JPS61278265A - Facsimile sensor unit - Google Patents

Facsimile sensor unit

Info

Publication number
JPS61278265A
JPS61278265A JP60120866A JP12086685A JPS61278265A JP S61278265 A JPS61278265 A JP S61278265A JP 60120866 A JP60120866 A JP 60120866A JP 12086685 A JP12086685 A JP 12086685A JP S61278265 A JPS61278265 A JP S61278265A
Authority
JP
Japan
Prior art keywords
light
light source
sensor
condenser
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60120866A
Other languages
Japanese (ja)
Inventor
Shinji Nishiura
西浦 真治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60120866A priority Critical patent/JPS61278265A/en
Publication of JPS61278265A publication Critical patent/JPS61278265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To prevent the heat of a light source from affecting a sensor and to avoid noise interference by arranging a light source in a chamber provided apart from a part irradiated with light and providing a fluorescent flat light condenser leading the light of the light source to the original face in between. CONSTITUTION:The light incident on the contact type image sensor 1 via a rod lens array 6 is projected from the light source 10 such as the light source 10 such as fluorescent light, a halogen lamp or a xenon lamp accommodated in a light source room 9 fitted to the outside of a frame 2 in the face of the original 3 via the fluorescent flat plate light condenser 11. The light source chamber 9 is surrounded by a light wall and the fluorescent flat plate condenser 11 penetrates through the light shield wall. Electromagnetic shield is applied to a barrier 13 extended to the upper part of the part 12 of the light shield wall penetrated with the light condenser and the light source chamber 9 to prevent noise generated from the light source 10 from affecting the sensor 1. Since the light source chamber 9 is spaced away from the sensor 1 and the signal amplifier section 7, the effect of the heat from the light source 10 onto the sensor and the signal amplifier section is less and it is also effective to dissipate heat by providing an air cooling fan or a water cooling pipe to the light source chamber 9.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、原稿面の一部分に光を照射し、原稿の部分の
像を光学系を介して密着型イメージセンサの面に入射さ
せるファクシミリセンサユニットに関する。
The present invention relates to a facsimile sensor unit that irradiates a portion of the surface of a document with light and causes an image of the portion of the document to be incident on the surface of a contact type image sensor via an optical system.

【従来技術とその問題点】[Prior art and its problems]

