JPS61277842A - Solenoid valve control circuit - Google Patents

Solenoid valve control circuit

Info

Publication number
JPS61277842A
JPS61277842A JP11922685A JP11922685A JPS61277842A JP S61277842 A JPS61277842 A JP S61277842A JP 11922685 A JP11922685 A JP 11922685A JP 11922685 A JP11922685 A JP 11922685A JP S61277842 A JPS61277842 A JP S61277842A
Authority
JP
Japan
Prior art keywords
solenoid
solenoid valve
temperature
control circuit
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11922685A
Other languages
Japanese (ja)
Inventor
Takeshi Nakane
中根 武司
Takao Nonoyama
野々山 孝夫
Nobuaki Kitano
北野 信明
Mitsuo Kawai
河合 満雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP11922685A priority Critical patent/JPS61277842A/en
Publication of JPS61277842A publication Critical patent/JPS61277842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To perform warming operation approximately matching with the temperature conditions by employing the variation of resistance due to self heating through power supply having the temperature of internal-combustion engine detected through positive characteristic thermister as the initial level for power supply control of solenoid valve. CONSTITUTION:Solenoid valve control circuit is comprising a positive characteristic thermister PH and a solenoid L of solenoid valve 1 to be controlled by the current through said thermister PH. Transistor Q and the solenoid L are inserted in series where switching operation of transistor Q will cause motion of movable core thus to open/close the solenoid valve 1. Diode D is the flywheel diode for absorbing the counter electromotive force of the solenoid L. Consequently, warming operation approximately matching with the temperature conditions can be achieved.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は寒冷時に自動車用内燃機関を駆動する場合の、
@機運転制御に使用する電磁弁の制御回路に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to driving an internal combustion engine for an automobile in cold weather.
This relates to a control circuit for a solenoid valve used to control machine operation.

[従来の技術] 従来のこの種の電磁弁の制御回路の技術として実開昭5
1=53313号公報を挙げることができる。
[Prior art] As a conventional control circuit technology for this type of solenoid valve,
1=53313 can be mentioned.

上記技術は、自動車用内燃機関の吸気通路の開度を絞り
弁の補助的に制御する感温弁と、回路開成時に前記感温
弁を高温ヒーターで加熱する第1電気回路と、回路開成
時に前記感温弁を低温ヒーターで加熱する第2電気回路
と、大気が所定温度以下で上記第1電気回路を閉成させ
、大気が所定温度以上で上記第2電気回路を開成させる
大気温度切換スイッチとを設け、大気温度によりヒータ
ー容量を制御することを特徴とするものである。
The above technology includes a temperature-sensitive valve that controls the opening degree of the intake passage of an automobile internal combustion engine in an auxiliary manner to a throttle valve, a first electric circuit that heats the temperature-sensitive valve with a high-temperature heater when the circuit is opened, and a first electric circuit that heats the temperature-sensing valve with a high temperature heater when the circuit is opened. a second electric circuit that heats the temperature-sensitive valve with a low-temperature heater; and an atmospheric temperature changeover switch that closes the first electric circuit when the atmosphere is below a predetermined temperature and opens the second electric circuit when the atmosphere is above a predetermined temperature. The heater capacity is controlled according to the atmospheric temperature.

即ち、上記技術は、内燃機関が置かれた状態の大気温度
を任意の温度に設定し、その設定温度以上と以下とによ
って、内燃機関の吸気通路のバイパス路の開路状態を2
段階に変化させるものである。
That is, in the above technology, the atmospheric temperature under which the internal combustion engine is placed is set to an arbitrary temperature, and the open state of the bypass passage of the intake passage of the internal combustion engine is changed to two depending on whether the temperature is above or below the set temperature.
It changes in stages.

