JPS61279793A - Shaft cooling system blower - Google Patents

Shaft cooling system blower

Info

Publication number
JPS61279793A
JPS61279793A JP12037185A JP12037185A JPS61279793A JP S61279793 A JPS61279793 A JP S61279793A JP 12037185 A JP12037185 A JP 12037185A JP 12037185 A JP12037185 A JP 12037185A JP S61279793 A JPS61279793 A JP S61279793A
Authority
JP
Japan
Prior art keywords
cooling
water
impeller
rotating shaft
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12037185A
Other languages
Japanese (ja)
Inventor
Masanori Kadoto
角戸 正則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIKO KIKAI KOGYO KK
Original Assignee
TAIKO KIKAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIKO KIKAI KOGYO KK filed Critical TAIKO KIKAI KOGYO KK
Priority to JP12037185A priority Critical patent/JPS61279793A/en
Publication of JPS61279793A publication Critical patent/JPS61279793A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the volume efficiency of a dry Roots blower through reducing its temperature by providing a cooling-water circulating hole in the shaft center of the rotating shaft of the dry Roots blower so as to supply cooling water to the inside of a rotor. CONSTITUTION:In the main rotating shaft 13 and the subsidiary rotating shaft 14 of a dry Roots blower cooling-water circulating holes 13a, 14a are provided respectively. One end of each of these cooling-water circulating holes 13a, 14a is connected the cavity within an impeller, that is, a rotor 12, and the other end to a cooling-water supply chamber and a cooling-water discharge chamber on both sides. The cooling water supplied through a cooling-water supply hole 20 to the cooling-water supply chamber goes through each of these cooling-water circulating holes 13a, 14a to the cavity within the rotor 12, and hereupon, the cooling water, which becomes warm and light in specific gravity, is concentrated by a centrifugal force and then discharged through each of these cooling-water circulating holes 13a, 14a, a cooling mater discharge chamber and a cooling- water exhaust port 21 to the outside.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、乾式ルーツブロワ−において、単段形で高圧
力比が得られるブロワ−に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dry roots blower that is of a single stage type and can provide a high pressure ratio.

〔従来技術と問題点〕[Conventional technology and problems]

乾式ルーツブロワ−を真空用又は昇圧用に使用する場合
、第3図に示す単段形で吸込側と吐出側の圧力比を大き
くすると、ブロワ−ケーシング1とインペラ3との隙間
a、サイドカバー2とインペラ3との隙間す及びインペ
ラ3同士の隙間Cからのリーク量が大きくなるため、圧
縮熱の環流が大きくなって温度上昇を招き、インペラ3
の熱膨張量と外気に曝されたケーシング−92の熱膨張
量との間に差が発生し、隙間が減少して焼損に至る。 
                         
  [、したが・て・単段形で達成可能な圧力比′は1
・      、、7〜2が限度とされている。なお、
圧力比γは次      1式で示される。     
                  iPd  ab
s Ps abs    Ps abs :吸込側圧力  
       −Pd abs :吐出側圧力 よって、圧力比を1.7〜2以上にする場合には、  
    憂従来次の方式がとられている。      
         。
When using a dry roots blower for vacuum or pressure boosting, if the pressure ratio between the suction side and the discharge side is increased in the single stage type shown in Fig. 3, the gap a between the blower casing 1 and the impeller 3, the side cover 2 Since the amount of leakage from the gap C between the impeller 3 and the impeller 3 increases, the circulation of compression heat increases, causing a temperature rise, and the impeller 3
A difference occurs between the amount of thermal expansion of the casing 92 and the amount of thermal expansion of the casing 92 exposed to the outside air, and the gap decreases, leading to burnout.

[Therefore, the achievable pressure ratio' in a single stage type is 1
・The limit is 7-2. In addition,
The pressure ratio γ is expressed by the following equation.
iPd ab
s Ps abs Ps abs: Suction side pressure
-Pd abs: When the pressure ratio is set to 1.7 to 2 or more depending on the discharge side pressure,
Conventionally, the following method has been used.
.

