JPH0688747A - Cooling type photodetector - Google Patents

Cooling type photodetector

Info

Publication number
JPH0688747A
JPH0688747A JP23908592A JP23908592A JPH0688747A JP H0688747 A JPH0688747 A JP H0688747A JP 23908592 A JP23908592 A JP 23908592A JP 23908592 A JP23908592 A JP 23908592A JP H0688747 A JPH0688747 A JP H0688747A
Authority
JP
Japan
Prior art keywords
light
incident window
light incident
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23908592A
Other languages
Japanese (ja)
Inventor
Shinichi Hirako
進一 平子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP23908592A priority Critical patent/JPH0688747A/en
Publication of JPH0688747A publication Critical patent/JPH0688747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To provide a cooling type photodetector which realizes a simple and small configuration, easy operation and maintenance, as well as, a low cost. CONSTITUTION:A vacuum cell type light entrance window 12 is provided in front of a photoelectric surface 10a of a photomultiplier 10, and a cooling block 16 provided with a Peltier element 18 for cooling the photoelectric surface 10a is assigned. A box 20 housing these components is attached with a radiating plate 30 which radiates the heat of the Peltier element 18, and a side wall surface 12b of the light entrance window 12 acts as an optical reflection surface. The heat of the Peltier element 18 is transferred to the light entrance window 12 through bath the radiating plate 30 and the box 20, and at the same time, a diffused light L1 from a sample 70 directly enters into the photoelectric surface 11a, and a diffused light L2 enters there through reflection on the side wall surface 12b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に微弱光を検出して
電気信号に変換するための光電変換素子を有し、この光
電変換素子を冷却するための冷却機能を備えた冷却式光
検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly relates to a cooling type photodetector having a photoelectric conversion element for detecting weak light and converting it into an electric signal and having a cooling function for cooling the photoelectric conversion element. Regarding the device.

【0002】[0002]

【従来の技術】ケミルミネッセンスや生物フォトン等の
拡散性の微弱発光を検出する場合、一般に冷却式光検出
装置が使用される。この検出装置は、試料からの光が入
射する光入射窓と、光入射窓を透過した光を検出する光
電変換素子(光電子増倍管)と、光電変換素子の光電面
を冷却する冷却素子(ペルチェ素子)と、冷却素子で発
生した熱を放熱する放熱手段とを備える。
2. Description of the Related Art A cooled photodetector is generally used to detect faint diffused light emission such as chemiluminescence and biological photons. This detection device includes a light incident window on which light from a sample is incident, a photoelectric conversion element (photomultiplier tube) for detecting light transmitted through the light incident window, and a cooling element (for cooling a photoelectric surface of the photoelectric conversion element ( Peltier element) and a heat dissipation means for dissipating the heat generated in the cooling element.

【0003】この検出装置の具体例を図2に示す。この
検出装置では、ヘッドオン型の光電子増倍管50が用い
られ、増倍管50の光電面50aの前方に、断熱型光入
射窓として薄型真空セル型光入射窓52が設置されてい
る。光電子増倍管50の光電面50aを冷却するため
に、増倍管50の周囲には、ペルチェ素子54を設けた
環状の冷却ブロック56が配置されている。ペルチェ素
子54自体は適当な放熱手段(図示せず)によって冷却
される。又、光電子増倍管50、光入射窓52及び冷却
ブロック56は、図のような形状のボックス58内に収
容され、ボックス58の光入射窓52に隣接する部分に
はリング状のヒータ60が取付けられており、このヒー
タ60でもって光入射窓52が加温される。
A specific example of this detecting device is shown in FIG. In this detection device, a head-on type photomultiplier tube 50 is used, and a thin vacuum cell type light incident window 52 is installed in front of the photocathode 50a of the multiplier tube 50 as an adiabatic light incident window. In order to cool the photocathode 50a of the photomultiplier tube 50, an annular cooling block 56 provided with a Peltier element 54 is arranged around the multiplier tube 50. The Peltier element 54 itself is cooled by a suitable heat radiating means (not shown). Further, the photomultiplier tube 50, the light incident window 52, and the cooling block 56 are housed in a box 58 having a shape as shown in the figure, and a ring-shaped heater 60 is provided in a portion of the box 58 adjacent to the light incident window 52. It is attached, and the heater 60 heats the light incident window 52.

