JPS61280601A - Manufacture of isotropic ferritic magnet - Google Patents

Manufacture of isotropic ferritic magnet

Info

Publication number
JPS61280601A
JPS61280601A JP12158585A JP12158585A JPS61280601A JP S61280601 A JPS61280601 A JP S61280601A JP 12158585 A JP12158585 A JP 12158585A JP 12158585 A JP12158585 A JP 12158585A JP S61280601 A JPS61280601 A JP S61280601A
Authority
JP
Japan
Prior art keywords
isotropic
wet
iron oxide
pulverization
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12158585A
Other languages
Japanese (ja)
Inventor
Mitsumasa Shimazaki
島崎 光正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TONE SANGYO KK
Original Assignee
TONE SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TONE SANGYO KK filed Critical TONE SANGYO KK
Priority to JP12158585A priority Critical patent/JPS61280601A/en
Publication of JPS61280601A publication Critical patent/JPS61280601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the magnetic property by wet-pulverizing a part or all of ferric oxide after calcination. CONSTITUTION:Ferric oxide is wet-pulverized in the state of dispersed suspension in water instead of dry-pulverization after calcination. The wet-pulverization can provide the ferric oxide with excellent magnetic property even if the ferric oxide never provided with said property by the dry-pulverizing process is used as a material.

Description

【発明の詳細な説明】 本発明は等方性フェライト磁石の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in isotropic ferrite magnets.

MO・6Fe2O3系フ工ライト磁石はプレス成形を磁
界中で行う異方性磁石と非磁界中で行う等方性磁石とに
大別される。異方性磁石は酸化鉄と炭酸バリウムあるい
は炭酸ストロンチウムをモル比で5〜6となるように配
合し、仮焼後粗粉砕し、アトライターあるいはボールミ
ル等で水に分散させた状態で微粉砕する。いわゆる湿式
粉砕を行い、そのままのスラリー状か、またはスラリー
を乾燥してバインダーを加え解砕するかして磁場プレス
成形を行い、焼結させて異方性磁石を製造する。
MO.6Fe2O3 based flightlite magnets are roughly divided into anisotropic magnets, which are press-formed in a magnetic field, and isotropic magnets, which are press-formed in a non-magnetic field. Anisotropic magnets are made by blending iron oxide and barium carbonate or strontium carbonate at a molar ratio of 5 to 6, which is calcined and then coarsely ground, and then finely ground after being dispersed in water using an attritor or ball mill. . So-called wet pulverization is performed, and the slurry is either left in the form of a slurry, or the slurry is dried, a binder is added and crushed, and then magnetic field press molding is performed and sintered to produce an anisotropic magnet.

等方性磁石は異方性磁石と同様な工程をへて製造される
が、仮焼後の微粉砕を湿式で行わず、乾式粉砕している
点が異なる。
Isotropic magnets are manufactured through the same process as anisotropic magnets, but the difference is that dry pulverization is performed instead of wet pulverization after calcination.

この従来の製造方法において磁石の磁気特性(特に残留
磁束密度)を高めるためには原料となる酸化鉄の粒径、
純度等を狭い範囲としなければならない。現在大量に使
用されている酸化鉄は鉄鋼メーカーの鋼板の酸洗工程で
副生する硫酸第一鉄、塩化第一鉄を熱分解して得られる
もので、粒子径は空気透過法による平均粒径で0.5〜
1.LLL¥度は水分を除いた状態で99%程度以上が
使用されている。また仮焼温度も1100℃前後で狭い
範囲での管理が必要である。しかしながら、鉄鋼メーカ
ーが酸洗のかわりに他の鋼板処理方法を導入したこと等
により副生酸化鉄の量が減少しつつあり、酸化鉄ソース
を他に求めなければならなくなっている。
In this conventional manufacturing method, in order to improve the magnetic properties (especially the residual magnetic flux density) of the magnet, the particle size of the iron oxide used as the raw material,
Purity etc. must be kept within a narrow range. Iron oxide, which is currently used in large quantities, is obtained by thermally decomposing ferrous sulfate and ferrous chloride, which are by-products in the pickling process of steel sheets at steel manufacturers.The average particle size is determined by air permeation method. 0.5~ in diameter
1. About 99% or more of LLL ¥ degree is used excluding water. Furthermore, the calcination temperature must be controlled within a narrow range of around 1100°C. However, as steel manufacturers have introduced other steel sheet processing methods instead of pickling, the amount of by-product iron oxide is decreasing, and other sources of iron oxide must be sought.

