JPS61279121A - Diffusing device - Google Patents

Diffusing device

Info

Publication number
JPS61279121A
JPS61279121A JP12044485A JP12044485A JPS61279121A JP S61279121 A JPS61279121 A JP S61279121A JP 12044485 A JP12044485 A JP 12044485A JP 12044485 A JP12044485 A JP 12044485A JP S61279121 A JPS61279121 A JP S61279121A
Authority
JP
Japan
Prior art keywords
wafer
temperature
quartz
diffusion device
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12044485A
Other languages
Japanese (ja)
Inventor
Takuji Torii
鳥居 卓爾
Tomoji Watanabe
智司 渡辺
Toshio Katsuyama
俊夫 勝山
Tetsuya Takagaki
哲也 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12044485A priority Critical patent/JPS61279121A/en
Publication of JPS61279121A publication Critical patent/JPS61279121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the temperature of a wafer at the prescribed value by a method wherein the temperature measuring probe of the wafer is formed using a retaining quartz pipe and a lens, a quartz rod and a total reflection prism which are provided in the quartz pipe, thereby enabling the direct measure of the wafer temperature when a diffusing process is performed. CONSTITUTION:Quartz rods 15A and 15B are provided inside a retaining quartz pipe 18 through the intermediary of a support 19, a lens 17 is provided on the port opposing to a wafer 2, total reflection prisms 16A and 16B are provided, and a temperature measuring probe 8 is constituted. The radiant light coming from the wafer 2 is measured by the temperature measuring probe 8, and the result is transmitted to a light-temperature converter 11 by an optical fiber 10 through the intermediary of a connector 9. In a diffusion device controlling part 12, the difference between the measured temperature and the preset reference temperature is outputted to a controlling part 13, and the heating power of a heater 5 is controlled in accordance with the value of said difference. When an oxidation and diffusion process is going to be performed to the wafer 2, treatment gas is introduced into a quartz pipe 1 from a treatment gas inlet 7.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体製造用拡散装置に係り、特に装置内ウェ
ハ温度制御に好適なウェハ温度計i11!l用プローブ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a diffusion device for semiconductor manufacturing, and in particular to a wafer thermometer i11! suitable for controlling the temperature of a wafer in the device. Regarding the probe for l.

〔発明の背景〕[Background of the invention]

従来の拡散装置内ウェハ温度a1測法としては、特開昭
56−6429に記載のものがある。しかし、本公知例
ではウェハそのものの温度を測るのではなく、ウェハを
載置保持するウェハホルダーの温度をal劃している。
A conventional method for measuring wafer temperature a1 in a diffusion device is described in Japanese Patent Laid-Open No. 56-6429. However, in this known example, the temperature of the wafer holder on which the wafer is placed and held is measured instead of measuring the temperature of the wafer itself.

ウェハを拡散装置処理室内に出し入れする過渡状態にお
いてウェハとウェハホルダーとの温度差は最大となる。
The temperature difference between the wafer and the wafer holder is greatest during a transient state in which the wafer is moved in and out of the diffusion device processing chamber.

高集積、高精細化するプロセスにおいては過渡状態での
温度制御が益々重要になり、公知例の測定法では不I−
分であり、実際には処理室外部の熱電対の指示値でヒー
タ発熱量を制御している。この場合ウェハと処理室外部
の熱電対との温度差はさらに大きくなる。
Temperature control in a transient state is becoming increasingly important in processes with higher integration and higher precision, and known measurement methods are
The amount of heat generated by the heater is actually controlled by the indicated value of a thermocouple outside the processing chamber. In this case, the temperature difference between the wafer and the thermocouple outside the processing chamber becomes even larger.

これが現状の拡散装at温度制御の問題点である。This is the problem with the current temperature control of the diffusion device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は過渡状態を含めてウェハ温度を直接a+
!l定可能とするプローブを提供することにある。
The purpose of the present invention is to directly adjust the wafer temperature to a+, including transient conditions.
! The object of the present invention is to provide a probe that enables the determination of

〔発明の概要〕[Summary of the invention]