[発明が解決しようとする問題点] ゛しかじ、寒冷時の自動車用内燃機関の暖機運転は、そ
の内燃機関の冷却温度に応じて、第3図の如(暖機運転
時間を反比例させるのを理想°としている。したがって
、従来例の如く2段階制御によって、内燃機関始動時の
燃料の供給量を変化させることは、内燃機関の暖機運転
が必ずしもその温度条件と合致した制御とはならなかっ
た。
[Problems to be Solved by the Invention] However, the warm-up operation of an automobile internal combustion engine in cold weather is performed according to the cooling temperature of the internal combustion engine, as shown in Fig. 3 (the warm-up operation time is inversely proportional to Therefore, changing the amount of fuel supplied at the time of starting the internal combustion engine using two-stage control as in the conventional example does not necessarily mean that the warm-up operation of the internal combustion engine matches the temperature conditions. did not become.

それに対応する手段として、温度条件から暖機運転する
時間を得る回路を、C−R遅延回路によって構成するこ
とが考えられる。C−R遅延回路によって暖機運転時間
を得るには、その時限を数十秒から数分まで必要となる
から、時定数の関係で、コンデンサを100〔μF〕の
容暑のものを用いたとしても、抵抗値が1 (MΩ)以
上となり、その抵抗値はMΩの単位となる。しかし、車
輌の電気回路においてMΩ単位の抵抗値を使用すること
は、他の絶縁抵抗の低下による特性の変化が問題になり
、使用実態に合わなかった。
As a means for dealing with this, it is conceivable to construct a circuit that obtains the warm-up operation time from the temperature condition using a C-R delay circuit. In order to obtain the warm-up time using the C-R delay circuit, the time limit must range from several tens of seconds to several minutes, so due to the time constant, a 100 [μF] heat-resistant capacitor was used. Even if the resistance value is 1 (MΩ) or more, the resistance value is in the unit of MΩ. However, using a resistance value in the MΩ unit in a vehicle's electrical circuit is not suitable for actual use because of the problem of changes in characteristics due to reductions in other insulation resistances.

また、上記問題点を回避する手段として、集積回路(I
C)を用いて、ディジタル的に信号処理することも考え
られる。しかし、一般に販売されているICの保証温度
は低く、本装置の如く、エンジンルーム内で用いるもの
では必ずしも好ましくなかった。
In addition, as a means to avoid the above problems, integrated circuits (I
It is also conceivable to perform digital signal processing using C). However, the guaranteed temperature of commonly sold ICs is low, which is not necessarily preferable for use in an engine room like the present device.

そこで、本発明は、上記問題点を除去して、車輌の絶縁
抵抗によってその特性の変化がなく、がっ、温度条件に
略合致した暖機運転ができる電磁弁111m回路の提供
を目的とするものである。
SUMMARY OF THE INVENTION Therefore, the present invention aims to eliminate the above-mentioned problems and provide a solenoid valve 111m circuit that does not change its characteristics due to the insulation resistance of the vehicle and can perform warm-up operation that substantially matches the temperature conditions. It is something.

[問題点を解決するための手段] 本発明にかかる電磁弁制御回路は、正特性サーミスタと
、前記正特性サーミスタの電流で制御される電磁弁のソ
レノイドを具備するものである。
[Means for Solving the Problems] A solenoid valve control circuit according to the present invention includes a positive temperature coefficient thermistor and a solenoid of a solenoid valve controlled by the current of the positive coefficient thermistor.

[作用] 斯くの如く構成することによって、正特性サーミスタに
より大気の温度検出を行わせ、それを暖機運転の初期値
とし、前記正特性サーミスタの通電による自己発熱によ
り所定の抵抗値に至るまでの時限を、内燃機関の暖機運
転の特性と一致・させるべく設定し、前記正特性サーミ
スタの自己発熱に伴う抵抗値変化によって、自動車用内
燃機関の吸気を制御する電磁弁のソレノイドの通電電流
を制御すれば、温度条件に略合致した暖機運転が可能と
なる。
[Function] By configuring as described above, the temperature of the atmosphere is detected by the PTC thermistor, and this is used as the initial value for warm-up operation, until the predetermined resistance value is reached due to self-heating due to the energization of the PTC thermistor. The time limit is set to match the warm-up characteristics of the internal combustion engine, and the energizing current of the solenoid of the solenoid valve that controls the intake air of the automobile internal combustion engine is determined by the change in resistance value due to self-heating of the positive temperature coefficient thermistor. By controlling the temperature, it is possible to perform warm-up operation that substantially matches the temperature conditions.