(・)  ブ・ワーを多段形にする。        
       F′(b)  ブロワ−の前記隙間を大
きくする。           I゛・1 (C)  逆流冷却方式にする。          
       l□(d) 7’。9−ヵお631よ□
、え、。     i)而して、 前記(alO方式は、第4図に示すように多段形で55
“・80総圧力比Ra!パ1′・°′・°(、;γ3×
・・・・・・・・・(γ1 、γ2 、γコ :各膜圧
力比)j::・となり、高圧力比が得られる反面、ブロ
ワ−の据付面積が大きくなり、かつ単段形に比して価格
的にも非常に不利となる。
(・) Make B-Wa a multi-tiered type.
F'(b) Enlarge the gap of the blower. I゛・1 (C) Use backflow cooling method.
l□(d) 7'. 9-kao631□
,picture,. i) Therefore, as shown in FIG.
“・80Total pressure ratio Ra!Pa1′・°′・°(,;γ3×
・・・・・・・・・(γ1, γ2, γko: each membrane pressure ratio) j::・While a high pressure ratio can be obtained, the installation area of the blower is large and it is a single-stage type. It is also very disadvantageous in terms of price.

前記(b)の方式は、各隙間a、b、cの設定が非常に
困難である。
In the method (b), it is very difficult to set the gaps a, b, and c.

即ち、周知のように、ブロワ−の吐出温度は次の理論式
により計算される。
That is, as is well known, the blower discharge temperature is calculated using the following theoretical formula.

Ts    ηV   m Td:吐出温度(°K) TS:吸込温度(6K) ηV ニブロワー容積効率 m :断熱比熱比 γC:圧力比 − この理論式より明らかなように、吐出温度Tdはブロワ
−容積効率η9に依存するので、隙間の変化はブロワ−
容積効率η9の変化となって吐出温度RTd  の変化
を伴う。
Ts ηV m Td: Discharge temperature (°K) TS: Suction temperature (6K) ηV Ni blower volumetric efficiency m: Adiabatic specific heat ratio γC: Pressure ratio - As is clear from this theoretical formula, the discharge temperature Td is the blower volumetric efficiency η9 Since the change in the gap depends on the blower
This changes the volumetric efficiency η9 and is accompanied by a change in the discharge temperature RTd.

そして、吐出温度Tdの変更があれば、隙間もまた変更
する必要があり、結局、厳密な適正隙間を上記理論式の
計算で求めることは不可能である。
If there is a change in the discharge temperature Td, the gap must also be changed, and as a result, it is impossible to determine the exact appropriate gap by calculation using the above theoretical formula.

また、ブロワ−効率η8は、η、=η、×η9(η、:
機械効率)で表わされ、隙間を大きくするとブロワ−容
積効率η7が悪化するので、ブロワ−効率η8が悪くな
り、多段形に比し軸動力が大きくなる。
Moreover, the blower efficiency η8 is η,=η,×η9(η,:
Since the blower volumetric efficiency η7 deteriorates when the gap is increased, the blower efficiency η8 deteriorates, and the shaft power becomes larger than that of the multi-stage type.

そして、圧力比が3近くになると、多段形の軸動力の倍
近い値を示すようになり、省エネルギー的立場か°らも
問題がある。
When the pressure ratio is close to 3, the shaft power of the multi-stage type is nearly double, which is problematic from an energy saving standpoint.

前記(C)の方式は、第5図(A)〜(D)の原理説明
図に示すように、その左側のインペラ3の移動容積部分
Vに真空状態のガスを抱込む直前の状B (A)一部分
Vに真空状態のガスを抱込み、吐出圧力と同圧力の低温
ガスが部分Vに逆流し始めた状態(B)−逆流低温ガス
が部分Vに充分に流込み、部分Vの圧力が吐出圧力に近
づいた状態(C)一部分■の圧力が吐出圧力と同一とな
り、吐出口と部分Vが連通ずる直前の状態(D)の作動
態様であるので、単段形である程度の高圧力比が得られ
るものの、圧縮工程の途中で冷外気を吸入するために冷
却効果は充分でなく、圧力比にも限度がある。
As shown in the principle explanatory diagrams of FIGS. 5(A) to 5(D), the method (C) described above is based on the state B ( A) Part V contains gas in a vacuum state, and low-temperature gas with the same pressure as the discharge pressure begins to flow back into part V. (B) - The backflow low-temperature gas has sufficiently flowed into part V, and the pressure in part V The state (C) in which the pressure in the part (C) approaches the discharge pressure is the same as the discharge pressure, and the operation mode is in the state (D) immediately before the discharge port and the part V communicate with each other, so the single-stage type has a certain high pressure. Although a high ratio can be obtained, the cooling effect is not sufficient because cold outside air is sucked in during the compression process, and there is a limit to the pressure ratio.

