JPS61280387A - Water level control of condenser for combined plant - Google Patents

Water level control of condenser for combined plant

Info

Publication number
JPS61280387A
JPS61280387A JP12054685A JP12054685A JPS61280387A JP S61280387 A JPS61280387 A JP S61280387A JP 12054685 A JP12054685 A JP 12054685A JP 12054685 A JP12054685 A JP 12054685A JP S61280387 A JPS61280387 A JP S61280387A
Authority
JP
Japan
Prior art keywords
condenser
water
steam
water level
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12054685A
Other languages
Japanese (ja)
Other versions
JPH0672750B2 (en
Inventor
Shinichi Hoizumi
保泉 真一
Taiji Inui
泰二 乾
Hisahiro Ootomo
大友 寿洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60120546A priority Critical patent/JPH0672750B2/en
Publication of JPS61280387A publication Critical patent/JPS61280387A/en
Publication of JPH0672750B2 publication Critical patent/JPH0672750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To lengthen the life of plant equipments and to operate the condenser safely by a method wherein inflow of makeup water from a makeup water supplying device, installed at the outside of the condenser, into the condenser is prevented in order to prevent the temporary increase of concentration of oxygen dissolved in condensed water. CONSTITUTION:Upon starting the combined plant, condensed water in the condenser 50, which contains oxygen sufficiently, is circulated to the condenser 50 through a condensed water re-circulating pipeline 57, equipped with a condensed water pump 71, a condensed water pipe 72, gland steam condenser 73 and a condensed water re- circulating valve 56, while deaerating steam is introduced into the condenser from an auxiliary steam supplying source 80 through an auxiliary steam pipeline 82 and a regulating valve 81 whereby oxygen, dissolved in the condensed water, is reduced. In this case, the set value of water level in the condenser is set by an interlock so as to be higher than the same at normal operation, whereby temporary water level rise, accompanied by the introduction of deaerating steam into the condenser, is permitted, discharge of condensed water into a makeup water tank 60 through a spillover pipeline 65 is prevented and the temporary increase of concentration of oxygen dissolved in the condensed water may be prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、脱気器を備えていないコンバインド発電プラ
ントの起動時に於ける復水器の水位制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling the water level of a condenser during startup of a combined power generation plant that is not equipped with a deaerator.

本発明においてコンバインド発電プラントとは、ガスタ
ービンと、該ガスタービンの排熱を回収して蒸気を発生
せしめる手段と、上記の蒸気によって駆動される蒸気タ
ービンと、蒸気タービンから排出される蒸気を回収する
復水器と、前記の蒸気タービンによって駆動される発電
機とを備えた発電所設備を意味するものである。
In the present invention, a combined power generation plant includes a gas turbine, a means for recovering exhaust heat of the gas turbine to generate steam, a steam turbine driven by the steam, and a steam turbine for recovering steam discharged from the steam turbine. This refers to power plant equipment that is equipped with a condenser that produces steam, and a generator that is driven by the steam turbine described above.

〔発明の背景〕[Background of the invention]

第5図に、脱気器が設置されていないコンバインドプラ
ントの復水脱気系統を含んだ概略的な系統図の例を示す
。従来技術によるプラント起動時に於ける復水器による
復水脱気方法は、特開昭59−3106号に記載の様に
、第5図に於げる復水器50内に貯蔵されている酸素を
十分含んでいる(約7000p p b )復水を、復
水ポンプ71、復水管72、グラコン73、復水再循環
弁56を具備した復水再循環配管57を通して上記の復
水器50に循環させると共に、該復水器50の外部に設
置された補助蒸気源80(例えば補助蒸気ヘッダ)から
蒸気調整弁81を具備した補助蒸気配管82を介し、脱
気用蒸気を復水器50に導入することにより、該復水器
中に貯蔵されている復水中の溶存酸素を低減する方法を
採用している。
FIG. 5 shows an example of a schematic system diagram including a condensate degassing system of a combined plant in which a deaerator is not installed. The condensate degassing method using a condenser at the time of plant start-up according to the prior art is as described in Japanese Patent Application Laid-Open No. 59-3106, in which the oxygen stored in the condenser 50 shown in FIG. (approximately 7000 p p b ) is sent to the condenser 50 through a condensate recirculation pipe 57 equipped with a condensate pump 71 , a condensate pipe 72 , a GRACON 73 , and a condensate recirculation valve 56 . At the same time, degassing steam is supplied to the condenser 50 from an auxiliary steam source 80 (for example, an auxiliary steam header) installed outside the condenser 50 through an auxiliary steam piping 82 equipped with a steam regulating valve 81. A method of reducing dissolved oxygen in the condensate stored in the condenser is adopted.