[実施例] 第1図は、本発明の第一実施例の電磁弁制御回路である
。前記電磁弁制御回路によって制御される電磁弁は、第
2図の電磁弁の断面図に示す如く構成されている。
[Embodiment] FIG. 1 shows a solenoid valve control circuit according to a first embodiment of the present invention. The solenoid valve controlled by the solenoid valve control circuit is constructed as shown in the sectional view of the solenoid valve in FIG.

まず、第2図の電磁弁について説明する。First, the solenoid valve shown in FIG. 2 will be explained.

図において、電磁弁1は樹脂性の非磁性体ボビン2にソ
レノイドLを巻回し、前記ボビン2に樹脂性のカバー4
を固定させ、前記ボビン2の中心孔に、固定鉄心5と可
動鉄心6とを配設する。
In the figure, a solenoid valve 1 includes a solenoid L wound around a non-magnetic resin bobbin 2, and a resin cover 4 wrapped around the bobbin 2.
is fixed, and a fixed iron core 5 and a movable iron core 6 are arranged in the center hole of the bobbin 2.

前記樹脂性のカバー4には、その上部にプリント基板1
2を収容し、収容した空間部にはエポキシ樹脂が充填さ
れる。前記プリント基板12に装着した電磁弁制御回路
を構成する抵抗R1及びR2、トランジスタQ等の回路
とソレノイドLとの間は接続片14によって、電気的に
接続される。
The resin cover 4 has a printed circuit board 1 on top thereof.
2 is accommodated, and the accommodated space is filled with epoxy resin. A connection piece 14 electrically connects the solenoid L to circuits such as resistors R1 and R2 and the transistor Q that constitute the electromagnetic valve control circuit mounted on the printed circuit board 12.

次に、′R電磁弁制御回路第一実施例について説明する
Next, a first embodiment of the 'R solenoid valve control circuit will be described.

図において、正特性サーミスタP I−1は第4図の抵
抗温度特性図にその特性を示すように、温度上昇に伴い
、そ、の抵抗値が増加するものである。具体的には正特
性サーミスタPHはTDK製PO−DまたはR3−D等
を使用する。前記正特性サーミスタPHには直列抵抗R
1及びR2が接続されている。
In the figure, the resistance value of the positive characteristic thermistor P I-1 increases as the temperature rises, as shown in the resistance-temperature characteristic diagram of FIG. 4. Specifically, as the positive characteristic thermistor PH, TDK's PO-D or R3-D is used. A series resistor R is connected to the positive characteristic thermistor PH.
1 and R2 are connected.

前記抵抗R1は主に正特性サーミスタPHに流れる電流
値を決定するものであり、抵抗R2はトランジスタQの
閾値電位を設定する設定用の抵抗である。
The resistor R1 mainly determines the current value flowing through the positive temperature coefficient thermistor PH, and the resistor R2 is a setting resistor that sets the threshold potential of the transistor Q.

前記トランジスタQと電磁弁1のソレノイドLとは直列
に挿入されており、トランジスタQのスイッチング動作
により、可動鉄心を移動させて電磁弁1を開閉する。な
お、ダイオードDは、ソレノイドLの送起電力を吸収す
るフライホイール用のダイオードである。
The transistor Q and the solenoid L of the solenoid valve 1 are inserted in series, and the switching operation of the transistor Q moves the movable iron core to open and close the solenoid valve 1. Note that the diode D is a flywheel diode that absorbs the electromotive force sent from the solenoid L.

