JPS61280577A - Digital type frequency detecting method - Google Patents

Digital type frequency detecting method

Info

Publication number
JPS61280577A
JPS61280577A JP12064685A JP12064685A JPS61280577A JP S61280577 A JPS61280577 A JP S61280577A JP 12064685 A JP12064685 A JP 12064685A JP 12064685 A JP12064685 A JP 12064685A JP S61280577 A JPS61280577 A JP S61280577A
Authority
JP
Japan
Prior art keywords
signal
frequency
generation time
extreme value
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12064685A
Other languages
Japanese (ja)
Other versions
JPH0525072B2 (en
Inventor
Takahide Niimura
新村 隆英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12064685A priority Critical patent/JPS61280577A/en
Publication of JPS61280577A publication Critical patent/JPS61280577A/en
Publication of JPH0525072B2 publication Critical patent/JPH0525072B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

PURPOSE:To detect frequency with high accuracy even when a DC component was superposed to an input signal by simple circuit constitution, by calculating the frequency on the basis of the generation time of the extreme value of an AC signal. CONSTITUTION:An AC signal subjected to A/D conversion receives processing by CPU21 in a digital operating part 2 and the generation time of the extreme value such as a max. value of said AC signal is determined on the basis of the difference between sampling values at every equal time intervals and, further, the frequency of the AC signal is calculated from the time difference with the next extreme value generation time to be displayed on a display part 4. By the method not based on the zero point generation time of the AC signal but based on the extreme value generation time, the frequency of the AC signal is detected with high frequency by simple circuit constitution even when a DC component is superposed thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、正弦波信号をサンプリングし、このサンプ
リング値にもとづいて所定の演算をすることにより、正
弦波信号の周波数を数値(ディジタル)的に検出する周
波数検出方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention samples a sine wave signal and performs a predetermined calculation based on the sampled value to numerically (digitally) calculate the frequency of the sine wave signal. This invention relates to a frequency detection method for detecting frequencies.

〔従来の技術〕[Conventional technology]

従来、正弦波交流信号をサンプリングした値を用いて周
波数を検出する方法としては、例えば信号の符号(±)
が反転する点、すなわち零点を利用する零点検出方式が
知られている。
Conventionally, as a method for detecting frequency using values obtained by sampling a sine wave AC signal, for example, the sign (±) of the signal is detected.
A zero point detection method is known that uses the point where the value is reversed, that is, the zero point.

第4図はかかる零点検出方式を説明するための参照図で
ある。これは、例えば同図の零点t2□。
FIG. 4 is a reference diagram for explaining such a zero point detection method. This is, for example, the zero point t2□ in the same figure.

tz、の時間差’22−tz1が周期Tの1/2に相当
することから、周波数fを、 f−1/T−1/2(t2□−t2.)として求めるも
のである。
Since the time difference '22-tz1 of tz, corresponds to 1/2 of the period T, the frequency f is determined as f-1/T-1/2 (t2□-t2.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如き零点検出方式によれば、入力信号が正しく正
弦波信号である場合は精度よ(周波数を求めることがで
きるが、交流信号に第5図の如く直流成分■dが重畳し
た場合は、隣り合う零点の間の発生時刻の差が正弦波の
周期に等しく対応しないため”Z2” Z1′←’zs
’  t22’←T/2)、周波数の検出に誤差を生じ
るという問題点がある。
According to the zero point detection method as described above, if the input signal is a sine wave signal, the accuracy (frequency) can be determined, but if the DC component d is superimposed on the AC signal as shown in Figure 5, "Z2"Z1'←'zs because the difference in occurrence time between adjacent zero points does not correspond equally to the period of the sine wave.
't22'←T/2), there is a problem in that an error occurs in frequency detection.

したがって、この発明は入力信号に直流成分が重畳して
零点がドリフトする場合にも、精度よく周波数を検出し
得るようにすることを目的とする。
Therefore, it is an object of the present invention to enable accurate frequency detection even when a DC component is superimposed on an input signal and the zero point drifts.