ファクシミリの普及は近年のOA化ブームを反映して著
しいが、それに伴ってその低コスト化。 小型化の要望が強い、それに応するものとして原稿と等
サイズのセンサを用いて原稿の像を1:1にセンサ面に
結像する密着型センサの開発が進められている。密着型
センサを用いれば、原稿の像を縮小投影するための光学
系が不要となり、原稿面とセンサ間の距離が20m程度
となってセンサ部のコンパクト化を図ることができる。 第2図は密着型イメージセンサを用いたファクシミリセ
ンサユニットの概念図で、イメージセンサ1が枠2に固
定されている。枠2の下方を原稿3がガイド4を介して
滑らすことができる。原稿3の面を照射するための発光
ダイオード(LED)アレイ5が、原稿の像をセンサ1
の面に結像するための長尺のレンズ系であるロッドレン
ズアレイ6の両側に配置されている0図示しない原稿搬
送系により原稿3が搬送されてくると、LEDアレイに
より照射された原稿像がロッドレンズアレイ6により、
例えばa−5tを用いた多数の光センサで構成されるイ
メージセンサ1の上に結像する。各センサはアナログス
イッチICにより走査され、順次センサ信号が読みとら
れる。この信号は信号増幅器7に入力されて適当な大き
さの信号に増幅され、その出力信号はコネクタ8を介し
てファクシミリ制御系へ送られる。 このようなファクシミリセンサユニットにおいて、形状
がコンパクトになるほど光源とセンナの距離が近くなる
。光源は光を放出すると同時にかなりの熱を発散するの
で、この熱によりセンサの温度が上昇し、原稿読取中に
センサあるいは信号増幅部の温度が変化し、信号の大き
さに影響を与える。また長い連続運転の場合、センサは
高温雰囲気にさらされることになり、従ってセンサおよ
び読取回路の耐熱性、耐久性にきびしい条件が課せられ
る。LEDに流す電流を小さくすれば光源の発熱は減少
するが、原稿面が暗くなり、センサ信号が小さくなると
いう不都合を生ずる。別の対策として、例えばLEDの
近くにモータで駆動されるファンなどを置いて排熱する
方法が考えられる。しかしpln接合を有するa・−5
i層でセンサを構成し、8ピント/鶴のセンサ列をつく
ったとき、251xのLED  (波長565nm)下
での光電流は約0、2 nAである。この信号を蓄積型
で読み取る場合に、ノイズの影響を受けやすいので、モ
ータのように電磁ノイズを発散するものの使用は望まし
くない。
The spread of facsimile has been remarkable, reflecting the recent boom in OA, and along with this, the cost has come down. There is a strong demand for miniaturization, and in response to this demand, a contact type sensor is being developed that uses a sensor of the same size as the original to form an image of the original on the sensor surface at a 1:1 ratio. If a contact type sensor is used, an optical system for reducing and projecting the image of the original document is not required, and the distance between the original surface and the sensor is about 20 m, so that the sensor unit can be made more compact. FIG. 2 is a conceptual diagram of a facsimile sensor unit using a contact type image sensor, in which an image sensor 1 is fixed to a frame 2. As shown in FIG. A document 3 can slide below the frame 2 via a guide 4. A light emitting diode (LED) array 5 for illuminating the surface of the document 3 transmits an image of the document to the sensor 1.
When a document 3 is conveyed by a document conveyance system (not shown) disposed on both sides of a rod lens array 6, which is a long lens system for forming an image on a surface of is due to the rod lens array 6,
For example, an image is formed on an image sensor 1 made up of a large number of optical sensors using A-5T. Each sensor is scanned by an analog switch IC, and sensor signals are sequentially read. This signal is input to a signal amplifier 7 and amplified into a signal of an appropriate magnitude, and the output signal is sent to a facsimile control system via a connector 8. In such a facsimile sensor unit, the more compact the shape, the closer the distance between the light source and the sensor becomes. As the light source emits light, it also emits considerable heat, which increases the temperature of the sensor and changes the temperature of the sensor or signal amplifier during document reading, affecting the magnitude of the signal. Further, in the case of long continuous operation, the sensor is exposed to a high temperature atmosphere, and therefore strict conditions are imposed on the heat resistance and durability of the sensor and the reading circuit. If the current flowing through the LED is reduced, the heat generated by the light source will be reduced, but this will cause problems such as the document surface becoming dark and the sensor signal becoming smaller. Another possible measure is to dissipate heat by placing a fan driven by a motor near the LED, for example. However, a・−5 with pln junction
When the sensor is constructed from the i-layer and a sensor array of 8 pintos/tsuru is made, the photocurrent under a 251x LED (wavelength 565 nm) is approximately 0.2 nA. When reading this signal using a storage type, it is susceptible to noise, so it is not desirable to use something that emits electromagnetic noise, such as a motor.

【発明の目的】[Purpose of the invention]

本発明は、上記の欠点を排除し、光源の熱がセンサに影
響することなく、またノイズ障害のない性能良好なファ
クシミリセンサユニットを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a facsimile sensor unit with good performance, in which the heat of the light source does not affect the sensor, and there is no noise interference.

【発明の要点】[Key points of the invention]

本発明は、光源が原稿面の光を照射すべき部分より離し
て設けられた室の中に配置され、その中間に光源の光を
原稿面に導く螢光平板集光器を備えることによって上記
の目的を達成する。
The present invention provides the above-mentioned method by disposing a light source in a chamber provided at a distance from a portion of the document surface to which light is to be irradiated, and providing a fluorescent flat plate condenser in the middle thereof for guiding the light from the light source to the document surface. achieve the purpose of

【発明の実施例】[Embodiments of the invention]