前記構成において、ソレノイドしに通電すると、固定鉄
心5、可動鉄心6及びヨーク7からなる磁気回路に磁束
が発生し、可動鉄心6と固定鉄心5との間に吸引力が生
じ、可動鉄心6をスプリング8の附勢力に抗して固定鉄
心5に吸着させる。この結果、インティクマニホールド
に連通した入口9を負圧作動弁に連通ずる出口10に導
通され、大気路11と出口10との導通を遮断させる。
In the above configuration, when the solenoid is energized, magnetic flux is generated in the magnetic circuit consisting of the fixed core 5, the movable core 6, and the yoke 7, and an attractive force is generated between the movable core 6 and the fixed core 5, causing the movable core 6 to It is attracted to the fixed iron core 5 against the urging force of the spring 8. As a result, the inlet 9 communicating with the intake manifold is communicated with the outlet 10 communicating with the negative pressure operated valve, and communication between the atmospheric passage 11 and the outlet 10 is cut off.

ここで、大気が特定の温度条件下で内燃機関を始動させ
るとき、まず、イグニッションスイッチSをオンとする
。内燃機関が冷却された状態にあるとき、正特性サーミ
スタPHの内部抵抗は小さく、抵抗R2の電圧降下が大
となり、トランジスタQをオンとする。トランジスタQ
のオンによって電磁弁1のソレノイドLが電源E’の電
流によって励磁される。これによって、可動鉄心6がス
プリング8の附勢力に抗して固定鉄心5に吸引され、イ
ンティクマニホールドに連通した入口9を負圧作動弁に
連通する出口10に導通され、大気路11と出口10と
の導通を遮断する。
Here, when starting the internal combustion engine under certain atmospheric temperature conditions, first, the ignition switch S is turned on. When the internal combustion engine is in a cooled state, the internal resistance of the positive temperature coefficient thermistor PH is small, and the voltage drop across the resistor R2 becomes large, turning on the transistor Q. transistor Q
When the solenoid L of the solenoid valve 1 is turned on, the solenoid L of the solenoid valve 1 is excited by the current from the power source E'. As a result, the movable core 6 is attracted to the fixed core 5 against the urging force of the spring 8, and the inlet 9 communicating with the intique manifold is connected to the outlet 10 communicating with the negative pressure operated valve, and the air passage 11 and the outlet 10 is cut off.

したがって、内燃機関の始動時にはスロットルバルブと
は独立した電磁弁1によって空燃比の比率を減少させる
Therefore, when starting the internal combustion engine, the air-fuel ratio is reduced by the electromagnetic valve 1 independent of the throttle valve.

正特性サーミスタPHは内燃機関を始動させた温度条件
からスタートして、内部抵抗の自己発熱により温度が上
昇する。正特性サーミスタPHが温度上昇すると、その
抵抗値が増加し、−抵抗R2の電圧降下を小さくする。
The temperature of the positive characteristic thermistor PH starts from the temperature condition under which the internal combustion engine is started, and the temperature rises due to self-heating of the internal resistance. When the temperature of the positive temperature coefficient thermistor PH increases, its resistance value increases, reducing the voltage drop across the -resistance R2.

抵抗R2の電圧降下が小さくなり、トランジスタQがタ
ーンオフすると、ソレノイドLが非励磁となり、電磁弁
1はインティクマニホールドに連通した入口9を閉じ、
負圧作動弁に連通ずる出口10と大気路11とが導通さ
れ、空燃比の比率を増加させる。
When the voltage drop across resistor R2 becomes small and transistor Q is turned off, solenoid L is de-energized and solenoid valve 1 closes inlet 9 communicating with the intique manifold.
The outlet 10 communicating with the negative pressure operated valve and the atmospheric passage 11 are communicated with each other to increase the air-fuel ratio.