一般の温度測定に多用されている熱電対は、それ自体が
ウェハにとって不純物となるので、拡散装置処理室内で
は使用できない。輻射光を外部へ導びく手段としては光
ファイバがあるが、市販品は耐熱200℃なので800
℃〜1000℃で処理する拡散装置内部八人おることは
できない。光ファイバの耐熱限界は被覆材(合成樹脂)
できまっている。被覆材の機能は光フアイバ本体(コア
+クラッド)に柔軟性を与えているだけで光のガイドと
しての直接作用をしていないことから、耐熱性としては
問題のない本体のみで拡散装置内部から外部へ輻射光を
とり出すことが考えられる。
Thermocouples, which are often used for general temperature measurement, cannot be used in the diffusion device processing chamber because they themselves become impurities for the wafer. Optical fibers are used as a means of guiding radiant light to the outside, but commercially available products are heat resistant to 200°C, so
It is not possible for eight people to be inside the diffuser for processing at temperatures between 1000°C and 1000°C. The heat resistance limit of optical fiber is the coating material (synthetic resin)
It's ready. The function of the coating material is to provide flexibility to the optical fiber body (core + cladding) and not to act directly as a light guide, so there is no problem in terms of heat resistance. It is conceivable to extract the radiant light to the outside.

しかし、商品の光ファイバのクラッドはゲルマニウムを
不純物として含んでおり、拡散装置内部へ入れることは
できない。ところが、石英のみで光の通路を作っても光
ファイバとほぼ同し作用が得られる。ただ、柔軟性がな
いため、あらかじめ石英棒を少し1曲げるか、あるいは
プリズムも用いた光学系で光を曲げて外部へとりだせば
よい。
However, the cladding of commercially available optical fibers contains germanium as an impurity and cannot be introduced into the diffuser. However, even if the optical path is made of quartz alone, it can achieve almost the same effect as an optical fiber. However, since it is not flexible, all you have to do is bend the quartz rod a little in advance, or use an optical system that also uses a prism to bend the light and extract it to the outside.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。図に
おいて1は石英管で、その内部に複数枚(例えば50−
 100枚)のウェハ2がボートX′3にのせておいで
ある。ボー1〜3はフォーク4により石英管内に出し入
れぎれる。石英管I内のウェハ2番、[石莢管夕)のピ
ータ5によ−)で加熱される。
An embodiment of the present invention will be described below with reference to FIG. In the figure, 1 is a quartz tube, and inside it there are multiple tubes (for example, 50-
100 wafers 2 are placed on boat X'3. Bows 1 to 3 are moved in and out of the quartz tube by a fork 4. Wafer No. 2 in quartz tube I is heated by Peter 5 in quartz tube I.

ヒータ5と石英管1との間には均一加熱に好適なるよう
壁温分布を一様にする均熱管6がある(均熱管はない場
合もある)。石英管I内のウェハ2を酸化、拡散処理す
る場合には処理ガイ人117 /+1ら処理ガスを石英
管l内へ入れる(アニール1−程の場合目処理ガスは流
さない)。
Between the heater 5 and the quartz tube 1, there is a soaking tube 6 that makes the wall temperature distribution uniform so that it is suitable for uniform heating (there may be no soaking tube). When oxidizing and diffusing the wafer 2 in the quartz tube I, a processing gas from the processing guide 117/+1 is introduced into the quartz tube I (in the case of annealing 1-, the processing gas is not flowed).

図において8が本発明による温度測定プローブである。In the figure, 8 is a temperature measurement probe according to the present invention.

信号(ウェハからの輻射光)は石英管1の外へ導びかれ
、外部にてコネクタ9を経由して光ファイバ10で輻射
光一温度変換器IIへ伝えられる。輻射光一温度変換器
11からの温度信号は接散装置制御部12で処理されて
ヒータの発熱量を制御部13へ伝えられてヒータの発熱
量を制御し、ウェハ2の温度を所定の温度に制御する。
A signal (radiant light from the wafer) is led out of the quartz tube 1 and externally transmitted via a connector 9 to an optical fiber 10 to a radiant light-to-temperature converter II. The temperature signal from the radiant light-temperature converter 11 is processed by the dispersion device control section 12, and the heat generation amount of the heater is transmitted to the control section 13, which controls the heat generation amount of the heater and brings the temperature of the wafer 2 to a predetermined temperature. Control.

以上の説明ではボートならびにウェハが石英管内にある
場合を想定して説明したが実際にはボートならびにウェ
ハが石英管外にある場合がある。
In the above explanation, it is assumed that the boat and wafer are inside the quartz tube, but in reality, the boat and wafer may be outside the quartz tube.

この場合には均熱管壁あるいはその近傍に設けた熱電対
14の指定値を用いて温度制御を行う(均熱管壁あるい
はその近傍に熱電対を設けることは公知である)。なお
、熱電対14の代りに赤外線温度計を用いてもよい。
In this case, temperature control is performed using the designated value of the thermocouple 14 provided on or near the wall of the soaking tube (it is known to provide a thermocouple on the wall or near the wall of the soaking tube). Note that an infrared thermometer may be used instead of the thermocouple 14.