第1図は本発明の一実施例を示し、第2図と共通の部分
には同一の符号が付されている。この場合は密着型イメ
ージセンサ1にロンドレンズアレイ6を介して入射する
光は、枠2の外側に取り付けられた光源室9の中に収容
された、螢光灯、ハロゲンランプ、キセノンランプ等の
光源10から螢光平板集光器11を介して原稿3の面に
投射される。 光源室9は遮光壁に囲まれ、螢光平板集光器11はこの
遮光壁を貫通する。遮光壁の集光器の貫通する側の部分
12および光源室9の上方に延びる隔壁13には電tf
ffi蔽が施され、光源10から発するノイズがセンサ
1に影響するのを防いでいる。光源室9はセンサ1.信
号増幅部7から離れているため、光H10の熱のセンサ
や信号増幅部への影響は少ないが、さらに光源室9に空
冷ファンまたは水冷パイプを設けて光源からの熱を放熱
することも存効である。光源10からの熱およびノイズ
の影響を防ぐためには長い螢光平板集光器を用いて光源
とセンサ1との距離を長くすることがを効である0例え
ば30cmの長さの螢光平板集光器11を用い、光源1
0としての螢光灯と組み合わせることにより、原稿3を
照射した場合にセンサ1の周辺の温度は外気に比較して
5℃程度より上昇せず、第2図に示すようにLEDを用
いて照明した場合、約30℃以上温度上昇がみられるに
比べて上昇が著しく少ない。 螢光平板集光器はガラスやブレクシグラスのシートに螢
光性を有する有機または無機の色素を含有させたもので
あり、第3図に示すように螢光集光器11に入射した光
30の幾分かは色素14で吸収されて等方向に螢光を発
する。ガラスやプレクシグラスの屈折率が空気のそれよ
り大きいので、75%の光が集光器11のシート方向に
伝わり、端面15から集光された光31が出てくること
になる。集光の状態は集光器11のシートの面積と厚さ
で決り、入射した光の量に依存した量の光がシート端面
から放出される。例えば光1ixoとして40Wの螢光
灯を用いた場合、端面15からの光によって照射された
原稿面の照度は50001x程度になった。 螢光集光器は含有する色素を選ぶことにより出力する光
の波長を揃えることができる0例えばa−5iセンサの
場合は感度が500〜620nmの波長領域で高いため
、オレンジ色の光が放出されるような螢光集光器を用い
ると好都合である。 第4図に別の実施例を示す、第1図の実施例との相違は
、光源室9をセンサ支持枠2から離して設け、光a1O
からの光を螢光平板集光器で原稿3の面に導く点で、四
つの螢光平板集光器11を用いて任意の方向に導光する
ことができる。光源室9は、イメージセンサ1から離し
て配置されるので、冷却は上部に熱放散孔17を設ける
だけで十分であり、センサに影響を及ぼすことはほとん
ど無かった。また光源室9を上方にお(ことは熱の影響
の防止に対して特に有効である。そのほかに注意しなけ
ればならないことは、原稿面の照度を制御するために各
螢光集光器11を外光にさらされないようにすることで
ある。 第5図は性能の良好な螢光平板集光器を示し、この集光
器11の端面51,52,53.54のうち、光放出側
の面51以外の面を平滑にし、T i + N i、 
l Cr + A g等の反射性のよい膜を1着した。 この蒸着は、螢光平板集光器を数枚重ねて同時に行うこ
とにより量産性を向上することができる。三方の端面5
2.53.54に金属膜を形成し、これらの端面から光
が外部に出るのを防ぐことにより、端面51より放出さ
れる光量は約30%増加した。 【発明の効果] 本発明によれば、ファクシミリセンサユニ、トの光源か
らの光を螢光平板集光器を介して集光し原稿面に照射す
る構成としたので、光源の発熱が例えばセンサ、信号増
幅部等を加熱することのないように光源を離して配置す
ることが可能になり、また冷却のために1!磁ノイズを
発散するモータを用いる必要もなく、たとえ用いたとし
ても光源とセンサの間に電磁遮蔽を挿入する余地が十分
あるためセンサのSN比を向上させることができる。 また、螢光平板集光器内の色素にライフタイムの長いり
ん光を発生するものを用いることにより、光源が振動す
るモードで発光しても原稿面を照射する光を一定の光量
とすることが可能である。 さらに色素を選ぶことにより、センサの感度の最も高い
波長の光を原稿面に入射させることができ、光の有効利
用を図ることができる。また光源室を外部に大きく取る
ことができ、光源の寸法6容量に対する制限が緩和され
、センサの小型化が可能になる。
FIG. 1 shows an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. In this case, the light that enters the contact image sensor 1 via the Rondo lens array 6 comes from a fluorescent lamp, halogen lamp, xenon lamp, etc. housed in a light source chamber 9 attached to the outside of the frame 2. Light is projected from a light source 10 onto the surface of the document 3 via a fluorescent flat plate condenser 11 . The light source chamber 9 is surrounded by a light-shielding wall, and the fluorescent flat plate collector 11 passes through this light-shielding wall. A portion 12 of the light-shielding wall on the side where the light condenser passes through and a partition wall 13 extending above the light source chamber 9 are provided with an electric tf
ffi shielding is applied to prevent noise emitted from the light source 10 from affecting the sensor 1. The light source chamber 9 contains the sensor 1. Since it is far from the signal amplification section 7, the heat of the light H10 has little effect on the sensor and the signal amplification section, but it is also possible to further provide an air cooling fan or a water cooling pipe in the light source chamber 9 to dissipate the heat from the light source. It is effective. In order to prevent the influence of heat and noise from the light source 10, it is effective to increase the distance between the light source and the sensor 1 by using a long fluorescent flat plate collector. Using the light device 11, the light source 1
By combining it with a fluorescent lamp as 0, the temperature around the sensor 1 does not rise more than about 5°C compared to the outside air when the document 3 is irradiated, and as shown in FIG. In this case, the temperature increase is significantly smaller than the temperature increase of about 30°C or more. A fluorescent flat plate collector is a sheet of glass or Brexiglass containing fluorescent organic or inorganic dye, and as shown in FIG. Some of it is absorbed by the dye 14 and emits fluorescence in the same direction. Since the refractive index of glass or Plexiglas is higher than that of air, 75% of the light is transmitted toward the sheet of the condenser 11, and the condensed light 31 comes out from the end face 15. The state of condensing light is determined by the area and thickness of the sheet of the condenser 11, and an amount of light that depends on the amount of incident light is emitted from the end surface of the sheet. For example, when a 40W fluorescent lamp is used as the light 1ixo, the illuminance of the document surface irradiated by the light from the end surface 15 is about 50001x. Fluorescent concentrators can match the wavelength of the light they output by selecting the pigment they contain.For example, in the case of the A-5i sensor, the sensitivity is high in the wavelength range of 500 to 620 nm, so it emits orange light. It is advantageous to use a fluorescent concentrator such as the one shown in FIG. Another embodiment is shown in FIG. 4, which is different from the embodiment shown in FIG.