〔問題を解決するための手段〕[Means to solve the problem]

正弦波入力信号を所定の周期でサンプリングするサンプ
リング手段と、このサンプリング値にもとづいて所定の
演算を行なう演算手段とを設ける。
A sampling means for sampling a sine wave input signal at a predetermined period, and a calculation means for performing a predetermined calculation based on the sampled values are provided.

〔作用〕[Effect]

周波数(周期)を検出するに当たり、例えば隣り合う極
値の発生時刻の差を用いるようにする。
In detecting the frequency (period), for example, the difference between the occurrence times of adjacent extreme values is used.

すなわち、第3図に示すように直流分を含み、周波数f
で周期的に変化する交流信号v(t)の場合でも、周波
数fは隣り合う極大値と極小値の間の発生時刻の差T/
2(半周期に相当)、もしくは隣り合う極大値と極大値
(または、極小値と極小値)の間の発生時刻の差T(1
周期に相当:T−1/f)から正しく検出できるという
原理を利用する。
That is, as shown in Fig. 3, it includes a DC component and has a frequency f.
Even in the case of an alternating current signal v(t) that changes periodically at
2 (equivalent to half a cycle), or the difference T (1
It utilizes the principle that it can be detected correctly from the cycle (corresponding to the period: T-1/f).

〔実施例〕 第1図はこの発明の詳細な説明するための参照図であり
、極値(極大値または極小値)の発生時刻を求める手法
を説明するためのものである。
[Example] FIG. 1 is a reference diagram for explaining the present invention in detail, and is for explaining a method for determining the time of occurrence of an extreme value (maximum value or minimum value).

まず、同図(イ)を用いて極大値の場合について説明す
る。
First, the case of the local maximum value will be explained using FIG.

交流信号v(t)を時間Δt、ごとに等間隔でサンプリ
ングするとき、時刻t1.t2.t5(t2鱈t1+Δ
t、It、稔t2+Δ1.Δt3>O)における信号の
値をそれぞれV’1 + Y2 * Y5と表わすと、
vl(V2 p V2 > V5が成り立つならばv(
t)の極大値は時刻t、とt、の間の時刻’maxにあ
る(t、<tmaxくt、)。ここで、これらの値に対
して2次関数をあてはめることにすれば、この時刻’r
naxは次の(1)式により近似することができる。
When sampling the AC signal v(t) at equal intervals every time Δt, time t1. t2. t5(t2 cod t1+Δ
t, It, Minority t2+Δ1. If the signal values at Δt3>O) are respectively expressed as V'1 + Y2 * Y5, then
vl(V2 If p V2 > V5 holds, then v(
The maximum value of t) is at time 'max between times t and t (t,<tmax x t,). Now, if we apply a quadratic function to these values, this time 'r
nax can be approximated by the following equation (1).

極小値についても同様に、同図(ロ)の如く極小値をは
さみ込む6つの連続したサンプリング時刻を14.15
.16(15譚t4+ΔtsIt6卑t、+Δ1s)と
し、それぞれの時刻における信号の値をV4 # ’1
5 tv 6(v 4 ) v5* v s (v b
 )とすると、極小値の発生時刻tfT1i□は次の第
(2)式により近似的に求められる。
Similarly, for the minimum value, the six consecutive sampling times that sandwich the minimum value are 14.15 as shown in the same figure (b).
.. 16 (15 tan t4+ΔtsIt6baset, +Δ1s), and the value of the signal at each time is V4 # '1
5 tv 6 (v 4 ) v5* v s (v b
), the time tfT1i□ at which the minimum value occurs can be approximately determined by the following equation (2).