第2図は温度測定プローブ8の詳細図である。FIG. 2 is a detailed view of the temperature measuring probe 8.

石英棒15A、15B全反射プリズム16A。Quartz rods 15A, 15B total reflection prism 16A.

16B、レンズ1゛7が主たる構成部品で、保持用石英
管18の内部にサポート19を介して固定しである。(
保持用石英管18.サポート19がなくて石英棒1.5
A、1.5B全反射プリズム16A。
16B, the lens 17 is the main component, and is fixed inside the holding quartz tube 18 via a support 19. (
Holding quartz tube 18. No support 19, quartz rod 1.5
A, 1.5B total reflection prism 16A.

16Bレンズ]7の組み合わせを裸にした状態で使用し
ても機能は変らない)。全反射プリズ1112、レンズ
】3も石英製である(ウェハを処理する石英管内にはウ
ェハ内への不純物侵入防止のため石英以外の材料は使用
できない)。
16B lens] Even if the combination of 7 is used in a bare state, the function will not change). The total reflection prism 1112 and lens 3 are also made of quartz (in order to prevent impurities from entering the wafer, no material other than quartz can be used in the quartz tube that processes the wafer).

ウェハ2からの輻射光はレンズ17で集光された全反射
値リズム16 A内に入り、屈折して石英棒1.5A、
全反射プリズム1.6 B、石英棒1513を経由して
コネクタ9へ至る。以後の経路は既に述べた通りである
ので省略する。
The radiant light from the wafer 2 enters the total reflection value rhythm 16A, which is focused by the lens 17, is refracted, and passes through the quartz rod 1.5A,
It reaches the connector 9 via the total reflection prism 1.6B and the quartz rod 1513. The subsequent route is as already described, so it will be omitted.

通常ウェハとウェハとのすきまは4〜10mn程度であ
り、温度測定プローブがウェハ処理プロセスに悪影響を
与えないためには、できる限り小形化する必要がある。
Normally, the gap between wafers is about 4 to 10 mm, and in order to prevent the temperature measurement probe from adversely affecting the wafer processing process, it is necessary to make it as small as possible.

レンズ、全反射プリズムとも直径、あるいは1辺を1画
描度で作成することができるので、約511II+間隙
で配温されたウェハの処理プロセスへの影響は問題にし
なくてよい。
Since both the lens and the total reflection prism can be made with a diameter or one side of one stroke, there is no need to worry about the influence on the processing process of a wafer whose temperature is distributed at about 511II+gap.

本実施例によれば、石英管内のウェハ温度を直接測定す
ることができる。この信号に拡散装置制御部にフィード
バックすることにより、ウェハ温度を所望の温度に制御
するのが従来に比べはるかに容易になる。特に、ウェハ
を石英管内へ入れる場合にはウェハ温度の過渡変化は激
しい。この場合、従来のようにボートの温度を計測した
り、あるいはヒータ付近の温度を計測しただけではウェ
ハ温度を早く定常値へ近づけることは容易ではない。本
実施例の効果はこのような過渡状態によりはっきりとあ
ら才)れる。
According to this embodiment, the wafer temperature inside the quartz tube can be directly measured. By feeding this signal back to the diffusion device control section, it becomes much easier to control the wafer temperature to a desired temperature than in the past. In particular, when a wafer is placed into a quartz tube, transient changes in wafer temperature are severe. In this case, it is not easy to quickly bring the wafer temperature close to a steady value just by measuring the temperature of the boat or the temperature near the heater as in the conventional method. The effects of this embodiment are clearly impaired by such a transient state.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、石英管内のウェハ温度を直接測定でき
るので、ウェハ温度を所望の温度に制御するのが容易に
行えるようになる。
According to the present invention, since the wafer temperature inside the quartz tube can be directly measured, the wafer temperature can be easily controlled to a desired temperature.

特にウェハを石英管内へ入れる場合に従来の間接的測定
(ボード温度、あるいはヒータ付近温度)に比べてはる
かに早くウェハを所望温度にすることが可能になる。
Especially when placing a wafer into a quartz tube, it is possible to bring the wafer to the desired temperature much more quickly than with conventional indirect measurement (board temperature or temperature near the heater).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を立体的に示したもので、第2
図は本発明の中心をなす温度測定プローブの断面図であ
る。
Figure 1 is a three-dimensional illustration of an embodiment of the present invention;
The figure is a cross-sectional view of a temperature measurement probe that is central to the present invention.