また、冷外気吸入口は圧縮前がリークするため、第6図
に示すように冷外気吸入サイレンサー4を取付ける必要
があり、据付面積や価格の面で問題がある。
Furthermore, since the cold outside air intake port leaks before compression, it is necessary to install a cold outside air intake silencer 4 as shown in FIG. 6, which poses problems in terms of installation space and cost.

さらに、圧縮工程の途中で冷外気を吸入させるので、大
気との閉回路(例えば、有毒ガス、爆発性ガス等の危険
ガス用)の場合には使用不可能であり、これをあえて使
用しようとする場合には第6図に示すように、吐出側の
一部に中間冷却器5を介在する必要があり、据付面積や
価格的に不利となる。
Furthermore, since cold outside air is sucked in during the compression process, it cannot be used in closed circuits with the atmosphere (for example, for hazardous gases such as toxic gases and explosive gases); In this case, as shown in FIG. 6, it is necessary to interpose an intercooler 5 on a part of the discharge side, which is disadvantageous in terms of installation area and cost.

また、吐出側から一部戻すことになるので、ブロワ−容
積効率の低下にも関係してくる。
Furthermore, since a portion of the air is returned from the discharge side, this also relates to a reduction in the blower volumetric efficiency.

そして、さらに重要なことは、本方式の場合、インペラ
3の形状が三枚羽根であることが必要で、従来設備で製
作している二枚羽根のブロワ−には利用することができ
ないという欠点がある。
More importantly, in the case of this method, the impeller 3 must have a three-blade shape, and it cannot be used with two-blade blowers manufactured with conventional equipment. There is.

′前記(d)の方式は、冷却効果及びガスシール効果と
も良好で、単段形で高圧力比まで使用できる反面、水分
を嫌う製品の製作工程には使用すること       
(ができないという欠点を有している。       
     1〔問題点を解決するための手段〕    
          1本発明、よ前888方式。欠点
や、ア7.え、。7、       [その手段は、乾
式ルーツブロワ−におけるインペラを取付けた回転軸の
軸心に冷却水の流通孔を設げ、インペラ内部に冷却水を
供給したことにある。
'Method (d) above has a good cooling effect and gas sealing effect, and can be used up to a high pressure ratio in a single stage, but on the other hand, it cannot be used in the manufacturing process of products that dislike moisture.
(It has the disadvantage that it cannot be done.
1 [Means for solving problems]
1 This invention is the 888 method. Defects and a7. picture,. 7. [The means is that a cooling water circulation hole is provided in the axis of the rotating shaft to which the impeller is attached in a dry roots blower, and cooling water is supplied to the inside of the impeller.

よって、回転軸よりインペラ内部に供給される冷却水は
、インペラの内周に接して暖った水との間に比重差が生
じ、インーラの回転遠心力作用で       :′″
1・ 比重の軽い暖った水がインペラの中心部に集り、   
    :i:、; 回転軸の流通孔より外部に排出され、インペラ内   
    、:体の冷却作用と吐出ガスの冷却作用も兼ね
もので       :。
Therefore, a difference in specific gravity occurs between the cooling water supplied from the rotating shaft to the inside of the impeller and the warm water that comes into contact with the inner periphery of the impeller, and due to the centrifugal force of the rotation of the inlar:
1. Warm water with light specific gravity gathers in the center of the impeller,
:i:,; Exhausted from the circulation hole of the rotating shaft and inside the impeller.
, : It has both a cooling effect on the body and a cooling effect on the exhaled gas.

ある。                      
      i([1 〔実施例〕 カツヨ。□、1□□05.1オ、。    、゛、′第
1図の縦断面図及び第1図のn−n断面図を     
 11、)1 示す第2図において、10はブロワ−ケーシング、  
    ・3′11はサイドカバー、12は二枚羽根の
インペラ、      、、)13は一方のインペラ1
2を取付けた主回転軸、14は他方のインペラ12を取
付けた副回転軸、15は軸受、16は主回転軸13及び
副回転軸14のメカニカルシール、17は圧力ゲージ1
.18は吸込口、19は吐出口を示すが、この構成は通
常の乾式ルーツブロワ−と同一である。
be.
i ([1 [Example] Katsuyo.□, 1□□05.1o,. ,゛,' The vertical cross-sectional view in Fig. 1 and the nn cross-sectional view in Fig. 1 are
11,)1 In FIG. 2 shown, 10 is a blower casing,
・3'11 is the side cover, 12 is the two-blade impeller, ,,)13 is one impeller 1
2 is attached to the main rotation shaft, 14 is the sub-rotation shaft to which the other impeller 12 is attached, 15 is a bearing, 16 is a mechanical seal for the main rotation shaft 13 and the sub-rotation shaft 14, 17 is a pressure gauge 1
.. Reference numeral 18 indicates a suction port, and reference numeral 19 indicates a discharge port, and this configuration is the same as that of a normal dry roots blower.