上記(1)、(2)式を使って交流入力信号のひとつの
極大値と、それに隣り合う極小値の発生時刻1  .1
−  とを求めると、その差” min −tmaxm
ax     min はとの交流信号の半周期に相当するので、周波数fは次
の(3)式を使って計算することができる。
Using equations (1) and (2) above, we calculate the occurrence time 1 of one maximum value of the AC input signal and the adjacent minimum value. 1
−, the difference is “min −tmaxm
Since ax min corresponds to a half cycle of the AC signal, the frequency f can be calculated using the following equation (3).

入力信号v (t)に直流成分が重畳した場合は、(1
)式および(2)式において近似すべき2次関数が異な
るだけなので、直流ドリフトにより誤差を生じることは
ない。また、極値付近で交流信号の絶対値がフルスケー
ルに近いサンプリング値を計算に使うようにしているた
め、量子化誤差も改善される。
When a DC component is superimposed on the input signal v (t), (1
) and (2), only the quadratic functions to be approximated are different, so no error occurs due to DC drift. Additionally, since sampling values near the extreme values where the absolute value of the AC signal is close to full scale are used for calculation, quantization errors are also improved.

第2図はこの発明が適用されるディジタル装置を示すブ
ロック図である。このディジタル装置は大きくはアナロ
グ入力部1、ディジタル演算部2、入出力インタフェイ
ス部3および表示部4から構成され、アナログ入力部1
は絶縁変成器11.ア−1−Fl /r jスn−A4
θ Jl−’/ゴ角、−に−n、 !+’r;’il吠
42マルチプレクサ14およびアナログ/ディジタル変
換器15等より成り、またディジタル演算部2はマイク
ロコンピュータの如き処理装置(CPU)21、ROM
(リードオンリメモリ)22およびRAM(ランダムア
クセスメモリ)23等より成っている。
FIG. 2 is a block diagram showing a digital device to which the present invention is applied. This digital device mainly consists of an analog input section 1, a digital calculation section 2, an input/output interface section 3, and a display section 4.
is an isolation transformer 11. A-1-Fl /r jsu n-A4
θ Jl-'/Go angle, -ni-n, ! The digital arithmetic unit 2 includes a processing unit (CPU) 21 such as a microcomputer, a ROM
(Read Only Memory) 22, RAM (Random Access Memory) 23, etc.

アナログ入力部1に入力された交流信号は、演算部2を
サージなどから守る絶縁変成器11を介してアナログフ
ィルタ12に与えられ、こ−で高調波を除去された後、
サンプルホールド回路15により離散値信号に変換され
る。交流入力が同図のように複数ある場合には、続いて
マルチプレクサ14によりシリアルデータに信号が並び
変えられたあと、アナログ/ディジタル変換器15によ
りディジタル信号に変換されて演算部2に与えられる。
The AC signal input to the analog input section 1 is given to the analog filter 12 via the isolation transformer 11 that protects the calculation section 2 from surges, etc., where harmonics are removed.
The sample and hold circuit 15 converts the signal into a discrete value signal. If there are a plurality of AC inputs as shown in the figure, the signals are rearranged into serial data by the multiplexer 14, and then converted into digital signals by the analog/digital converter 15 and provided to the arithmetic unit 2.

CPU21はアナログ/ディジタル変換器15を介して
与えられる信号にもとづき、先の(1)〜(3)式の如
き演算を行なう。この演算結果は表示部4で数値表示さ
れるほか、入出力インタフェイス部3により接点信号に
変換され、通信装置などに出力される。
The CPU 21 performs calculations as shown in equations (1) to (3) above based on the signal provided via the analog/digital converter 15. This calculation result is displayed numerically on the display section 4, and is also converted into a contact signal by the input/output interface section 3 and output to a communication device or the like.

なお、上記の如きディジタル装置は、例えばシーケンサ
やディジタル演算形継電器(ディジタル形リレー)とし
て周知のものである。すなわち、既存のディジタル形リ
レーの如きディジタル装置に、上記(1)〜(6)式の
如き演算を実行させるROM等を付加することにより、
いとも簡単に周波数検出機能を付与することができるの
が本方式の特徴でもある。
Incidentally, the above-mentioned digital device is well-known as, for example, a sequencer or a digital operation type relay. That is, by adding a ROM or the like that executes calculations such as equations (1) to (6) above to an existing digital device such as a digital relay,
Another feature of this method is that it is possible to add a frequency detection function very easily.