【0004】このような検出装置では、試料70から放
射される拡散光Lは、光入射窓52を透過して、光電子
増倍管50の光電面50aに入射し、増倍管50で電気
信号に変換される。ところで、この検出装置では、雑音
のレベルを下げるために光電子増倍管50は通常0℃以
下まで冷却されるのに対し、試料70は通常室温程度に
保たれる。このため、増倍管50の光電面50aと試料
70との間には40℃以上もの温度差が生じる。従っ
て、光入射窓52の光電面50aに対面する面と試料7
0側の光入射窓面52aとの間にも温度差が生じ、光入
射窓面52aには結露が生じるが、この結露はヒータ6
0で光入射窓52(特に光入射窓面52a)を加温する
ことで防止される。なお、光入射窓面52aの結露防止
には、上記ヒータによる加温の他に、乾燥空気や乾燥窒
素ガス等を光入射窓面52aに強制的に吹き付けること
も行われている。
In such a detection device, the diffused light L emitted from the sample 70 passes through the light entrance window 52, enters the photocathode 50a of the photomultiplier tube 50, and is an electric signal in the multiplier tube 50. Is converted to. By the way, in this detector, the photomultiplier tube 50 is normally cooled to 0 ° C. or lower in order to reduce the noise level, while the sample 70 is usually kept at about room temperature. Therefore, a temperature difference of 40 ° C. or more occurs between the photocathode 50 a of the multiplier 50 and the sample 70. Therefore, the surface of the light incident window 52 facing the photocathode 50a and the sample 7
A temperature difference also occurs between the light incident window surface 52a on the 0 side and dew condensation occurs on the light incident window surface 52a.
It is prevented by heating the light incident window 52 (especially the light incident window surface 52a) at 0. In addition, in order to prevent dew condensation on the light incident window surface 52a, in addition to the heating by the heater, dry air, dry nitrogen gas, or the like is forcibly blown onto the light incident window surface 52a.

【0005】又、光入射窓面52aの結露を防止するた
めの別の対策として、光入射窓52の厚さを具体的には
25〜50mm程度に厚くすることも実施されている
が、この場合には、結露は少なくなるが、光電面50a
と試料70との距離が長くなり、増倍管50の光電面5
0aが試料70に対して張る立体角が小さくなって、微
弱光の検出感度が低下するという別の問題がある。
Further, as another measure for preventing dew condensation on the light incident window surface 52a, the thickness of the light incident window 52 is specifically increased to about 25 to 50 mm. In this case, dew condensation is reduced, but the photocathode 50a
And the sample 70 become longer, and the photocathode 5 of the multiplier tube 50 increases.
There is another problem that the solid angle of 0a with respect to the sample 70 becomes small and the detection sensitivity of weak light decreases.

【0006】[0006]

【発明が解決しようとする課題】上記のように、真空セ
ル型光入射窓52の厚みを大きくした場合、光入射窓面
52aの結露は減少するが、光電子増倍管50の光電面
50aが試料70に対して張る立体角が小さくなるた
め、ケミルミネッセンスや生物フォトン等の微弱な光の
検出感度が低下する。
As described above, when the thickness of the vacuum cell type light incident window 52 is increased, the dew condensation on the light incident window surface 52a is reduced, but the photocathode 50a of the photomultiplier tube 50 is reduced. Since the solid angle formed with respect to the sample 70 is small, the sensitivity of detecting weak light such as chemiluminescence and biological photons is reduced.

【0007】逆に、試料70に対して張る立体角を大き
くするために光入射窓52の厚みを小さくすると、光入
射窓面52aに結露が生じ易くなるため、図2に示すよ
うにヒータ60で光入射窓52を加温したり、光入射窓
面52aに乾燥空気等を吹き付けたりする必要がある。
このため、検出装置の構造が複雑で大型になり、その操
作や維持が煩雑になり、しかも装置が高価になるという
問題点がある。
On the contrary, if the thickness of the light incident window 52 is reduced in order to increase the solid angle formed with respect to the sample 70, dew condensation easily occurs on the light incident window surface 52a, so that the heater 60 as shown in FIG. Therefore, it is necessary to heat the light incident window 52 and blow dry air or the like on the light incident window surface 52a.
Therefore, there is a problem that the structure of the detection device becomes complicated and large, the operation and maintenance thereof become complicated, and the device becomes expensive.