このとき、正特性サーミスタPHの自己発熱による内部
抵抗の上昇が、トランジスタQのターンオフ時間を決定
することになり、その特性は第5図の特性図の如くなり
、内燃機関の暖機運転の特性とを一致させれば、その始
動性を良くすることができる。
At this time, the increase in internal resistance due to self-heating of the positive characteristic thermistor PH determines the turn-off time of the transistor Q, and its characteristics are as shown in the characteristic diagram in Figure 5, which is the characteristic of warm-up operation of the internal combustion engine. By matching these, the startability can be improved.

第6図は、本発明の第二実施例の電磁弁制御回路である
FIG. 6 shows a solenoid valve control circuit according to a second embodiment of the present invention.

図において、正特性サーミスタPH及びソレノイド上1
イグニツシヨンスイツチS、電源Eは第1図で示した第
一実施例と同一構成部品であり、その説明を省略する。
In the figure, the positive temperature coefficient thermistor PH and the solenoid 1
The ignition switch S and the power source E are the same components as in the first embodiment shown in FIG. 1, and their explanation will be omitted.

第4図の正特性サーミスタPHの特性図から判るように
、その温度が20℃から50℃になると、その内部抵抗
が100倍になっており、それをスイッチング素子とし
て使用することができる。
As can be seen from the characteristic diagram of the positive temperature coefficient thermistor PH in FIG. 4, when its temperature increases from 20° C. to 50° C., its internal resistance increases by 100 times, and it can be used as a switching element.

そこで、正特性サーミスタPHと電磁弁のソレノイドL
を直列に接続し、正特性サーミスタPHに自己発熱によ
る時限設定機能と、ソレノイドLをオン・オフするスイ
ッチング機能を持たせても、第1図と同一の動作を行わ
せることができる。
Therefore, the positive characteristic thermistor PH and the solenoid L of the solenoid valve
The same operation as shown in FIG. 1 can be achieved by connecting the positive temperature coefficient thermistor PH in series and giving the positive temperature coefficient thermistor PH a time setting function based on self-heating and a switching function for turning on and off the solenoid L.

なお、第二実施例では、第一実施例の電磁弁制御回路を
単純化したものであるが、第二実施例の特性サーミスタ
PHの電流を設定する抵抗R1及びR2に対して、並列
に抵抗を接続したり、更に、正特性サーミスタPHにも
抵抗を並列接続しても、正特性サーミスタPHがスイッ
チング動作に至る遅延時間を任意に変化させることがで
きる。
In the second embodiment, the solenoid valve control circuit of the first embodiment is simplified, but a resistor is connected in parallel to the resistors R1 and R2 that set the current of the characteristic thermistor PH of the second embodiment. By connecting a resistor in parallel to the positive temperature coefficient thermistor PH, the delay time until the positive coefficient thermistor PH reaches the switching operation can be arbitrarily changed.

上記のように、本発明の電磁弁制御回路は、内燃機関等
の近傍に配設しても、高温度に耐える正特性サーミスタ
及びソレノイドまたは、正特性サーミスタと抵抗、トラ
ンジスタ、ダイオードで構成することが、できるから、
はぼ−40℃から150℃の範囲で温度保証された素子
を用いることができ、その信頼性を向上させることがで
きる。
As mentioned above, the solenoid valve control circuit of the present invention can be configured with a positive temperature coefficient thermistor and a solenoid, or a positive coefficient thermistor, a resistor, a transistor, and a diode, which can withstand high temperatures even when placed near an internal combustion engine, etc. But, because it is possible,
It is possible to use an element whose temperature is guaranteed within the range of -40°C to 150°C, and its reliability can be improved.

また、正特性サーミスタの抵抗値が温度に対して急変し
、しかも、常温付近の正特性サーミスタの値によりスイ
ッチングさせるものであり、通常10(Ω)〜100(
Ω)の範囲であるから、エンジンルームの水かぶり等に
よる絶縁不良が生じても、それによる特性の変化が少な
く、誤動作が生じないから、信頼性の高い制御をするこ
とができる。
In addition, the resistance value of a positive temperature coefficient thermistor changes rapidly with temperature, and it is switched depending on the value of the positive coefficient thermistor near room temperature, and is usually 10 (Ω) to 100 (Ω).
Ω), even if an insulation failure occurs due to water fogging in the engine room, there will be little change in characteristics and malfunctions will not occur, making it possible to perform highly reliable control.