しかし、上記補助蒸気導入を伴なう復水再循環運転の期
間(約1時間)は、特に復水器内水位設定値の変更は実
施されず、通常運転時の水位制御方法、すなわち通常運
転時と同一の水位を維持しようとする為、外部から導入
される補助蒸気量(約5m3/時×1時間=約5ma)
にする水位上昇分は、第6図に示したスピルオーバー弁
64を備えた配管65を通して復水器50の外部に設置
されている補給水タンク60に排出されることになる。
However, during the period of condensate recirculation operation (approximately 1 hour) accompanied by the introduction of auxiliary steam, the set value of the water level in the condenser is not particularly changed, and the water level control method during normal operation is used. The amount of auxiliary steam introduced from outside to maintain the same water level as before (approximately 5 m3/hour x 1 hour = approximately 5 ma)
The increase in the water level will be discharged to the make-up water tank 60 installed outside the condenser 50 through a pipe 65 equipped with a spillover valve 64 shown in FIG.

第7図は、上述の公知技術によって脱気器を有しないコ
ンバインド発電プラントを起動する場合の復水中の酸素
濃度Aと、復水器内の復水水位Bとの変化を示す図表で
ある。
FIG. 7 is a chart showing changes in the oxygen concentration A in condensate and the condensate water level B in the condenser when starting a combined power generation plant without a deaerator using the above-mentioned known technique.

時点t□で復水再循環を開始すると、酸素濃度カーブA
は下降し始める。
When condensate recirculation is started at time t□, oxygen concentration curve A
begins to fall.

時点t2で脱気用の蒸気を導入すると、復水器内の復水
水位が上昇しようとするので、平行斜線を付して示した
Cに相当する水(5m”)を排出して、復水水位カーブ
Bをほぼ設定置りに保つ。
When degassing steam is introduced at time t2, the condensate water level in the condenser tends to rise, so water (5 m") corresponding to C shown with parallel hatching is discharged and Keep the water level curve B almost at the set position.

復水中の溶存酸素量が規定値(約10ppb)以下まで
下がった時点t4で脱気が完了したと見なし、排熱回収
ボイラ10へ通水を行い、その後時点t、でガスタービ
ン20を(第5図)を起動する。
At time t4, when the amount of dissolved oxygen in the condensate has fallen below the specified value (approximately 10 ppb), it is assumed that degassing has been completed, and water is passed to the exhaust heat recovery boiler 10, and then at time t, the gas turbine 20 is 5).