【0008】従って、本発明は、上記問題点に着目して
なされたもので、光電子増倍管の冷却機能を備えた検出
装置において、単純で小型な構造、容易な操作・維持、
及び低価格を実現する冷却式光検出装置を提供すること
を目的とする。
Therefore, the present invention has been made by paying attention to the above problems, and in a detector having a cooling function for a photomultiplier tube, a simple and compact structure, easy operation and maintenance,
It is also an object of the present invention to provide a cooled photodetector that realizes low cost.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明の冷却式光検出装置は、試料からの光が入射
する光入射窓と、光入射窓を透過した光を検出する光電
変換素子と、光電変換素子の光電面を冷却する冷却素子
と、冷却素子で発生した熱を放熱する放熱手段とを備え
る冷却式光検出装置において、前記冷却素子の熱を光入
射窓の光入射窓面に伝達するための熱伝達手段を設けた
ことを特徴とする。
In order to achieve the above-mentioned object, a cooling type photodetector of the present invention is provided with a photoelectric entrance for detecting a light incident window on which light from a sample is incident and a light transmitted through the light incident window. In a cooling type photodetector comprising a conversion element, a cooling element for cooling the photoelectric surface of the photoelectric conversion element, and a heat dissipation means for dissipating the heat generated in the cooling element, the heat of the cooling element is incident on the light incident window. It is characterized in that a heat transfer means for transferring to the window surface is provided.

【0010】この検出装置では、熱伝達手段を備えてい
るため、冷却素子(ペルチェ素子)で発生した熱が光入
射窓面に伝わり、光入射窓面が加温されて、その結露が
防止される。このため、光入射窓面の結露を防止するた
めに従来使用されていたヒータや乾燥空気等の吹き付け
機構は不要である。従って、結露防止機構が単純で小型
な構造で済み、その操作性が良くなり、維持もし易く、
その上低コストになる。
Since this detection device is provided with the heat transfer means, the heat generated in the cooling element (Peltier element) is transmitted to the light incident window surface and the light incident window surface is heated to prevent dew condensation. It For this reason, a heater and a blowing mechanism of dry air, which have been conventionally used to prevent dew condensation on the light incident window surface, are unnecessary. Therefore, the dew condensation prevention mechanism has a simple and compact structure, its operability is improved, and it is easy to maintain.
In addition, the cost is low.

【0011】上記特徴的な構成に加えて、光入射窓の側
壁面を光反射面とすることにより、試料から放射される
拡散光が側壁面で反射されて、光電子増倍管の光電面に
入射するので、拡散光の光電面への入射効率が高まる。
そのため、たとえ光入射窓として厚みのある真空セル型
光入射窓を使用しても、ケミルミネッセンスや生物フォ
トン等の微弱光の検出感度が低下しない。
In addition to the above characteristic structure, by making the side wall surface of the light incident window a light reflecting surface, the diffused light emitted from the sample is reflected by the side wall surface and becomes a photo surface of the photomultiplier tube. Since the light is incident, the incident efficiency of the diffused light on the photocathode is increased.
Therefore, even if a thick vacuum cell type light incident window is used as the light incident window, the detection sensitivity for weak light such as chemiluminescence and biological photons does not decrease.

【0012】[0012]

【実施例】以下、本発明の冷却式光検出装置を実施例に
基づいて説明する。その一実施例に係る装置を図1に示
す。この検出装置では、光電変換素子である光電子増倍
管10の光電面10aの前方に、断熱型光入射窓として
光透過性の材料(例えば石英)からなる円筒形の真空セ
ル型光入射窓12が設置され、光入射窓12の側壁面1
2bにはアルミニウム等の光反射性物質がコーティング
され、側壁面12bは光反射面(鏡面)になっている。
The cooling type photodetector of the present invention will be described below with reference to examples. A device according to one embodiment is shown in FIG. In this detector, a cylindrical vacuum cell type light incident window 12 made of a light transmissive material (eg, quartz) is used as an adiabatic light incident window in front of the photoelectric surface 10a of the photomultiplier tube 10 which is a photoelectric conversion element. Is installed and the side wall surface 1 of the light entrance window 12 is installed.
2b is coated with a light reflecting substance such as aluminum, and the side wall surface 12b is a light reflecting surface (mirror surface).