本方式と従来の零点検出方式とを比較するためミュ に、次のような条件を設定して、数値的なシー→レーシ
ョンを行なった結果を示すと、次表の如くなる。
In order to compare this method with the conventional zero point detection method, we set the following conditions and performed numerical seerations. The results are shown in the following table.

入力信号:実効値110■の交流電圧信号とする。Input signal: An AC voltage signal with an effective value of 110 cm.

周波数二基本局波数を60 Hzとし、±1Lの変動を
考える。
Assume that the frequency of two fundamental station wave numbers is 60 Hz, and consider a fluctuation of ±1L.

量子化ビット=11ビット(2”−2048)直流ドリ
フト:実効値の+5%を正弦波に重畳する。
Quantization bits = 11 bits (2”-2048) DC drift: +5% of the effective value is superimposed on the sine wave.

サンプリング周波数ニア20Hz 表 なお、表中の数値は入力信号の周波数に対する周波数検
出誤差の百分率を示している。この表からも明らかなよ
うに、本方式の方が誤差を数分の1に減少させ得ること
がわかる。
Sampling Frequency Near 20Hz Table Note that the numbers in the table indicate the percentage of frequency detection error with respect to the frequency of the input signal. As is clear from this table, it can be seen that this method can reduce the error to a fraction of a fraction.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、交流信号の極値の発生時刻をもとに
周波数を求めるようにしているので、直流成分が入力信
号に重畳した場合も高い精度で周波数を検出することが
できるばかりでなく、既存のディジタル装置に対して簡
単に周波数検出機能を付与し得る利点がもたらされる。
According to this invention, since the frequency is determined based on the occurrence time of the extreme value of the AC signal, it is not only possible to detect the frequency with high accuracy even when a DC component is superimposed on the input signal. This provides the advantage of easily adding frequency detection functionality to existing digital devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するための参照図、第2
図はこの発明が適用されるディジタル装置を示すブロッ
ク図、第6図はこの発明の詳細な説明するための波形図
、第4図は正弦波信号の零点と周期との関係を説明する
ための波形図、第5図は正弦波信号における直流ドリフ
トの影゛響を説明するための波形図である。 符号説明 1・・・°・°アナログ入力部、2・・・・・・ディジ
タル演算部、3・・・・・・入出力インタフェイス部、
4・・・・・・表示部、11・・・・・・絶i毀変成器
、12・・・・・・アナログフィルタ、13・・・・・
・サンプルホールド回路、14・・・・・・マルチプレ
クサ、15・・・・・・アナログ/ディジタル変換器、
21・・・・・・処理装置(CPU)、22・・・・・
・ROM(リードオンリメモリ)、23・・・・・・R
AM(−yyダムアクセスメモリ)。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清 算 I 図 第 2 図 鳴1エカ
Figure 1 is a reference diagram for explaining the invention in detail;
Figure 6 is a block diagram showing a digital device to which this invention is applied, Figure 6 is a waveform diagram for explaining the invention in detail, and Figure 4 is a diagram for explaining the relationship between the zero point and period of a sine wave signal. FIG. 5 is a waveform diagram for explaining the influence of DC drift on a sine wave signal. Symbol explanation 1...°/°analog input section, 2...digital operation section, 3...input/output interface section,
4... Display unit, 11... Disruptive transformer, 12... Analog filter, 13...
・Sample hold circuit, 14...multiplexer, 15...analog/digital converter,
21... Processing unit (CPU), 22...
・ROM (read only memory), 23...R
AM (-yy dumb access memory). Agent Patent Attorney Akio Namiki Agent Patent Attorney Matsuzaki Liquidation I Figure 2 Zumei 1 Eka