ガスタービン20起動後、排熱回収ボイラ10のドラム
12からドラム水の浄化を目的としてドラムブロー11
を実施することになるが、ブロー量は1回の起動当たり
約5m3であり、この分プラントの系外へ系統水が排出
されることになる為、復水器50へ外部から補給水を約
5ma供給することが必要となる。この時、復水器50
の外部に設置された補給水タンク60から補給水ポンプ
63、補給水調整弁61を具備した補給水タンク管62
を介して、平行斜線を付して示したC′に相当する量(
5m”)の補給水を供給することになる。補給水タンク
60が大気開放型のタンクの場合、その中の補給水には
約7000p p bの溶存酸素が存在しており、かつ
この時点では、まだ蒸気タービン40には蒸気が導入さ
れておらず、蒸気タービン排気熱量による前記補給水の
(復水器導入時に於ける)脱気効果に関してはほとんど
期待することができない。この為、復水中の溶存酸素濃
度カーブAは時点1.から増加しはじめ、時点t6では
約3000p p bにも達する。これは特に排熱回収
ボイラ10の節炭器内での腐蝕の進行を助長する等、機
器寿命にとって好ましくない結果をもたらす原因となる
After the gas turbine 20 is started, the drum blow 11 is carried out for the purpose of purifying the drum water from the drum 12 of the exhaust heat recovery boiler 10.
However, the amount of blowing is approximately 5 m3 per startup, and system water will be discharged outside the plant system, so make-up water will be supplied from outside to the condenser 50. It is necessary to supply 5ma. At this time, the condenser 50
A make-up water tank pipe 62 equipped with a make-up water pump 63 and a make-up water adjustment valve 61 extends from a make-up water tank 60 installed outside of the
, the amount corresponding to C′ shown with parallel hatching (
If the make-up water tank 60 is a tank that is open to the atmosphere, the make-up water in it will contain approximately 7000 p p b of dissolved oxygen, and at this point. , steam has not yet been introduced into the steam turbine 40, and the deaeration effect of the make-up water (at the time of introduction of the condenser) due to the steam turbine exhaust heat cannot be expected to be nearly as effective.For this reason, the condensate water The dissolved oxygen concentration curve A begins to increase from time 1 and reaches about 3000 p p b at time t6. This can lead to undesirable effects on lifespan.

ここで、復水器50の外部に設置される補給水タンク6
0が浮屋根型またはネオプレーン型等、大気中の酸素が
タンク、中の貯水に溶は込みにくい構造になっている場
合でも、補給水中の溶存酸素濃度は300ppb程度は
あり、この時は復水中の溶存酸素濃度は約1′20pp
bとなるが、通常運転時に於ける制限値7ppbと比較
すると約17倍の高濃度であり、一時的であるとは言え
、コンバインドプラントの一般的な運用形態が毎日起動
停止運用が多いことを考えると、何らかの対策が必要で
あった。
Here, the make-up water tank 6 installed outside the condenser 50
Even if the tank has a floating roof type or neoprene type that prevents atmospheric oxygen from dissolving into the tank or water stored therein, the dissolved oxygen concentration in the make-up water is around 300 ppb, and in this case, the concentration of dissolved oxygen in the condensate water The dissolved oxygen concentration is about 1'20pp
b, but the concentration is approximately 17 times higher than the limit value of 7 ppb during normal operation, and although it is temporary, it shows that the general operation pattern of combined plants is often starting and stopping operations every day. Thinking about it, some kind of countermeasure was necessary.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、脱気器が設置されず、復水器にて復水
脱気を行う形式のコンバインドプラントに於いて、プラ
ント起動時の復水器内水位変動に伴う該復水器への補給
水の導入による一時的な復水中の溶存酸素濃度の増加を
防止することにより、コンバインドプラントを構成する
機器の長寿令化を図ると共にプラントの安全な運用を可
能ならしめる制御方法を提供しようとするものである。
An object of the present invention is to provide a combined plant in which a deaerator is not installed and condensate is degassed in a condenser, and when the water level in the condenser fluctuates at the time of plant startup. By preventing a temporary increase in dissolved oxygen concentration in condensate water due to the introduction of make-up water, we aim to extend the lifespan of equipment that makes up a combined plant and provide a control method that enables safe plant operation. That is.

〔発明の概要〕[Summary of the invention]

上記目的を達成する為に、本発明の制御方法は、コンバ
インドプラントの起動過程のある一定期間復水器の水位
制御方法を改善することにより、前記復水器の外部に設
置されている補給水供給装置から復水器への補給水(高
酸素濃度)の流入を防止することを特徴とする。
In order to achieve the above object, the control method of the present invention improves the water level control method of the condenser for a certain period of time during the start-up process of a combined plant. It is characterized by preventing makeup water (high oxygen concentration) from flowing into the condenser from the supply device.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第5図、第1図並びに第2図
を用いて説明する。
Hereinafter, one embodiment of the present invention will be described using FIG. 5, FIG. 1, and FIG. 2.