【0013】光電子増倍管10の光電面10aを中心と
して増倍管10及び光入射窓12の一部分は、磁気シー
ルドチューブ14で包囲され、このチューブ14上に環
状の冷却ブロック16が設けられ、冷却ブロック16に
冷却素子としてのペルチェ素子18の低温側が取付けら
れている。従って、光電面10aは、冷却ブロック16
を介してペルチェ素子18によって室温以下に冷却され
る。
A portion of the photomultiplier tube 10 and the light incident window 12 around the photocathode 10a of the photomultiplier tube 10 is surrounded by a magnetic shield tube 14, and an annular cooling block 16 is provided on the tube 14. A low temperature side of a Peltier element 18 as a cooling element is attached to the cooling block 16. Therefore, the photocathode 10a is the cooling block 16
And is cooled down to room temperature or lower by the Peltier device 18 via.

【0014】光電子増倍管10、光入射窓12、冷却ブ
ロック16、及びペルチェ素子18等は、図のような形
状のボックス20内に収容され、光入射窓12がボック
ス20に固定される。又、ボックス20内の空間(図中
の斜線領域)には、断熱材として発泡ウレタン22が充
填されている。そして、ペルチェ素子18で発生した熱
を放熱するための放熱手段として放熱フィン32を有す
る放熱板30が、ペルチェ素子18の高温側に接してボ
ックス20に一体に取付けられ、更に放熱フィン32を
強制的に空冷するためのファン34が配備されている。
この放熱手段により、ペルチェ素子18で発生した熱の
大部分は、放熱板30、放熱フィン32及びファン34
によって装置外部に放散される。放熱と併行して、放熱
板30及びボックス20で構成される熱伝達手段によっ
て、ペルチェ素子18の熱の一部分は、熱伝達手段を通
じて光入射窓12に伝達され、光入射窓12の光入射窓
面12aが温められる。
The photomultiplier tube 10, the light incident window 12, the cooling block 16, the Peltier element 18, etc. are housed in a box 20 having the shape shown in the figure, and the light incident window 12 is fixed to the box 20. Further, the space inside the box 20 (hatched area in the figure) is filled with urethane foam 22 as a heat insulating material. A heat radiating plate 30 having a heat radiating fin 32 as a heat radiating means for radiating the heat generated in the Peltier element 18 is attached integrally to the box 20 in contact with the high temperature side of the Peltier element 18, and the heat radiating fin 32 is further forced. A fan 34 for electrically cooling the air is provided.
Most of the heat generated in the Peltier element 18 by this heat dissipation means is the heat dissipation plate 30, the heat dissipation fins 32, and the fan 34.
Is dissipated outside the device. Along with the heat dissipation, a part of the heat of the Peltier element 18 is transferred to the light incident window 12 by the heat transfer means composed of the heat dissipation plate 30 and the box 20, and the light entrance window 12 of the light entrance window 12 is transferred. The surface 12a is warmed.