本発明は使用することが可能な原料酸化鉄の範囲を広げ
、かつ製造工程で磁気特性の管理が容易となる等方性フ
ェライト磁石の製造方法を見出したものである。
The present invention is based on the discovery of a method for manufacturing isotropic ferrite magnets that expands the range of usable raw material iron oxides and allows easy control of magnetic properties during the manufacturing process.

従来の製造方法と異なる工程は仮焼後の乾式微粉砕のか
わりに水に分散懸濁された状態で粉砕する、すなわち湿
式粉砕することであり、これにより高い磁気特性の等方
性フェライト磁石が得られる1゜以下実施例および比較
例により本発明の技術め内容を詳細に゛説明する。尚原
料酸化鉄は平均粒径10A、純度97%である。
The process that differs from the conventional manufacturing method is that instead of dry pulverization after calcination, it is pulverized in a state dispersed and suspended in water, that is, wet pulverization, which produces isotropic ferrite magnets with high magnetic properties. The technical content of the present invention will be explained in detail with reference to the obtained 1° or less Examples and Comparative Examples. The raw material iron oxide has an average particle size of 10A and a purity of 97%.

実例1 原料酸化鉄と炭酸バリウムをモル比で563となるよう
に配合し1150℃で仮焼した。このクリンカーを粗砕
し、湿式アトライターで粒径1.1.LLまで微粉砕し
、乾燥後、造粒、プレス成形して12O0℃で焼結した
。このテストビーズの磁気特性は残留磁束密度(Br 
)22O0 G 、保磁力(B Hc ) 17000
e 、保磁力(IHC)31000e テあった。
Example 1 Raw materials iron oxide and barium carbonate were mixed at a molar ratio of 563 and calcined at 1150°C. This clinker is coarsely crushed, and a particle size of 1.1. It was pulverized to LL, dried, granulated, press-molded, and sintered at 120°C. The magnetic properties of this test bead are determined by the residual magnetic flux density (Br
) 22O0 G, coercive force (B Hc) 17000
It had a coercive force (IHC) of 31,000e.

実例2 原料酸化鉄を湿式アトライターで2Aまで粉砕し、実施
例1と同様に配合、仮焼、粗砕、湿式微粉砕、乾燥、造
粒、プレス、焼結まで行った。磁気特性はBr  22
2O G 、 BHC17500e 、 IHC350
00e テあツタ。
Example 2 Raw iron oxide was pulverized to 2A using a wet attritor, and the same steps as in Example 1 were carried out, including blending, calcination, coarse crushing, wet pulverization, drying, granulation, pressing, and sintering. Magnetic properties are Br 22
2OG, BHC17500e, IHC350
00e Te Atsuta.

比較例1 原料酸化鉄を実施例2と同様に湿式アトライターで2)
LLまで粉砕し、モル比5.3の配合で1050℃で仮
焼した。このクリンカーを粗砕し乾式振動ミルで粒径1
.IAまで粉砕し、造粒、プレス成形して12O0℃で
焼結した。磁気特性はBr 1950に 、 BHC1
550℃、IHC37000eであった。
Comparative Example 1 Raw material iron oxide was treated with a wet attritor in the same manner as in Example 2.
It was ground to LL and calcined at 1050°C with a molar ratio of 5.3. This clinker is coarsely crushed, and a particle size of 1
.. It was pulverized to IA, granulated, press-molded, and sintered at 1200°C. Magnetic properties are Br 1950, BHC1
The temperature was 550°C and IHC37000e.

声較例2 原料酸化鉄を湿式アトライターで0.9.tLまで粉砕
し、他は比較例1と同様に焼結まで行った。磁気特性は
Br  2O00 G 、 BHC16000e、 x
Hc38000eであった。
Voice comparison example 2 Raw material iron oxide was 0.9. The material was pulverized to tL, and the rest was carried out in the same manner as in Comparative Example 1 up to sintering. Magnetic properties are Br2O00G, BHC16000e, x
It was Hc38000e.

