05-05 Nec Corporation High speed semiconductor device and an optelectronic device

Similar Documents

Publication Publication Date Title
KR100933277B1 (en) AlGaN/GaN HEMTs having a gate contact on a GaN based cap segment and methods of fabricating same
JP3602150B2 (en) High electron mobility transistor
US4558337A (en) Multiple high electron mobility transistor structures without inverted heterojunctions
US5105241A (en) Field effect transistor
JPH024140B2 (en)
JPS59207667A (en) Semiconductor device
JPS62274783A (en) Semiconductor device
JPH01186683A (en) Semiconductor device
JP3141935B2 (en) Heterojunction field effect transistor
JPS61280674A (en) Semiconductor device
JP3094500B2 (en) Field effect transistor
JP3021894B2 (en) Heterojunction field effect transistor
JPS61144881A (en) Semiconductor device
JPH0511656B2 (en)
JP2553673B2 (en) Field effect transistor
JPH0368143A (en) Heterojunction field-effect transistor
JP3156252B2 (en) Field effect transistor
KR960006112B1 (en) Junction field effect transistor and the manufacturing method thereof
JPH0714056B2 (en) Semiconductor device
JPS63186479A (en) Field effect transistor
JPH0485957A (en) Semiconductor device and manufacture of the same
JPH09283745A (en) High-electron mobility transistor
JPH0684960A (en) Field effect transistor
JP2003203931A (en) Heterojunction field-effect transistor
JPS62293780A (en) Semiconductor device