【0015】なお、光電子増倍管10の後部にはソケッ
ト40が付設され、ソケット40には信号線や高圧供給
線等の電線42が接続され、電線42とボックス20と
の隙間には水分の浸入を防ぐために気密封止44が施さ
れている。上記のように構成した検出装置では、試料7
0から放射される拡散光は、真空セル型光入射窓12の
光入射窓面12aから光入射窓12内に入射する。拡散
光のうち、光軸となす角度が小さい光線L1は、光入射
窓12内を通って光電子増倍管10の光電面10aに直
接入射する。又、光軸となす角度が大きい光線L2は、
光入射窓12の光反射性の側壁面12bで反射されてか
ら、光電面10aに入射する。いずれにしても光線L
1,L2は、光電子増倍管10で検出され、電気信号に
変換される。
A socket 40 is attached to the rear portion of the photomultiplier tube 10, an electric wire 42 such as a signal line or a high-voltage supply line is connected to the socket 40, and a water gap exists between the electric wire 42 and the box 20. An airtight seal 44 is provided to prevent entry. In the detection device configured as described above, the sample 7
The diffused light emitted from 0 enters the light incident window 12 through the light incident window surface 12 a of the vacuum cell type light incident window 12. Of the diffused light, the light ray L1 having a small angle with the optical axis passes through the light entrance window 12 and directly enters the photocathode 10a of the photomultiplier tube 10. Further, the light ray L2 having a large angle with the optical axis is
The light is reflected by the light-reflective side wall surface 12b of the light incident window 12 and then enters the photocathode 10a. In any case ray L
1, L2 are detected by the photomultiplier tube 10 and converted into electric signals.

【0016】この検出装置が作動している間、光電子増
倍管10の光電面10aはペルチェ素子18で冷却され
ているため、雑音レベルが低く抑えられる。一方、光入
射窓12の光入射窓面12aは、放熱板30とボックス
20を通じて伝達されるペルチェ素子18からの熱によ
って加温されるため、光電面10aと試料70との間に
温度差があっても、光入射窓面12aには結露が発生し
ない。更に、光入射窓12の側壁面12bが光反射面で
あるから、試料70からの拡散光が光電面10aに効率
良く導かれる。即ち、光入射窓12の厚さを厚くして、
光電子増倍管10の光電面10aが試料70に対して張
る立体角が小さくなっても検出感度は低下せず、微弱光
でも高感度で検出することができる。
While the detector is operating, the photocathode 10a of the photomultiplier tube 10 is cooled by the Peltier element 18, so that the noise level can be kept low. On the other hand, since the light incident window surface 12a of the light incident window 12 is heated by the heat from the Peltier element 18 transmitted through the heat dissipation plate 30 and the box 20, there is a temperature difference between the photocathode 10a and the sample 70. Even if there is, dew condensation does not occur on the light incident window surface 12a. Further, since the side wall surface 12b of the light incident window 12 is a light reflecting surface, the diffused light from the sample 70 is efficiently guided to the photocathode 10a. That is, by increasing the thickness of the light incident window 12,
Even if the solid angle formed by the photocathode 10a of the photomultiplier tube 10 with respect to the sample 70 becomes small, the detection sensitivity does not decrease, and even weak light can be detected with high sensitivity.

【0017】なお、上記実施例では、断熱型光入射窓と
して真空セル型光入射窓を採用したが、例えば熱伝導度
の小さい透明プラスチックブロックの側壁面を光反射面
とした断熱型光入射窓を使用することも可能である。
又、上記実施例では、断熱型光入射窓は円筒形である
が、拡散光の集光性を向上させるために回転楕円形であ
っても良い。更には、上述のファンを用いた強制空冷の
他に、自然空冷や水冷でも構わない。
Although the vacuum cell type light incident window is adopted as the heat insulating type light incident window in the above-mentioned embodiment, for example, the heat insulating type light incident window having the side wall surface of the transparent plastic block having a small thermal conductivity as the light reflecting surface is used. It is also possible to use
Further, in the above embodiment, the adiabatic light incident window has a cylindrical shape, but it may have a spheroidal shape in order to improve the light condensing property of the diffused light. Further, in addition to the forced air cooling using the fan, natural air cooling or water cooling may be used.

【0018】[0018]