In that the light from the fluorescent plate is guided to the surface of the document 3 by the fluorescent flat plate concentrator, the light can be guided in any direction using the four fluorescent flat plate concentrators 11. Since the light source chamber 9 was placed apart from the image sensor 1, it was sufficient to provide heat dissipation holes 17 at the top for cooling, and the sensor was hardly affected. In addition, placing the light source chamber 9 upward is particularly effective in preventing the effects of heat. Fig. 5 shows a fluorescent flat plate concentrator with good performance. The surfaces other than surface 51 are smoothed, and T i + N i,
A film with good reflectivity, such as lCr+Ag, was attached. Mass productivity can be improved by performing this vapor deposition simultaneously by stacking several fluorescent flat plate concentrators. Three end faces 5
By forming a metal film on 2.53.54 to prevent light from exiting from these end faces, the amount of light emitted from the end face 51 was increased by approximately 30%. Effects of the Invention According to the present invention, the light from the light source of the facsimile sensor unit is condensed through the fluorescent flat plate concentrator and irradiated onto the document surface, so that the heat generated by the light source can be transmitted to the sensor, for example. , it becomes possible to place the light source at a distance so as not to heat up the signal amplification section, etc., and 1! for cooling. There is no need to use a motor that emits magnetic noise, and even if a motor is used, there is sufficient room to insert an electromagnetic shield between the light source and the sensor, so the S/N ratio of the sensor can be improved. In addition, by using a dye in the fluorescent flat plate collector that generates phosphorescence with a long lifetime, the amount of light that illuminates the document surface remains constant even when the light source emits light in a vibrating mode. is possible. Furthermore, by selecting a dye, it is possible to make light at a wavelength for which the sensor has the highest sensitivity enter the document surface, and it is possible to make effective use of light. Furthermore, the light source chamber can be extended to the outside, the restrictions on the size and capacity of the light source are relaxed, and the sensor can be miniaturized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるファクシミリセンサユニットの一
実施例の断面図、第2図は従来例の断面図、第3図は本
発明により用いられる螢光平板集光器の原理を示す断面
図、第4図は本発明の別の実施例の断面図、第5図は螢
光平板集光器の別の実施例の斜視図である。 に密着型イメージセンサ、2;枠、3:原稿、6:ロン
ドレンズアレイ、7:信号増幅器、9:光源室、10:
光源、11:螢光平板集光器。 −’1AirJ、LL山′l−幻″−ご、第1図 第2図 第3図
FIG. 1 is a sectional view of an embodiment of a facsimile sensor unit according to the present invention, FIG. 2 is a sectional view of a conventional example, and FIG. 3 is a sectional view showing the principle of a fluorescent flat plate concentrator used in the present invention. FIG. 4 is a cross-sectional view of another embodiment of the invention, and FIG. 5 is a perspective view of another embodiment of the fluorescent flat plate concentrator. Close-contact image sensor, 2; frame, 3: original, 6: Rondo lens array, 7: signal amplifier, 9: light source chamber, 10:
Light source, 11: Fluorescent flat plate concentrator. -'1AirJ, LL mountain'l-illusion'-Go, Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)原稿面の一部分に光を照射し、原稿の該部分の像を
光学系を介して密着型イメージセンサの面に入射させる
ものにおいて、光源が原稿面の前記部分より離して設け
られた室の中に配置され、その中間に光源の光を原稿面
に導く螢光平板集光器を備えたことを特徴とするファク
シミリセンサユニット。
1) A chamber in which a light source is provided at a distance from the part of the original surface, in which a part of the original surface is irradiated with light and an image of that part of the original is made to enter the surface of a contact image sensor via an optical system. What is claimed is: 1. A facsimile sensor unit, characterized in that the facsimile sensor unit is provided with a fluorescent flat plate condenser disposed in the middle of the condenser for guiding light from a light source to a document surface.
JP60120866A 1985-06-04 1985-06-04 Facsimile sensor unit Pending JPS61278265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120866A JPS61278265A (en) 1985-06-04 1985-06-04 Facsimile sensor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120866A JPS61278265A (en) 1985-06-04 1985-06-04 Facsimile sensor unit