Claims (1)

【特許請求の範囲】 1、石英管内の複数枚のウェハを石英管外のヒータによ
つて加熱する拡散装置において、隣りあうウェハとウェ
ハとのすきまに、レンズ、プリズム、ならびに導光体を
備えた第1の輻射光ガイドを設け、ウェハからの輻射光
をウェハの外周よりも外側へ導びき、さらにプリズム、
導光体を備えた第2の輻射光ガイドの一方の端を拡散装
置外へ導びきコネクタで光ファイバと接続し、ウェハか
らの輻射光を拡散装置外部の輻射光一温度変換器へ導び
くことによりウェハ温度を直接測定することを特徴とす
る拡散装置。 2、特許請求の範囲第1項記載の拡散装置においてレン
ズ、プリズムならびに導光体をすべて石英で製作したこ
とを特徴とする拡散装置。 3、特許請求の範囲第2項記載の拡散装置において直接
測定したウェハ温度を用いてヒータ発熱量を制御し、ウ
ェハ温度を所望の値に制御することを特徴とする拡散装
置。
[Claims] 1. In a diffusion device that heats a plurality of wafers in a quartz tube by a heater outside the quartz tube, a lens, a prism, and a light guide are provided in the gap between adjacent wafers. A first radiant light guide is provided, which guides the radiant light from the wafer to the outside of the wafer's outer circumference, and further includes a prism,
Guide one end of a second radiant light guide equipped with a light guide to the outside of the diffuser and connect it to an optical fiber with a connector, and guide the radiant light from the wafer to a radiant light-temperature converter outside the diffuser. A diffusion device characterized by directly measuring wafer temperature. 2. A diffusion device according to claim 1, wherein the lens, prism, and light guide are all made of quartz. 3. A diffusion device according to claim 2, wherein the wafer temperature directly measured in the diffusion device is used to control the amount of heat generated by the heater to control the wafer temperature to a desired value.
JP12044485A 1985-06-05 1985-06-05 Diffusing device Pending JPS61279121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12044485A JPS61279121A (en) 1985-06-05 1985-06-05 Diffusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12044485A JPS61279121A (en) 1985-06-05 1985-06-05 Diffusing device

Publications (1)

Publication Number Publication Date
JPS61279121A true JPS61279121A (en) 1986-12-09

Family

ID=14786355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12044485A Pending JPS61279121A (en) 1985-06-05 1985-06-05 Diffusing device

Country Status (1)

Country Link
JP (1) JPS61279121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471119A (en) * 1987-09-11 1989-03-16 Hitachi Ltd Thermal treatment equipment for semiconductor wafer
JPH0536829U (en) * 1991-10-11 1993-05-18 ソニー株式会社 Horizontal diffusion furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471119A (en) * 1987-09-11 1989-03-16 Hitachi Ltd Thermal treatment equipment for semiconductor wafer
JPH0536829U (en) * 1991-10-11 1993-05-18 ソニー株式会社 Horizontal diffusion furnace

Similar Documents

Publication Publication Date Title
Jundt et al. Characterization of single‐crystal sapphire fibers for optical power delivery systems
CN106197761A (en) A kind of thermocouple sensor time constant test device and method
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
JPS61279121A (en) Diffusing device
US5176730A (en) Method of producing optical-fiber coupler
JP2944534B2 (en) Method and apparatus for drawing optical fiber
JPS62105419A (en) Temperature controlling method for diffusing device
JPS63195139A (en) Apparatus for drawing glass rod
EP0687929B1 (en) Method for manufacturing optical fiber coupler
JP2005281090A (en) Manufacturing method for optical fiber and manufacturing unit
JPS6471119A (en) Thermal treatment equipment for semiconductor wafer
JPH01170838A (en) Refractive index measuring instrument
JPH0265126A (en) Dispersing device
RU205572U1 (en) A device for measuring heat flux to the surface of a material heated in a high-enthalpy gas jet to high temperatures
French et al. Fabrication of graded index and single mode fibers with silica cores
JP3864463B2 (en) Stretching method
JP2002134491A (en) Heat treatment apparatus
JP4137314B2 (en) Pseudo blackbody radiation device and radiation temperature measurement device
JPS63306622A (en) Diffusion device
JPS58189527A (en) Apparatus for measuring molten steel temperature utilising two-color thermometer
JPH01102923A (en) Adjustment of temperature inside heating furnace
JPS5763826A (en) Apparatus for manufacturing semiconductor
JPS6447031U (en)
JPS6461652A (en) Corrosion measuring instrument for pipe inside
JP2004279759A (en) Optical fiber coupler, its manufacturing method and apparatus