【発明の効果】本発明の冷却式光検出装置は、以上説明
したように冷却素子の熱を光入射窓の光入射窓面に伝達
するための熱伝達手段を備えるので、下記の効果を有す
る。 (1)冷却素子からの熱によって光入射窓の光入射窓面
が加温されるので、光入射窓面の結露を防止することが
できる。 (2)光入射窓の光入射窓面の結露を防ぐために、ヒー
タを設置したり、乾燥空気等を吹き付ける機構を設けた
りする必要がなく、結露防止機能を有するにもかかわら
ず、装置の構造が単純で小型になり、装置の操作や維持
も簡単になり、しかも装置が低価格となる。 (3)光入射窓の側壁面を光反射面とすることで、試料
からの拡散光が効率良く光電変換素子に入射し、光検出
感度が向上する。 (4)誰でも使用可能なケミルミネッセンス検出装置等
を提供することができる。
As described above, the cooling type photodetector of the present invention has the heat transfer means for transferring the heat of the cooling element to the light entrance window surface of the light entrance window, and therefore has the following effects. . (1) Since the light incident window surface of the light incident window is heated by the heat from the cooling element, dew condensation on the light incident window surface can be prevented. (2) In order to prevent dew condensation on the light incident window surface of the light incident window, there is no need to install a heater or a mechanism for blowing dry air, etc. Is simple and small, the device is easy to operate and maintain, and the device is low-priced. (3) By using the side wall surface of the light incident window as a light reflecting surface, the diffused light from the sample is efficiently incident on the photoelectric conversion element, and the light detection sensitivity is improved. (4) It is possible to provide a chemiluminescence detection device that can be used by anyone.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る検出装置の要部断面図
である。
FIG. 1 is a cross-sectional view of essential parts of a detection device according to an embodiment of the present invention.

【図2】従来例に係る検出装置の要部断面図である。FIG. 2 is a sectional view of a main part of a detection device according to a conventional example.

【符号の説明】[Explanation of symbols]

10 光電子増倍管(光電変換素子) 10a 光電面 12 真空セル型光入射窓 12a 光入射窓面 12b 光反射性の側壁面 18 ペルチェ素子(冷却素子) 20 ボックス 30 放熱板 70 試料 L1,L2 拡散光 10 Photomultiplier tube (photoelectric conversion element) 10a Photoelectric surface 12 Vacuum cell type light incident window 12a Light incident window surface 12b Light-reflecting side wall surface 18 Peltier element (cooling element) 20 Box 30 Heat sink 70 Sample L1, L2 Diffusion light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料からの光が入射する光入射窓と、光入
射窓を透過した光を検出する光電変換素子と、光電変換
素子の光電面を冷却する冷却素子と、冷却素子で発生し
た熱を放熱する放熱手段とを備える冷却式光検出装置に
おいて、 前記冷却素子の熱を光入射窓の光入射窓面に伝達するた
めの熱伝達手段を設けたことを特徴とする冷却式光検出
装置。
1. A light incident window on which light from a sample is incident, a photoelectric conversion element for detecting light transmitted through the light incident window, a cooling element for cooling a photoelectric surface of the photoelectric conversion element, and a cooling element generated. A cooling-type photodetector comprising: a heat-dissipating means for dissipating heat, wherein a heat-transfer means for transferring the heat of the cooling element to a light-incident window surface of the light-incident window is provided. apparatus.
【請求項2】前記光入射窓の側壁面は光反射面であるこ
とを特徴とする請求項1記載の冷却式光検出装置。
2. The cooling type photodetector according to claim 1, wherein the side wall surface of the light incident window is a light reflecting surface.
JP23908592A 1992-09-08 1992-09-08 Cooling type photodetector Pending JPH0688747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23908592A JPH0688747A (en) 1992-09-08 1992-09-08 Cooling type photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23908592A JPH0688747A (en) 1992-09-08 1992-09-08 Cooling type photodetector

Publications (1)

Publication Number Publication Date
JPH0688747A true JPH0688747A (en) 1994-03-29

Family

ID=17039603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23908592A Pending JPH0688747A (en) 1992-09-08 1992-09-08 Cooling type photodetector

Country Status (1)