本発明は、前記の主回転軸13及び副回転軸14の各軸
心に冷却水の流通孔13a及び14aを設け、両サイド
カバー11に冷却水の供給孔20と排出孔21を設けた
ことを特徴とする。
The present invention provides cooling water circulation holes 13a and 14a in each axis of the main rotation shaft 13 and the sub rotation shaft 14, and provides cooling water supply holes 20 and discharge holes 21 in both side covers 11. It is characterized by

よって、供給孔20より送入された冷却水は室22に入
り、主回転軸13及び副回転軸14の冷却水流通孔13
a、14aを通って各インペラ12内に入り、室23に
出た後、排出孔21より排出される。
Therefore, the cooling water sent through the supply hole 20 enters the chamber 22 and flows through the cooling water distribution holes 13 of the main rotating shaft 13 and the sub rotating shaft 14.
a, 14a, enters each impeller 12, exits into the chamber 23, and is then discharged from the discharge hole 21.

即ち、冷却水は各インペラ12を冷却して排出されるが
、この際、インペラ12の内周に接して暖った水は冷い
水との間に比重差が生じ、インペラ12の回転時の遠心
力作用で比重の軽い暖った水がインペラ12の中心部に
集まり、この水が排出されるので、少量の冷却水をもっ
てインペラ12の冷却効果を高め得ると共に、吐出ガス
の冷却にも機能する。
That is, the cooling water cools each impeller 12 and is discharged, but at this time, a difference in specific gravity occurs between the warm water that comes into contact with the inner circumference of the impeller 12 and the cold water, and when the impeller 12 rotates, Warm water with a light specific gravity gathers in the center of the impeller 12 due to the centrifugal force of the water, and this water is discharged. Therefore, a small amount of cooling water can enhance the cooling effect of the impeller 12, and can also be used to cool the discharged gas. Function.

〔効 果〕〔effect〕

本発明はインペラの内部に直接冷却水を供給するように
したので、 (a)  インペラの回転時の遠心力作用で比重差に伴
う冷たい水がインペラの内周に接し、インペラの冷却効
率が高まり、また吐出ガスの温度が低下し、ブロワ−効
率が向上して単段形で高圧力比が得られる。
Since the present invention supplies cooling water directly to the inside of the impeller, (a) Cold water due to the difference in specific gravity comes into contact with the inner circumference of the impeller due to the centrifugal force effect when the impeller rotates, increasing the cooling efficiency of the impeller. Furthermore, the temperature of the discharged gas is lowered, the blower efficiency is improved, and a high pressure ratio can be obtained with a single stage type.

(′b)次表に実験データを示す。('b) Experimental data is shown in the following table.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す縦断面図、第21図は第
1図のn−n断面図、第3図はルーツブロワ−の隙間関
係の説明図、第4図は多段形ルーツブロワ−の説明図、
第5図(A)〜(D)は逆流冷却方式ルーツブロワ−の
原理説明図、第6図は逆流冷却方式ルーツブロワ−のフ
ロー説明図である。 12・・・インペラ、13・・・主回転軸、13a・・
・冷却水供給孔、14・・・副回転軸、14a・・・冷
却水流通孔、20・・・冷却水供給孔、21・・・冷却
水排出口。 特許出願人  大晃機械工業株式会社 γ1      γ2     γ3 :1′ □ U 膚疼 □
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, FIG. 21 is a cross-sectional view taken along line nn in FIG. An explanatory diagram of
FIGS. 5(A) to 5(D) are diagrams explaining the principle of a roots blower of the reverse flow cooling type, and FIG. 6 is a diagram explaining the flow of the roots blower of the reverse flow cooling type. 12... Impeller, 13... Main rotating shaft, 13a...
- Cooling water supply hole, 14... Sub rotating shaft, 14a... Cooling water distribution hole, 20... Cooling water supply hole, 21... Cooling water outlet. Patent applicant: Taiko Kikai Kogyo Co., Ltd. γ1 γ2 γ3 :1' □ U Skin pain □