コンバインドプラントの起動時は、第5図に於ける復水
器50内の酸素を十分に含んだ復水を、復水ポンプ71
、復水管72、グラコン73.復水再循環弁56を備え
た復水再循環配管57を介して前記復水器50に循環す
ると共に、補助蒸気供給源80から補助蒸気配管82及
び調整弁81を介して、脱気用蒸気を復水器に導入(約
5m3)することにより、復水中の溶存酸素を低減する
ことになる。
When starting up a combined plant, the condensate containing sufficient oxygen in the condenser 50 in FIG.
, condensate pipe 72, Guracon 73. The deaeration steam is circulated to the condenser 50 via a condensate recirculation pipe 57 equipped with a condensate recirculation valve 56, and is also supplied from an auxiliary steam supply source 80 via an auxiliary steam pipe 82 and a regulating valve 81. By introducing (about 5 m3) into the condenser, dissolved oxygen in the condensate will be reduced.

この時、第1図に示す如く、インターロック(例えば復
水器への脱気用蒸気導入の信号)により、復水器の水位
設定値を通常運転時の水位(NWL)よりも高く (例
えばNWL+200mmとする)設定することにより、
復水器への脱気用蒸気の導入に伴なう一時的な水位上昇
(約200国程度)を許容し、スピルオーバー配管65
を介しての補給水タンク60への復水の排出を防止する
At this time, as shown in Figure 1, an interlock (for example, a signal for introducing deaeration steam into the condenser) causes the water level setting value of the condenser to be set higher than the water level (NWL) during normal operation (for example, By setting NWL + 200mm),
To allow a temporary rise in water level (approximately 200 countries) due to the introduction of deaeration steam into the condenser, spillover piping 65
This prevents condensate from being discharged into the make-up water tank 60 via the

第2図は本発明の実施例における復水中の酸素濃度カー
ブA′と、復水器内の復水水位B′との変化を示した図
表である。
FIG. 2 is a chart showing changes in the oxygen concentration curve A' in condensate and the condensate water level B' in the condenser in an embodiment of the present invention.

時点t1で復水再循環を始めると、酸素濃度カーブA′
が降下し始める。
When condensate recirculation is started at time t1, the oxygen concentration curve A'
begins to fall.

時点t2で脱気用蒸気を導入する際、復水器内の水位設
定値D′をNWL+200nmに変更する。
When introducing the deaeration steam at time t2, the water level set value D' in the condenser is changed to NWL+200 nm.

このため、時点t2から復水水位カーブB′が上昇し始
める。
Therefore, the condensate water level curve B' starts to rise from time t2.

時点t3で酸素濃度が10Ppbになる。この時点で脱
気を完了し、時点t、′でガスタービンを起動する。
At time t3, the oxygen concentration becomes 10 Pppb. At this point, the deaeration is completed and the gas turbine is started at time t,'.

ガスタービン起動後、排熱回収ボイラ10よりドラムブ
ロー11を実施することになるが、このブロー量は、第
1図の起動当たり約5m”であり、これは前記の復水脱
気用補助蒸気の導入量とほぼ等しい。
After the gas turbine is started, drum blowing 11 is carried out from the exhaust heat recovery boiler 10, and the amount of this blowing is approximately 5 m'' per start-up as shown in Fig. 1. It is almost equal to the amount introduced.

時点t、で復水水位の設定B′をNWLに戻す。At time t, the condensate water level setting B' is returned to NWL.

器内水位の上昇を水位設定値の変更によらず、例えば復
水器への脱気用蒸気導入と共に、第5図に示したスピル
オーバー調整弁64を強制閉止することにより、復水器
内水位を上昇させることにある。
The water level in the condenser can be increased without changing the water level setting, for example, by introducing deaeration steam into the condenser and forcibly closing the spillover control valve 64 shown in FIG. The goal is to raise the

さらに、ガスタービン20を起動後、排熱回収ボイラ1
0よりドラムブロー11を実施時(時点t、)、上記方
法により復水器中に余分に貯蔵されている復水を排熱回
収ボイラに供給することにより、復水器外部からの補給
水の導入を防止することができる。
Furthermore, after starting the gas turbine 20, the exhaust heat recovery boiler 1
When drum blowing 11 is performed from 0 (time point t), by supplying excess condensate stored in the condenser to the waste heat recovery boiler using the above method, make-up water from outside the condenser is removed. Introduction can be prevented.