[発明の効果] 以上のように、本発明は正特性サーミスタによる内燃機
関の検出温度を初期値とし、通電による自己発熱に伴う
抵抗値変化を電磁弁の通電制御に用いたものであるから
、これを自動車の内燃機関の特性に略合致させれば、温
度条件に略合致した暖機運転ができる。
[Effects of the Invention] As described above, the present invention uses the detected temperature of the internal combustion engine by the positive temperature coefficient thermistor as the initial value, and uses the change in resistance value due to self-heating due to energization to control the energization of the solenoid valve. If this substantially matches the characteristics of the internal combustion engine of an automobile, warm-up operation that substantially matches the temperature conditions can be achieved.

また、本発明は正特性サーミスタとソレノイドをその構
成要素としており、高温度に耐えることができるから、
内燃機関等の近傍に配設することができる。そして、通
常の正特性サーミスタのスイッチングtIA域が、常温
付近の正特性サーミスタの値によりスイッチングさせる
ものであり、通常中抵抗値の範囲であるから、絶縁不良
が生じても、それによる特性の変化が少なく、誤動作が
生じないから、信頼性の高い制御をすることができる。
Furthermore, since the present invention uses a positive temperature coefficient thermistor and a solenoid as its constituent elements, it can withstand high temperatures.
It can be placed near an internal combustion engine or the like. Furthermore, the switching tIA range of a normal positive temperature coefficient thermistor is for switching based on the value of a positive coefficient thermistor near room temperature, and is usually in the range of medium resistance values, so even if an insulation failure occurs, the characteristics will not change due to it. Since there are few errors and malfunctions do not occur, highly reliable control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例の電磁弁制御回路、第2図
は第1図の!!弁制御回路によ゛りて制御される電磁弁
の断面図、第3図は暖機運転の理想特性図、第4図は正
特性サーミスタの特性図、第5図は第1図の電磁弁制御
回路による暖機運転の特性図、第6図は本発明の第二実
施例の電磁弁制御回路である。 図において、 1・・・電磁弁、 し・・・ソレノイド、 PH・・・正特性サーミスタ、 である。 なお、図中、同−符号及び同一記号は、同一または相当
部分を示す。 特許出願人 アイシン精機株式会社 く外1名)
Fig. 1 shows the solenoid valve control circuit of the first embodiment of the present invention, and Fig. 2 shows the same as Fig. 1! ! A cross-sectional view of the solenoid valve controlled by the valve control circuit, Fig. 3 is an ideal characteristic diagram for warm-up operation, Fig. 4 is a characteristic diagram of a positive characteristic thermistor, and Fig. 5 is the solenoid valve of Fig. 1. A characteristic diagram of warm-up operation by the control circuit, FIG. 6, is a solenoid valve control circuit according to a second embodiment of the present invention. In the figure, 1...Solenoid valve, 2...Solenoid, PH...Positive characteristic thermistor. In addition, in the figures, the same reference numerals and the same symbols indicate the same or equivalent parts. Patent applicant: Aisin Seiki Co., Ltd. (one person)

Claims (3)