Claims (1)

【特許請求の範囲】[Claims] 乾式ルーツブロワーにおけるインペラを取付けた回転軸
の軸心に冷却水の流通孔を設け、インペラ内部に冷却水
を供給したことを特徴とする軸冷却方式のブロワー。
A shaft cooling type blower characterized in that a cooling water circulation hole is provided in the axis of a rotating shaft to which an impeller is attached in a dry roots blower, and cooling water is supplied to the inside of the impeller.
JP12037185A 1985-06-05 1985-06-05 Shaft cooling system blower Pending JPS61279793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12037185A JPS61279793A (en) 1985-06-05 1985-06-05 Shaft cooling system blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12037185A JPS61279793A (en) 1985-06-05 1985-06-05 Shaft cooling system blower

Publications (1)

Publication Number Publication Date
JPS61279793A true JPS61279793A (en) 1986-12-10

Family

ID=14784542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12037185A Pending JPS61279793A (en) 1985-06-05 1985-06-05 Shaft cooling system blower

Country Status (1)

Country Link
JP (1) JPS61279793A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310582A (en) * 1988-06-09 1989-12-14 Amada Co Ltd High speed axial-flow type laser oscillator
US6544020B1 (en) * 1997-10-10 2003-04-08 Leybold Vakuum Gmbh Cooled screw vacuum pump
CN106704176A (en) * 2016-12-02 2017-05-24 马德宝真空设备集团有限公司 Cooling system of Roots pump
CN107299917A (en) * 2016-04-15 2017-10-27 济南枭龙重工机械有限公司 A kind of environment-friendly highly efficient noise reduction cooling air blower

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014299B2 (en) * 1973-08-27 1985-04-12 テクニコン、インストルメンツ、コーポレーシヨン Fluid sample analysis method and analyzer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014299B2 (en) * 1973-08-27 1985-04-12 テクニコン、インストルメンツ、コーポレーシヨン Fluid sample analysis method and analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310582A (en) * 1988-06-09 1989-12-14 Amada Co Ltd High speed axial-flow type laser oscillator
US6544020B1 (en) * 1997-10-10 2003-04-08 Leybold Vakuum Gmbh Cooled screw vacuum pump
CN107299917A (en) * 2016-04-15 2017-10-27 济南枭龙重工机械有限公司 A kind of environment-friendly highly efficient noise reduction cooling air blower
CN107299917B (en) * 2016-04-15 2019-01-01 济南枭龙重工机械有限公司 A kind of environment-friendly highly efficient noise reduction cooling air blower
CN106704176A (en) * 2016-12-02 2017-05-24 马德宝真空设备集团有限公司 Cooling system of Roots pump

Similar Documents

Publication Publication Date Title
US5439358A (en) Recirculating rotary gas compressor
JP2007177632A5 (en)
WO2022077541A1 (en) Air compression device, multi-stage air compression device and hydrogen fuel cell
JP2002106485A (en) Motor type scroll compressor
CN102135104A (en) Turbo compressor
JPH0428918B2 (en)
JPS61279793A (en) Shaft cooling system blower
JP3941484B2 (en) Multistage vacuum pump
CN202100491U (en) Turbo compressor
JPS6217389A (en) Machine pump
GB625490A (en) Improvements in or relating to pumps of the rotary displacement type
WO2015172720A1 (en) Worm-gear transmission device
CN216922491U (en) Water-cooled type screw vacuum pump
JP2822070B2 (en) Cooling system for whole-system rotary scroll compressor
CN215633846U (en) Double-shaft direct-connection multi-impeller centrifugal compressor structure
JP3399063B2 (en) Turbine heat shield
JPS5891390A (en) Vacuum machine
CN110425142A (en) A kind of radiator of screw compressor
CN217926076U (en) Cooling structure of aircraft rotor engine
CN219220733U (en) Air-cooled radiator of vacuum pump
KR200203008Y1 (en) Air-circulating cooling unit of screw rotor for screw-type vacuum pump
CN213016896U (en) High-efficiency centrifugal fan
JPH06229248A (en) Mechanical supercharger
US20090110583A1 (en) Rotary blower with super-charged injection cooling
SU1418495A1 (en) Turbomolecular vacuum pump