ここで、ドラムブロー実施後、蒸気タービンに排熱回収
ボイラよりの蒸気を通気することになるが、上記にて強
制閉止されたスピルオーバー調整弁は、例えば、蒸気タ
ービン通気の信号により、強制閉止を解除することによ
り、時点t7の後、復水器内水位B′は通常運転時の水
位にて制御されながら運転されることになる。
Here, after drum blowing, the steam from the exhaust heat recovery boiler will be vented to the steam turbine, but the spillover regulating valve that was forcibly closed above will be forced to close, for example, by the steam turbine ventilation signal. By releasing this, after time t7, the water level B' in the condenser will be operated while being controlled at the water level during normal operation.

さらに、本発明を脱気が設置されないコンバインドプラ
ントに適用することによる副次的な効果を以下に述べる
Furthermore, the secondary effects of applying the present invention to a combined plant where degassing is not installed will be described below.

第4図に、プラント起動時の、復水器外部からの補助蒸
気導入による復水器内各部の圧力の推移を示す。復水器
々内圧力(ω)に対し、ホットウェル出口復水圧力(■
)は、復水器内運転水位とホットウェル出口との静水頭
差により、多少高い圧力を保持しながら推移する傾向と
なっている。
FIG. 4 shows the changes in pressure in various parts of the condenser due to the introduction of auxiliary steam from outside the condenser at the time of plant startup. Hot well outlet condensate pressure (■
) tends to maintain a somewhat high pressure due to the difference in static water head between the operating water level in the condenser and the hot well outlet.

ここで、脱気用補助蒸気の導入によるホットウェル内復
水温度の上昇に伴い、ホットウェル内復水圧力は(■)
に示す如く一時的に上昇する傾向となるが、従来技術に
よる復水器水位制御方法(すなわち、起動時に於いても
通常運転時と同一の水位を維持する。)では、復水器内
水位とホットウェル出口との静水頭差が小さい為、本第
4図中(■)に示す如く、ホットウェル出口復水圧力よ
りも復水の圧力が高くなる場合があり、この時はホット
ウェル出口部で復水がフラッシュし、さらに気泡が復水
ポンプに流入することにより、復水ポンプにキャビテー
ションを生じる危険性があった。
Here, as the condensate temperature in the hot well increases due to the introduction of auxiliary steam for degassing, the condensate pressure in the hot well becomes (■)
However, in the conventional condenser water level control method (i.e., maintaining the same water level as during normal operation even at startup), the water level in the condenser Because the hydrostatic head difference between the hot well outlet and the hot well outlet is small, the condensate pressure may be higher than the hot well outlet condensate pressure, as shown in (■) in Figure 4, and in this case, the hot well outlet When the condensate flashed and air bubbles flowed into the condensate pump, there was a risk of cavitation in the condensate pump.

上記の不具合に対し、本発明により、起動時に一時的に
復水器内水位を上昇させ、復水器内水位とホットウェル
出口部の静水頭差を大きくすることにより、ホットウェ
ル出口部圧力を常にホットウェル内復水圧力よりも高く
保ち、ホットウェル出口部でのフラッシュ現象を防止す
ることで、プラントの安全運用に対し、大きな効果をも
たらすことができる。
To solve the above problems, the present invention temporarily raises the water level in the condenser at startup, increasing the difference in static water head between the water level in the condenser and the hot well outlet, thereby increasing the hot well outlet pressure. By always maintaining the condensate pressure higher than the condensate pressure inside the hot well and preventing flash phenomena at the outlet of the hot well, it can have a significant effect on safe plant operation.