Country Link
JP (1) JPH0688747A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059186A1 (en) * 1998-05-13 1999-11-18 Hamamatsu Photonics K. K. Electronic tube
WO2004013590A1 (en) * 2002-08-01 2004-02-12 Hamamatsu Photonics K.K. Optical sensor
JP2004163272A (en) * 2002-11-13 2004-06-10 Hamamatsu Photonics Kk Cooled photodetector
JP2007333653A (en) * 2006-06-16 2007-12-27 Hamamatsu Photonics Kk Radiation detection apparatus
JP2011080772A (en) * 2009-10-02 2011-04-21 Asahi Kasei Electronics Co Ltd Infrared sensor and method for manufacturing the same
JP2012255730A (en) * 2011-06-09 2012-12-27 Azbil Corp Flame sensor
JP2014522093A (en) * 2011-08-16 2014-08-28 ライカ マイクロシステムス ツェーエムエス ゲーエムベーハー Detection device
US20160284525A1 (en) * 2015-03-23 2016-09-29 Molecular Devices, Llc Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059186A1 (en) * 1998-05-13 1999-11-18 Hamamatsu Photonics K. K. Electronic tube
WO2004013590A1 (en) * 2002-08-01 2004-02-12 Hamamatsu Photonics K.K. Optical sensor
EP1541979A1 (en) * 2002-08-01 2005-06-15 Hamamatsu Photonics K. K. Optical sensor
JPWO2004013590A1 (en) * 2002-08-01 2006-09-21 浜松ホトニクス株式会社 Photodetector
EP1541979A4 (en) * 2002-08-01 2008-04-23 Hamamatsu Photonics Kk Optical sensor
JP2004163272A (en) * 2002-11-13 2004-06-10 Hamamatsu Photonics Kk Cooled photodetector
US6818885B2 (en) 2002-11-13 2004-11-16 Hamamatsu Photonics K.K. Photodetector
JP2007333653A (en) * 2006-06-16 2007-12-27 Hamamatsu Photonics Kk Radiation detection apparatus
JP2011080772A (en) * 2009-10-02 2011-04-21 Asahi Kasei Electronics Co Ltd Infrared sensor and method for manufacturing the same
JP2012255730A (en) * 2011-06-09 2012-12-27 Azbil Corp Flame sensor
JP2014522093A (en) * 2011-08-16 2014-08-28 ライカ マイクロシステムス ツェーエムエス ゲーエムベーハー Detection device
US20160284525A1 (en) * 2015-03-23 2016-09-29 Molecular Devices, Llc Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods
WO2016153864A1 (en) * 2015-03-23 2016-09-29 Molecular Devices, Llc Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods
CN107466362A (en) * 2015-03-23 2017-12-12 分子装置有限公司 Reduce the photodetector and relevant device and method based on cooling type photomultiplier condensed
US9892893B2 (en) * 2015-03-23 2018-02-13 Molecular Devices, Llc Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods
JP2018509629A (en) * 2015-03-23 2018-04-05 モレキュラー デバイシーズ, エルエルシー Cooled photomultiplier tube-based photodetector with reduced condensation and associated apparatus and method
CN107466362B (en) * 2015-03-23 2020-09-08 分子装置有限公司 Cooled photomultiplier-based light detector with reduced condensation and related apparatus and method

Similar Documents

Publication Publication Date Title
EP0403880A2 (en) Radiation shield for thermoelectrically cooled infrared detectors
US6818885B2 (en) Photodetector
JPH0688747A (en) Cooling type photodetector
US5041727A (en) Spectrophotometer with near infrared radiation sensor having an improved sensitivity
JP2763980B2 (en) Optical semiconductor module
JP3884616B2 (en) Photodetector and imaging device using the same
JPH10146332A (en) X-ray ct device
JP2000511280A (en) Infrared optical system
EP0595468B1 (en) Image device
EP1423668A1 (en) Retro-reflector warm stop for uncooled thermal imaging cameras and method of using the same
US4791299A (en) Infrared ray sensing device
WO1999059186A1 (en) Electronic tube
JPS5867232A (en) Light source apparatus
JPH0979905A (en) Emission spectrochemical analysis device
JP3021388B2 (en) A device that converts infrared images into visible light images
JP3761992B2 (en) Infrared light source device
JPS61278265A (en) Facsimile sensor unit
US5698853A (en) Infrared image pickup apparatus
CN216559001U (en) Limit reflection type optical fiber sensor
JP2007333653A (en) Radiation detection apparatus
JPS60243585A (en) Scintillation detector
JPH08193880A (en) Infrared detector
JPH0946487A (en) Original reader
JPH0968464A (en) Emission spectrophotometer
JPH03115817A (en) Electron-cooling type detector