【特許請求の範囲】[Claims] (1)自動車用内燃機関の吸気を制御する電磁弁と、前
記電磁弁を構成するソレノイドと、前記ソレノイドの電
流を制御する正特性サーミスタからなる自動車用内燃機
関の暖機運転制御装置において、前記正特性サーミスタ
を前記内燃機関の検出温度を初期値とし、通電による自
己発熱に伴う抵抗値変化を前記ソレノイドの通電制御に
用いたことを特徴とする電磁弁制御回路。
(1) A warm-up operation control device for an internal combustion engine for an automobile, which includes a solenoid valve that controls intake air of the internal combustion engine for an automobile, a solenoid that constitutes the solenoid valve, and a positive characteristic thermistor that controls the current of the solenoid. A solenoid valve control circuit characterized in that a positive characteristic thermistor is set to the detected temperature of the internal combustion engine as an initial value, and a change in resistance value due to self-heating due to energization is used to control energization of the solenoid.
(2)前記正特性サーミスタとソレノイドを直列接続し
て、前記ソレノイドの通電制御を行うことを特徴とする
特許請求の範囲第1項に記載の電磁弁制御回路。
(2) The electromagnetic valve control circuit according to claim 1, wherein the positive temperature coefficient thermistor and the solenoid are connected in series to control energization of the solenoid.
(3)前記正特性サーミスタとソレノイド間にスイッチ
ング素子を介在させて、前記ソレノイドの通電制御を行
うことを特徴とする特許請求の範囲第1項に記載の電磁
弁制御回路。
(3) The electromagnetic valve control circuit according to claim 1, wherein a switching element is interposed between the positive temperature coefficient thermistor and the solenoid to control energization of the solenoid.
JP11922685A 1985-06-01 1985-06-01 Solenoid valve control circuit Pending JPS61277842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11922685A JPS61277842A (en) 1985-06-01 1985-06-01 Solenoid valve control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11922685A JPS61277842A (en) 1985-06-01 1985-06-01 Solenoid valve control circuit

Publications (1)

Publication Number Publication Date
JPS61277842A true JPS61277842A (en) 1986-12-08

Family

ID=14756078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11922685A Pending JPS61277842A (en) 1985-06-01 1985-06-01 Solenoid valve control circuit

Country Status (1)

Country Link
JP (1) JPS61277842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006203A (en) * 2013-02-26 2014-08-27 英飞凌科技股份有限公司 Current driving system for a solenoid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344734A (en) * 1976-10-01 1978-04-21 Allied Chem Fuel injection system
JPS5598623A (en) * 1979-01-24 1980-07-26 Toyota Motor Corp Air-fuel ratio controlling system for fuel injection engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344734A (en) * 1976-10-01 1978-04-21 Allied Chem Fuel injection system
JPS5598623A (en) * 1979-01-24 1980-07-26 Toyota Motor Corp Air-fuel ratio controlling system for fuel injection engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006203A (en) * 2013-02-26 2014-08-27 英飞凌科技股份有限公司 Current driving system for a solenoid
US9528625B2 (en) 2013-02-26 2016-12-27 Infineon Technologies Ag Current driving system for a solenoid

Similar Documents

Publication Publication Date Title
US3806854A (en) Control for automotive choke
JPS624700Y2 (en)
US3752133A (en) Multiple heat automatic choke
KR100255711B1 (en) Motor strat-up circuit
US3818881A (en) Electrically controlled automatic choke of a carburetor for an internal combustion engine
US4344898A (en) Carburetor controlling system
US4096837A (en) Automatic choking device of electric heating type
JPH0773958A (en) Heating device
JPS61277842A (en) Solenoid valve control circuit
US4297980A (en) Motor vehicle carburetor choke mechanism
JP3790656B2 (en) Auto choke control device
US3423569A (en) Electric air heater for automatic choke
JPH0219727Y2 (en)
JPS61244846A (en) Solenoid valve control circuit
JPS62224783A (en) Solenoid control circuit
GB1432456A (en) Choke control unit for internal combstion engine
JPS5933889Y2 (en) Intake heating device
US4703739A (en) Engine auxiliary starting device
US4406120A (en) Catalyst over temperature protector
JPS6025629B2 (en) Diesel engine preheating control device
JPH0227183Y2 (en)
JPS5933888Y2 (en) Internal combustion engine intake air heating device
JPH08219450A (en) Safety device for cooker
US4131930A (en) Thermal time-delay switch
JPS6231653Y2 (en)