さらに異なる実施例として、プラント起動時に復水器の
外部に設置された補給水供給装置から復水器に、溶存酸
素を多量に含んだ補給水が導入されるのを防止する為に
、第1図における補給水装置60と復水器50とを連絡
する配管62の途中に設置される補給水調整弁61を強
制閉止する制御方法によっても、起動時に於ける復水中
の一時的な溶存酸素濃度の上昇を防止できる。
As a further different embodiment, in order to prevent makeup water containing a large amount of dissolved oxygen from being introduced into the condenser from the makeup water supply device installed outside the condenser at the time of plant startup, the first The temporary dissolved oxygen concentration in the condensate at startup can also be controlled by a control method that forcibly closes the make-up water regulating valve 61 installed in the middle of the piping 62 that connects the make-up water device 60 and the condenser 50 in the figure. It is possible to prevent an increase in

但し、本実施例に於いては、排熱回収ボイラからのドラ
ムブロー実施時、復水器中の水位が低下することが予想
される為、復水器ホットウェル出口部でのフラッシュ現
象を防止を目的として、通常運転水位(NWL)の高水
位での設定を行い、あるいはまた、最低水位(LWL)
以下に水位が下がる場合には前記補給水間離弁の強制閉
止を解除する等の工夫が必要である。
However, in this example, the water level in the condenser is expected to decrease when drum blowing from the waste heat recovery boiler is performed, so the flash phenomenon at the outlet of the condenser hot well is prevented. For the purpose of
If the water level drops to below, it is necessary to take measures such as releasing the forcible closure of the make-up water isolation valve.

さらに本実施例を採用した場合、蒸気タービン通気等の
信号により、前記補給水調整弁の強制閉止を解除するこ
とになるが、その際、復水器水位は通常運転時水位より
も下がっていることが予想される為、補給水調整弁の強
制閉止解除と共に多量の補給水が復水器に供給されるこ
とが懸念される。この為、補給水調整弁の開操作はラン
プ関数発生器等の採用により、一時に多量の補給水が復
水器に供給されない様に制御することが必要となる。
Furthermore, if this embodiment is adopted, the forcible closure of the make-up water regulating valve will be released by a signal such as steam turbine ventilation, but at that time, the condenser water level is lower than the water level during normal operation. Therefore, there is a concern that a large amount of make-up water will be supplied to the condenser when the make-up water adjustment valve is forcibly closed. For this reason, it is necessary to control the opening operation of the make-up water regulating valve by using a ramp function generator or the like so that a large amount of make-up water is not supplied to the condenser at once.

〔発明の効果〕〔Effect of the invention〕

吹上詳述したように、復水器と別体の脱気器を設けてい
ないコンバインド発電プラントに本発明の方法を適用す
ると、プラント起動時の復水器内水位変動に伴う該復水
器への補給水の導入による一時的な復水中の溶存酸素濃
度の増加を防止することにより、コンバインドプラント
を構成する機器の長寿令化を図ると共にプラントの安全
な運用を可能ならしめるという優れた実用的効果を奏す
る。
Blowing As described in detail, when the method of the present invention is applied to a combined power generation plant that does not have a deaerator separate from the condenser, the condenser is affected by fluctuations in the water level in the condenser at the time of plant startup. By preventing the temporary increase in dissolved oxygen concentration in condensate water caused by the introduction of make-up water, this is an excellent practical solution that extends the lifespan of the equipment that makes up the combined plant and enables safe plant operation. be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における水位制御方法の説明
図、第2図は上記実施例における効果を説明するための
図表、第3図は上記と異なる実施例における効果を説明
するための図表、第4図は本発明方法の副次的効果を説
明するための図表である。第5図は本発明に係る制御方
法の適用対象であるコンバインド発電プラントの系統図
、第6図は従来の制御方法の説明図、第7図は従来技術
における問題点を説明するための図表である。 10・・・排熱回収ボイラ、11・・・ドラムブロー。 12・・・ドラム、20・・・ガスタービン、30・・
・発電機、40・・・蒸気タービン、50・・・復水器
、51・・・復水器水位制御装置、56・・・復水再循
環弁、57・・・復水再循環配管、60・・・補給タン
ク、61・・・補給水調整弁、62・・・補給水配管、
63・・・補給水ポンプ、64・・・スピルオーバー調
整弁、65・・・スピルオーバー配管、71・・・復水
ポンプ、72・・・復水管、73・・・グラコン、74
・・・給水止弁、75・・・給水調整弁、80・・・補
助蒸気源、81・・・補助蒸気調整弁、82・・・補助
蒸気配管。
Fig. 1 is an explanatory diagram of a water level control method in an embodiment of the present invention, Fig. 2 is a chart for explaining the effects of the above embodiment, and Fig. 3 is a diagram for explaining the effects of an embodiment different from the above. Figure 4 is a diagram for explaining the secondary effects of the method of the present invention. Fig. 5 is a system diagram of a combined power generation plant to which the control method according to the present invention is applied, Fig. 6 is an explanatory diagram of the conventional control method, and Fig. 7 is a diagram for explaining problems in the conventional technology. be. 10...Exhaust heat recovery boiler, 11...Drum blow. 12...Drum, 20...Gas turbine, 30...
- Generator, 40... Steam turbine, 50... Condenser, 51... Condenser water level control device, 56... Condensate recirculation valve, 57... Condensate recirculation piping, 60... Replenishment tank, 61... Makeup water adjustment valve, 62... Makeup water piping,
63... Makeup water pump, 64... Spillover adjustment valve, 65... Spillover piping, 71... Condensate pump, 72... Condensate pipe, 73... Gracon, 74
... Water supply stop valve, 75 ... Water supply adjustment valve, 80 ... Auxiliary steam source, 81 ... Auxiliary steam adjustment valve, 82 ... Auxiliary steam piping.