このように従来の乾式微粉砕による製造方法では高い磁
気特性が得られない酸化鉄を原料として使用しても従来
品と同等以上の磁気特性が湿式微粉砕を行うことにより
て得られる。酸化鉄は天然産、鉄鋼焼出ルスナー法、同
ルルギ法等を使用しても、同様な高い磁気特性が得られ
る。また必要により二酸化ケイ素等の添加物によりて収
縮率、磁気特性のコントロールも可能であり、上記実施
例の炭酸バリウムのかわりに炭酸ストロンチウムを使用
しても同様な傾向であった。本発明に示す湿式微粉砕の
後、乾燥せずに直接PVA等のバインダーと混練し造粒
することによってコストを低下させることもできる。
As described above, even if iron oxide is used as a raw material, which cannot obtain high magnetic properties by the conventional production method using dry pulverization, magnetic properties equivalent to or higher than those of conventional products can be obtained by performing wet pulverization. Similar high magnetic properties can be obtained using naturally occurring iron oxide, the Lussner method, the Lurgi method, etc. Furthermore, if necessary, the shrinkage rate and magnetic properties can be controlled by additives such as silicon dioxide, and the same tendency was obtained even when strontium carbonate was used instead of barium carbonate in the above example. After the wet pulverization shown in the present invention, the cost can be reduced by directly kneading with a binder such as PVA and granulating without drying.

利根産業株式会社Tone Sangyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  MO・6Fe_2O_3系(MはBa、Srの1種ま
たは2種)等方性フェライト磁石の製造方法において、
仮焼後の粉砕の一部または全てを湿式粉砕で行うことを
特徴とする等方性フェライト磁石の製造方法。
In a method for manufacturing an isotropic ferrite magnet of MO・6Fe_2O_3 system (M is one or two of Ba and Sr),
A method for producing an isotropic ferrite magnet, characterized in that part or all of the pulverization after calcination is performed by wet pulverization.
JP12158585A 1985-06-06 1985-06-06 Manufacture of isotropic ferritic magnet Pending JPS61280601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12158585A JPS61280601A (en) 1985-06-06 1985-06-06 Manufacture of isotropic ferritic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12158585A JPS61280601A (en) 1985-06-06 1985-06-06 Manufacture of isotropic ferritic magnet

Publications (1)

Publication Number Publication Date
JPS61280601A true JPS61280601A (en) 1986-12-11

Family

ID=14814883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12158585A Pending JPS61280601A (en) 1985-06-06 1985-06-06 Manufacture of isotropic ferritic magnet

Country Status (1)

Country Link
JP (1) JPS61280601A (en)

Similar Documents

Publication Publication Date Title
US10720272B2 (en) Ferrite magnetic material and ferrite sintered magnet
EP3473606B1 (en) Ferrite sintered magnet
WO2007060757A1 (en) Oxide based magnetic material, process for producing the same, sintered ferrite magnet and process for producing the same
JP2001135512A (en) Ferrite magnet powder, magnet using the magnet powder and method of manufacturing both
US5061412A (en) Process for producing a magnet of strontium ferrite having high performance
JP2021141151A (en) Ferrite powder for bond magnet and production method thereof
US11476023B2 (en) Ferrite sintered magnet
JPS61280601A (en) Manufacture of isotropic ferritic magnet
JPH1197227A (en) Ferrite magnet and rotating machine using the same
JP4753054B2 (en) Manufacturing method of sintered ferrite magnet
JPH0689827A (en) Manufacture of ferrite magnet by dry magnetic field molding method
JP2004532524A (en) Manufacturing method of ferrite type magnet
CN1037880A (en) Adopt magnetite to produce the ferrite permanent-magnet materials method
US5053156A (en) Process for producing ferrite powder for ferrite magnets
US3561919A (en) Iron oxide-ferrite production process
JP2001274010A (en) Polar anisotropic cylindrical ferrite magnet and magnetic field granular material
JPH11307331A (en) Ferrite magnet
JP2002141212A (en) Rotating machine
KR102610891B1 (en) Method for preparing ferrite sintered magnet
CN116120049B (en) Preparation method of calcium lanthanum cobalt ferrite magnet, calcium lanthanum cobalt ferrite magnet and application
JPH03123004A (en) Manufacture of highly efficient sr ferrite magnet
JP2824603B2 (en) Ferrite particle powder for bonded magnetic material and method for producing the same
JP2000173812A (en) Manufacture of anisotropic ferrite magnet
JP2001006912A (en) Hard ferrite magnet and its manufacture
JPS6050324B2 (en) Manufacturing method of oxide permanent magnet