Publications (1)

Publication Number Publication Date
JPS61278265A true JPS61278265A (en) 1986-12-09

Family

ID=14796889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120866A Pending JPS61278265A (en) 1985-06-04 1985-06-04 Facsimile sensor unit

Country Status (1)

Country Link
JP (1) JPS61278265A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436166A (en) * 1987-07-30 1989-02-07 Kyocera Corp Reader
DE3904052A1 (en) * 1988-02-11 1989-08-24 Messerschmitt Boelkow Blohm Device for generating a light bar, strip or similar
EP0465768A2 (en) * 1990-07-09 1992-01-15 Mitsubishi Denki Kabushiki Kaisha Contact type line image sensor
EP0488129A2 (en) * 1990-11-26 1992-06-03 Canon Kabushiki Kaisha Image sensor and information processing apparatus
US5281803A (en) * 1990-11-26 1994-01-25 Canon Kabushiki Kaisha Image sensor and information processing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436166A (en) * 1987-07-30 1989-02-07 Kyocera Corp Reader
DE3904052A1 (en) * 1988-02-11 1989-08-24 Messerschmitt Boelkow Blohm Device for generating a light bar, strip or similar
EP0465768A2 (en) * 1990-07-09 1992-01-15 Mitsubishi Denki Kabushiki Kaisha Contact type line image sensor
EP0488129A2 (en) * 1990-11-26 1992-06-03 Canon Kabushiki Kaisha Image sensor and information processing apparatus
US5281803A (en) * 1990-11-26 1994-01-25 Canon Kabushiki Kaisha Image sensor and information processing apparatus

Similar Documents

Publication Publication Date Title
JP4433503B2 (en) Image detector with improved contrast
JPH02141629A (en) Photo detector
US6796502B2 (en) Illumination apparatus and image reading apparatus
JPS61278265A (en) Facsimile sensor unit
JPH0415630B2 (en)
JPH03165661A (en) Lighting device for reading picture
JPH0688747A (en) Cooling type photodetector
JPH10241425A (en) Lighting system and image reading system using it
JP3021120B2 (en) Image sensor
WO2004013590A1 (en) Optical sensor
JPH01211702A (en) Light radiation method
JPS6215814B2 (en)
JPH0961358A (en) Flame photometric detector
JPS56120259A (en) Reader for equimultiple type video information
JPS6188659A (en) Lighting device
JP2588417Y2 (en) Contact image sensor
KR910009035Y1 (en) Ir camera unified by radiation unit
JPH05122438A (en) Contact image sensor unit
JPS6020675A (en) Picture inputting device
JPS59139669A (en) Close contact type line sensor
JPS58154601A (en) Device for measuring dimenion
JPS6412759A (en) Radiograph information reader
CN111164392A (en) Weak light detection method
JPH1090419A (en) Optical fiber utilizing radiation detector
JPH11304581A (en) Ultraviolet radiation detector