Claims (1)

【特許請求の範囲】 1、ガスタービンと、該ガスタービンの排熱を回収して
蒸気を発生せしめる手段と、上記の蒸気によつて駆動さ
れる蒸気タービンと、蒸気タービンから排出される蒸気
を回収する復水器と、前記の蒸気タービンによって駆動
される発電機とを備え、かつ、前記の蒸気発生手段の給
水系統に脱気器を設けず、前記復水器によって脱気機能
を兼ねさせた構成のコンバインド発電プラントにおいて
、プラント起動操作の際、前記の復水器の外部に設けら
れている補給水供給装置から該復水器内へ補給水が流入
しないように、該復水器内の復水の水位を調節すること
を特徴とするコンバインドプラントの復水器水位制御方
法。 2、前記の復水器内へ補給水が流入しないように調節す
る手段は、該復水器に設けられている自動水位制御装置
の設定値を、プラント起動過程の内の一定期間中、変更
することによって行うものであることを特徴とする特許
請求の範囲第1項に記載のコンバインドプラントの復水
器水位制御方法。 3、前記の復水器内へ補給水が流入しないように調節す
る手段は、該復水器と補給水供給装置との間を接続する
配管に弁を設け、プラント起動過程における一定の期間
中、上記の弁を閉止することによって行うものであるこ
とを特徴とする特許請求の範囲第1項に記載のコンバイ
ンドプラントの復水器水位制御方法。 4、前記の復水器内へ補給水が流入しないように調節す
る手段は、該復水器内の復水を排熱回収用のボイラに供
給する復水管と、復水の貯水タンクとを接続する配管の
途中に弁を設け、プラント起動過程における一定の期間
中、上記の弁を閉止することによって行うものであるこ
とを特徴とする特許請求の範囲第1項に記載のコンバイ
ンドプラントの復水器水位制御方法。
[Claims] 1. A gas turbine, a means for recovering exhaust heat of the gas turbine to generate steam, a steam turbine driven by the steam, and a steam turbine for generating steam discharged from the steam turbine. A method comprising a condenser for recovery and a generator driven by the steam turbine, and a deaerator is not provided in the water supply system of the steam generating means, and the condenser also serves as a deaerator. In a combined power generation plant configured as shown in FIG. A method for controlling a condenser water level in a combined plant, the method comprising: adjusting the water level of condensate in a combined plant. 2. The means for adjusting the make-up water so that it does not flow into the condenser is to change the setting value of the automatic water level control device installed in the condenser during a certain period of time during the plant start-up process. A method for controlling a condenser water level in a combined plant according to claim 1, characterized in that the method is carried out by: 3. The means for controlling the make-up water so that it does not flow into the condenser is to provide a valve in the piping connecting the condenser and the make-up water supply device, and to prevent the make-up water from flowing into the condenser during a certain period of time during the plant start-up process. 2. A condenser water level control method for a combined plant according to claim 1, wherein said method is carried out by closing said valve. 4. The means for adjusting the make-up water so that it does not flow into the condenser includes a condensate pipe that supplies condensate in the condenser to a boiler for exhaust heat recovery, and a condensate storage tank. The combined plant restoration according to claim 1 is carried out by providing a valve in the middle of the connected piping and closing the valve during a certain period during the plant startup process. Water device water level control method.
JP60120546A 1985-06-05 1985-06-05 Condenser water level control method for combined plant Expired - Lifetime JPH0672750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120546A JPH0672750B2 (en) 1985-06-05 1985-06-05 Condenser water level control method for combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120546A JPH0672750B2 (en) 1985-06-05 1985-06-05 Condenser water level control method for combined plant