Claims (1)

【特許請求の範囲】[Claims] 正弦波入力信号を所定の周期をもつてサンプリングし、
該サンプリング値から所定の2次近似式を用いて前記正
弦波信号の少なくとも2つの極値の発生時刻を演算し、
該2つの発生時刻の差から前記正弦波入力信号の周波数
を検出することを特徴とするディジタル式周波数検出方
法。
Sampling a sine wave input signal with a predetermined period,
calculating the occurrence times of at least two extreme values of the sine wave signal using a predetermined quadratic approximation formula from the sampled values;
A digital frequency detection method, characterized in that the frequency of the sine wave input signal is detected from the difference between the two generation times.
JP12064685A 1985-06-05 1985-06-05 Digital type frequency detecting method Granted JPS61280577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12064685A JPS61280577A (en) 1985-06-05 1985-06-05 Digital type frequency detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12064685A JPS61280577A (en) 1985-06-05 1985-06-05 Digital type frequency detecting method

Publications (2)

Publication Number Publication Date
JPS61280577A true JPS61280577A (en) 1986-12-11
JPH0525072B2 JPH0525072B2 (en) 1993-04-09

Family

ID=14791374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12064685A Granted JPS61280577A (en) 1985-06-05 1985-06-05 Digital type frequency detecting method

Country Status (1)

Country Link
JP (1) JPS61280577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228693A (en) * 2001-02-01 2002-08-14 Toshiba Corp Method and apparatus for measuring frequency and medium with processing program for measuring frequency stored therein
JP2006140375A (en) * 2004-11-15 2006-06-01 Oki Electric Ind Co Ltd Focus monitoring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122228A (en) * 1980-02-29 1981-09-25 Komatsu Ltd Quadrupler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122228A (en) * 1980-02-29 1981-09-25 Komatsu Ltd Quadrupler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228693A (en) * 2001-02-01 2002-08-14 Toshiba Corp Method and apparatus for measuring frequency and medium with processing program for measuring frequency stored therein
JP2006140375A (en) * 2004-11-15 2006-06-01 Oki Electric Ind Co Ltd Focus monitoring method
JP4516826B2 (en) * 2004-11-15 2010-08-04 Okiセミコンダクタ株式会社 Focus monitoring method

Also Published As

Publication number Publication date
JPH0525072B2 (en) 1993-04-09

Similar Documents

Publication Publication Date Title
JP4664837B2 (en) Voltage and other effective value calculation circuit and measuring instrument
JP3220327B2 (en) Frequency detection method and apparatus, and power system stabilization system
JPS61280577A (en) Digital type frequency detecting method
EP0367563B1 (en) Detector of quantity of electricity
JPH08181614A (en) A/d converter circuit and method obtaining interpolation data
JPH0641178Y2 (en) Scale conversion device
JPS6042660A (en) Three-phase alternating-current symmetry detector
JPH0739123U (en) AD converter
JPS60244866A (en) Voltage detecting device for three-phase alternating current
AU5157490A (en) A sampling circuit
JPH0713682A (en) Coordinate detector
JPH1164399A (en) Voltage drop detector and detecting method
JPH06281679A (en) Frequency detection system
JPS61116925A (en) Method of measuring ohmic value of power system
JPH07110349A (en) Measuring device for phase angle
JPS61116669A (en) Derivation of frequency function value for power system
JPH08154335A (en) Phase angle difference, frequency difference and frequency calculation method in digital protection relay
JPS5842428B2 (en) Peak value detection device
JPH0458714A (en) Digital protective relay device
JPS63231272A (en) Power-factor meter
JPH0740051B2 (en) Frequency relay
JPH04102069A (en) Amplitude detection device for measuring dielectric constant
Backmutsky et al. Simulation of integrating zero crossing and quasisynchronous sample interpolation in Matlab environment
JPS6311869A (en) Phase difference detector
JPH044554B2 (en)