Publications (2)

Publication Number Publication Date
JPS61280387A true JPS61280387A (en) 1986-12-10
JPH0672750B2 JPH0672750B2 (en) 1994-09-14

Family

ID=14788976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120546A Expired - Lifetime JPH0672750B2 (en) 1985-06-05 1985-06-05 Condenser water level control method for combined plant

Country Status (1)

Country Link
JP (1) JPH0672750B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587363A2 (en) * 1992-09-10 1994-03-16 Hitachi, Ltd. A condenser for a steam turbine and a method of operating such a condenser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134687A (en) * 1981-02-12 1982-08-19 Hitachi Ltd Condensate system of side-stream type condenser
JPS57178973U (en) * 1981-04-30 1982-11-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134687A (en) * 1981-02-12 1982-08-19 Hitachi Ltd Condensate system of side-stream type condenser
JPS57178973U (en) * 1981-04-30 1982-11-12

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587363A2 (en) * 1992-09-10 1994-03-16 Hitachi, Ltd. A condenser for a steam turbine and a method of operating such a condenser
EP0587363A3 (en) * 1992-09-10 1995-01-11 Hitachi Ltd A condenser for a steam turbine and a method of operating such a condenser.
US5423377A (en) * 1992-09-10 1995-06-13 Hitachi, Ltd. Condenser for a steam turbine and a method of operating such a condenser

Also Published As

Publication number Publication date
JPH0672750B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
JPS61280387A (en) Water level control of condenser for combined plant
JP2010216730A (en) Power generation unit and method of starting power generation unit
JPS61215407A (en) Method of controlling condenser water level in combined plant
JP2007093129A (en) Deaerator water level control device for power generation plant and its method, as well as power generation plant
JPH0694379A (en) Condenser and driving method therefor
JP4434436B2 (en) Operation method of boiling water nuclear power plant
JP2000213704A (en) Boiler drainage device using blowdown tank and operation method thereof
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JPH10317916A (en) Thermal power plant
JP2000257806A (en) Drain recovery system for heat exchanger
JPS59153003A (en) Method of stopping waste-heat recovery boiler
KR950015403A (en) Nuclear Power Plant Subwater Level Operation Method and Device
JPH05187785A (en) Method and apparatus for waiting for the time of stopping condenser for steam turbine
JPS5847299A (en) Auxialiary boiler device of atomic power plant
JPS60219404A (en) Stabilizing device of deaerator output
JPH024101A (en) Starting method for once-through boiler having starting bypass system
JP3691019B2 (en) Power plant cleanup operation device and operation method
JPH10131715A (en) Make-up water operating method for thermal power generation plant
JPH04112903A (en) Method and device for running control of combined cycle power generation plant
JPS5843303A (en) Mixed pressure type waste heat recovery boiler
JPS58216994A (en) Condensed water supplying device
JPH03253707A (en) Combined cycle electric power generating plant
JPS6379099A (en) Feedwater dissolved oxygen regulator
JPS63183304A (en) Steam-temperature control method of waste gas boiler
JPH0579604A (en) Method of maintaining casing of boiler at rest

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term